Isometries for Ky Fan Norms Between Matrix Spaces

Chi-Kwong Li ${ }^{1}$, Yiu-Tung Poon and Nung-Sing Sze ${ }^{2}$

Abstract

We characterize linear maps between different rectangular matrix spaces preserving Ky Fan norms.

Keywords: isometry, matrices, linear maps.
AMS Classifications: 15A04, 15A60.

1 Introduction and statements of results

Let $M_{m, n}\left(M_{n}\right)$ be the linear space of $m \times n(n \times n)$ complex matrices. The singular values of $A \in M_{m, n}$ are the nonnegative square roots of the eigenvalues of $A^{*} A$, and they are denoted by $s_{1}(A) \geq \cdots \geq s_{n}(A)$. For $1 \leq k \leq \min \{m, n\}$, the Ky Fan k-norm on $M_{m, n}$ is defined and denoted by

$$
\|A\|_{k}=s_{1}(A)+\cdots+s_{k}(A)
$$

The Ky Fan 1-norm reduces to the operator norm; when $m=n$ the Ky Fan n-norm is also known as the trace norm.

Evidently, Ky Fan k-norms are unitarily invariant norms, i.e.,

$$
\|U A V\|_{k}=\|A\|_{k}
$$

for any $A \in M_{m, n}$, and unitary $U \in M_{m}$ and $V \in M_{n}$. Actually, they form an important class of unitarily invariant norms; see [1, Chapters 2 and 3]. For instance, given $A, B \in M_{m, n}$,

$$
\|A\|_{k} \leq\|B\|_{k} \quad \text { for all } k=1, \ldots, \min \{m, n\}
$$

if and only if

$$
\|A\| \leq\|B\| \quad \text { for all unitarily invariant norms }\|\cdot\| .
$$

There has been considerable interest in studying isometries for Ky Fan norms on matrix spaces. For example, by a result of Kadison [5], one easily deduces that isometries for the operator norm on M_{n} has to have the from

$$
\begin{equation*}
A \mapsto U A V \quad \text { or } \quad A \mapsto U A^{t} V \tag{1}
\end{equation*}
$$

for some unitary matrices $U, V \in M_{n}$. In [4], the authors showed that the same conclusion holds for Ky Fan k-norm isometries for any $k=1, \ldots, \min \{m, n\}$, where the second form in (1) can occur only when $m=n$. In [8], the authors considered the problem on block

[^0]triangular matrix algebras in M_{n}, and showed that the isometries essentially have the same structure except when $m=n$, in this case, the second form in (1) has to be replaced by
$$
A \mapsto U A^{+} V,
$$
where A^{+}is the transpose taken about the anti-diagonal so as to maintain the block triangular structure. In [3], the authors studied isometries $\phi:\left(M_{n},\|\cdot\|_{1}\right), \rightarrow\left(M_{p},\|\cdot\|_{1}\right)$ for $n \neq p$, and obtained a complete characterization when $p \leq 2 n-2$; moreover, examples were given to show that ϕ may have complicated structure for $p>2 n-2$. In view of these, one may think that isometries $\phi:\left(M_{n},\|\cdot\|_{k}\right) \rightarrow\left(M_{p},\|\cdot\|_{k}\right)$ also have complicated structure for $k>1$. It turns out that it is not the case as shown in the corollary of our main theorem, which characterizes isometries $\phi:\left(M_{m, n},\|\cdot\|_{k^{\prime}}\right) \rightarrow\left(M_{p, q},\|\cdot\|_{k}\right)$ provided $k^{\prime}>1$. We need some notations and definitions to describe our main result.

For two matrices A and B with $A=\left(a_{i j}\right)$ denote by $A \otimes B=\left(a_{i j} B\right)$. An $r \times s$ matrix X is called a partial isometry if $X^{*} X=I_{s}$, i.e., X has orthonormal columns.

Theorem 1.1 Let $1<k^{\prime} \leq \min \{m, n\}$ and $1 \leq k \leq \min \{p, q\}$. Suppose $\phi: M_{m, n} \rightarrow M_{p, q}$ satisfies

$$
\begin{equation*}
\|\phi(A)\|_{k}=\|A\|_{k^{\prime}} \quad \text { for all } \quad A \in M_{m, n} \tag{2}
\end{equation*}
$$

Then there exist nonnegative integers c_{1} and c_{2} with $c_{1}+c_{2}>0$, and partial isometries U and V of sizes $p \times\left(c_{1} m+c_{2} n\right)$ and $q \times\left(c_{1} n+c_{2} m\right)$, respectively, such that one of the following holds.
(a) $k^{\prime}<\min \{m, n\}, k=k^{\prime}\left(c_{1}+c_{2}\right)$, and ϕ has the form

$$
\left.A \mapsto \frac{1}{c_{1}+c_{2}} U\left[\left(I_{c_{1}} \otimes A\right) \oplus\left(I_{c_{2}} \otimes A\right)^{t}\right)\right] V^{*} .
$$

(b) $k^{\prime}=\min \{m, n\}, k^{\prime}\left(c_{1}+c_{2}\right) \leq k$, and there are diagonal matrices $D_{1} \in M_{c_{1}}$ and $D_{2} \in M_{c_{2}}$ with positive diagonal entries with $\operatorname{tr} D_{1}+\operatorname{tr} D_{2}=1$, such that ϕ has the form

$$
A \mapsto U\left[\left(D_{1} \otimes A\right) \oplus\left(D_{2} \otimes A^{t}\right)\right] V^{*}
$$

If $k^{\prime}=k$, then either $\left(c_{1}, c_{2}\right)=(1,0)$ or $\left(c_{1}, c_{2}\right)=(0,1)$. By adding columns to U and V to form unitary matrices, we have the following corollary.

Corollary 1.2 Let $1<k \leq \min \{m, n\}$. Suppose $\phi: M_{m, n} \rightarrow M_{p, q}$ satisfies

$$
\|\phi(A)\|_{k}=\|A\|_{k} \quad \text { for all } \quad A \in M_{m, n} .
$$

Then there are unitary matrices $U \in M_{p}$ and $V \in M_{q}$ such that ϕ has the form

$$
A \mapsto U\left[A \oplus 0_{p-m, q-n}\right] V \quad \text { or } \quad A \mapsto U\left[A^{t} \oplus 0_{p-n, q-m}\right] V .
$$

2 Auxiliary results and proofs

Replacing ϕ by the mapping(s) $A \mapsto \phi\left(A^{t}\right)$ and/or $A \mapsto[\phi(A)]^{t}$, we may assume that $m \leq n$ and $p \leq q$. Two nonzero matrices $A, B \in M_{m, n}$ are said to be orthogonal if $A B^{*}=0$ and $A^{*} B=0$, equivalently, there are unitary matrices U and V such that $U A V=\sum_{j=1}^{r} a_{j} E_{j j}$ and $U B V=\sum_{j=r+1}^{r+s} b_{j} E_{j j}$ with $a_{1} \geq \cdots \geq a_{r}>0$ and $b_{1} \geq \cdots \geq b_{s}>0$ for some r, s with $r+s \leq \min \{m, n\}$. The nonzero matrices $A_{1}, \cdots A_{d} \in M_{m, n}$ are said to be pairwise orthogonal $m \times n$ matrices if $A_{i} A_{j}^{*}=0$ and $A_{i}^{*} A_{j}=0$ for any distinct pair (i, j). In such case, there are unitary $U \in M_{m}$ and $V \in M_{n}, 0=r_{0}<r_{1}<\cdots<r_{d} \leq \min \{m, n\}$ and positive numbers $a_{1}, \cdots, a_{r_{d}}$ such that $U A_{i} V=\sum_{r_{i-1}<j \leq r_{i}} a_{j} E_{j j}$.

We begin with the following lemma from [8, Lemma 5].
Lemma 2.1 Let $A, B \in M_{m, n}$ be nonzero. Then $\|a A+b B\|_{k}=|a|\|A\|_{k}+|b|\|B\|_{k}$ for every $a, b \in \mathbb{C}$ if and only if A and B are orthogonal and $\operatorname{rank} A+\operatorname{rank} B \leq k$.

By Lemma 2.1 and a simple inductive argument, we have the following.
Lemma 2.2 Let $\phi: M_{m, n} \rightarrow M_{p, q}$ be a map satisfying (2). Suppose the rank one matrices $A_{1}, \ldots, A_{d} \in M_{m, n}, d \leq \min \{m, n\}$, are pairwise orthogonal. Then $\phi\left(A_{1}\right), \ldots, \phi\left(A_{d}\right) \in$ $M_{p, q}$ are nonzero and pairwise orthogonal. Furthermore, for any $1 \leq s_{1}<\cdots<s_{k^{\prime}} \leq d$, $\sum_{j=1}^{k^{\prime}} \operatorname{rank} \phi\left(A_{s_{j}}\right) \leq k$.

Proof of Theorem 1.1.

For the sufficiency part of the Theorem 1.1, one readily sees that singular values of $\phi(A)$ has $c=\left(c_{1}+c_{2}\right)$ copies of $\frac{s_{1}(A)}{c}, \ldots, \frac{s_{m}(A)}{c}$, if ϕ has the form (a). On the other hand, if $k^{\prime}=m$ and ϕ has the form (b), then $k \geq c k^{\prime}$ and so the Ky Fan k-norm of $\phi(A)$ is just the sum of its singular values. Let $D_{1} \oplus D_{2}=\operatorname{diag}\left(d_{1}, \ldots, d_{c}\right)$. Then,

$$
\|\phi(A)\|_{k}=d_{1}\|A\|_{k^{\prime}}+\cdots+d_{c}\|A\|_{k^{\prime}}=\operatorname{tr}\left(D_{1} \oplus D_{2}\right)\|A\|_{k^{\prime}}=\|A\|_{k^{\prime}}
$$

To prove the necessity part, let $\left(p^{\prime}, q^{\prime}\right)=\left(p-c_{1} m-c_{2} n, q-c_{1} n-c_{2} m\right)$. It suffices to prove that there are unitary matrices $U \in M_{p}$ and $V \in M_{q}$ such that ϕ has the form

$$
\begin{array}{ll}
\text { (a) } & A \mapsto \frac{1}{c_{1}+c_{2}} U\left[\left(I_{c_{1}} \otimes A\right) \oplus\left(I_{c_{2}} \otimes A^{t}\right) \oplus 0_{p^{\prime}, q^{\prime}}\right] V^{*} \quad \text { if } \quad k^{\prime}<m, \\
\text { (b) } & A \mapsto U\left[\left(D_{1} \otimes A\right) \oplus\left(D_{2} \otimes A^{t}\right) \oplus 0_{p^{\prime}, q^{\prime}}\right] V^{*} \quad \text { if } \quad k^{\prime}=m \tag{b}
\end{array}
$$

We divide the proof into three cases:

$$
\text { (I) } k^{\prime}<m=n, \quad \text { (II) } \quad k^{\prime}=m=n, \quad \text { and } \quad \text { (III) } m<n .
$$

First consider case (I) : $k^{\prime}<m=n$. For any $A \in M_{m, n}$ with singular values $1,0, \ldots, 0$, there are unitary X and Y such that $A=X E_{11} Y$. Let $A_{j}=X E_{j j} Y$ for $j=1, \ldots, m$.

Then A_{1}, \ldots, A_{m} are pairwise orthogonal. By Lemma $2.2, \phi\left(A_{1}\right), \ldots, \phi\left(A_{m}\right)$ are pairwise orthogonal. Thus, there exist unitary U and $V, 0=r_{0}<r_{1}<\cdots<r_{d} \leq m$ and positive numbers $a_{1}, \cdots, a_{r_{d}}$ such that

$$
B_{i}=U \phi\left(A_{i}\right) V=\sum_{r_{i-1}<j \leq r_{i}} a_{j} E_{j j} \quad \text { for any } \quad i=1, \ldots, m .
$$

By Lemma 2.2 again, the sum of any k^{\prime} matrices chosen from B_{1}, \ldots, B_{m} has rank at most k. Let $1 \leq t_{1}<\cdots<t_{k^{\prime}} \leq m$. Then

$$
\begin{equation*}
s_{\ell}\left(\sum_{j=1}^{k^{\prime}} B_{t_{j}}\right)=0, \quad \text { for all } \ell>k \tag{3}
\end{equation*}
$$

Moreover, if $t \in\{1, \ldots, m\} \backslash\left\{t_{1}, \ldots, t_{k^{\prime}}\right\}$, we claim that

$$
\begin{equation*}
s_{1}\left(B_{t}\right) \leq s_{k}\left(\sum_{j=1}^{k^{\prime}} B_{t_{j}}\right) \tag{4}
\end{equation*}
$$

If (4) does not hold, then $s_{1}\left(B_{t}\right)>s_{k}\left(\sum_{j=1}^{k^{\prime}} B_{t_{j}}\right)$, which gives the following contradiction:

$$
k^{\prime}=\left\|A_{t}+\sum_{j=1}^{k^{\prime}} A_{t_{j}}\right\|_{k^{\prime}}=\left\|B_{t}+\sum_{j=1}^{k^{\prime}} B_{t_{j}}\right\|_{k}>\left\|\sum_{j=1}^{k^{\prime}} B_{t_{j}}\right\|_{k}=\left\|\sum_{j=1}^{k^{\prime}} A_{t_{j}}\right\|_{k^{\prime}}=k^{\prime} .
$$

Let $c=k / k^{\prime}$. It follows from (2), (3) and (4) that for each $1 \leq j \leq m, s_{i}\left(B_{j}\right)=1 / c$ for $1 \leq i \leq c$ and $s_{i}\left(B_{j}\right)=0$ for $c<i \leq p$. Thus, we see that
(i) every rank one matrix is mapped to a rank c matrix, and
(ii) every unitary matrix is mapped to a matrix with singular values $\underbrace{1 / c, \ldots, 1 / c, 0}_{c m}, \ldots, 0$.

Since (i) holds, by Theorem 2.5 in [7] ϕ has the form

$$
A \mapsto R\left[\left(I_{c_{1}} \otimes A\right) \oplus\left(I_{c_{2}} \otimes A^{t}\right) \oplus 0_{p^{\prime}, q^{\prime}}\right] S^{*}
$$

for some invertible $R \in M_{p}$ and $S \in M_{q}$. Let R_{1} (respectively, S_{1}) be obtained from R (respectively, S) by removing its last p^{\prime} (respectively, q^{\prime}) columns. Then

$$
R\left[\left(I_{c_{1}} \otimes A\right) \oplus\left(I_{c_{2}} \otimes A^{t}\right) \oplus 0_{p^{\prime}, q^{\prime}}\right] S^{*}=R_{1}\left[\left(I_{c_{1}} \otimes A\right) \oplus\left(I_{c_{2}} \otimes A^{t}\right)\right] S_{1}^{*}
$$

By polar decomposition, there are unitary matrices $U \in M_{p}, V \in M_{q}$ and positive definite matrices $P \in M_{c_{1} m+c_{2} n}$ and $Q \in M_{c_{1} n+c_{2} m}$ such that

$$
R_{1}=U\binom{P}{0_{p^{\prime}, c_{1} m+c_{2} n}} \quad \text { and } \quad S_{2}=V\binom{Q}{0_{q^{\prime}, c_{1} n+c_{2} m}}
$$

Thus,

$$
\phi(X)=U\left\{P\left[\left(I_{c_{1}} \otimes A\right) \oplus\left(I_{c_{2}} \otimes A^{t}\right)\right] Q^{*} \oplus 0_{p^{\prime}, q^{\prime}}\right\} V^{*}
$$

Define $\psi: M_{m} \rightarrow M_{c m}$ such that $\psi(X)=c P\left[\left(I_{c_{1}} \otimes A\right) \oplus\left(I_{c_{2}} \otimes A^{t}\right)\right] Q^{*}$. By (ii), we see that ψ maps unitary matrices to unitary matrices. By the result in [2], we see that $\psi(A)=W_{1}\left[\left(I_{c_{1}} \otimes A\right) \oplus\left(I_{c_{2}} \otimes A^{t}\right)\right] W_{2}$ for some unitary $W_{1}, W_{2} \in M_{c m}$. Thus, condition (a) holds.

Next, we turn to case (II) : $k^{\prime}=m=n$. From the first part of the proof in case (I), we can see that for any unitary $X, Y \in M_{m}$ and $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{C}, \sum_{i=1}^{m} \lambda_{i} \phi\left(X E_{i i} Y\right)$ has rank at most k. Hence, $\phi(A)$ has rank at most k for all $A \in M_{m}$. We may assume that $p=q$ by appending $q-p$ zero rows to $\phi(A)$ for each $A \in M_{m}$. So, we assume that $\phi: M_{m} \rightarrow M_{p}$ and suppose $\phi\left(I_{m}\right)=D$ is a nonnegative diagonal matrix with diagonal entries arranged in descending order. For any Hermitian $X \in M_{m}$ with trace zero and spectrum in $[-1,1]$ and $t \in[-1,1]$,

$$
\left\|\phi\left(I_{m}+t X\right)\right\|_{k}=\left\|I_{m}+t X\right\|_{k^{\prime}}=k^{\prime}=\left\|I_{m}\right\|_{k^{\prime}}=\left\|\phi\left(I_{m}\right)\right\|_{k}=\operatorname{tr} D
$$

Let $Y=\phi(X)$. Then $\operatorname{tr} Y=0$ because

$$
|\operatorname{tr} D+t \operatorname{tr} Y| \leq\left\|\phi\left(I_{m}+t X\right)\right\|_{p}=\left\|\phi\left(I_{m}+t X\right)\right\|_{k}=\operatorname{tr} D
$$

for $t= \pm 1$. Moreover,

$$
k^{\prime}=\operatorname{tr}(D \pm Y) \leq\left\|\phi\left(I_{m}+t X\right)\right\|_{p}=\left\|\phi\left(I_{m}+t X\right)\right\|_{k}=k^{\prime}
$$

By [6, Corollary 3.2], we conclude that $D \pm Y$ is positive semi-definite. As a result, if $\phi\left(I_{m}\right)=D=\operatorname{diag}\left(d_{1}, \ldots, d_{r}, 0, \ldots, 0\right)$ with $d_{1} \geq \cdots \geq d_{r}>0$, then $\phi(X)$ has the form $Y \oplus 0_{p-r}$. We may now consider $\psi: M_{m} \rightarrow M_{r}$ such that $\phi(A)=\psi(A) \oplus 0_{p-r}$. It follows from the above argument that ψ maps Hermitian matrices to Hermitian matrices and $\|\psi(A)\|_{r}=$ $\|\phi(A)\|_{k}=\|A\|_{k^{\prime}}$. We claim that
(i) ψ maps positive semidefinite matrices to positive semidefinite matrices, and
(ii) ψ maps invertible Hermitian matrices to invertible Hermitian matrices.

To see (i), suppose $A \in M_{m}$ is positive semidefinite. Let $D_{1}=\psi\left(I_{m}\right)=\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right)$. Choose $t>0$ such that $D_{1}+t \psi(A)$ is positive semidefinite. Then we have

$$
\begin{aligned}
\operatorname{tr}\left(D_{1}+t \psi(A)\right) & =\left\|D_{1}+t \psi(A)\right\|_{r}=\left\|I_{m}+t A\right\|_{k^{\prime}}=\operatorname{tr}\left(I_{m}\right)+t \operatorname{tr}(A) \\
& =\left\|I_{m}\right\|_{k^{\prime}}+t\|A\|_{k^{\prime}}=\left\|\psi\left(I_{m}\right)\right\|_{r}+t\|\psi(A)\|_{r}=\operatorname{tr} D_{1}+t\|\psi(A)\|_{r}
\end{aligned}
$$

Thus, $\operatorname{tr} \psi(A)=\|\psi(A)\|_{r}$, and it follows form [6, Corollary 3.2] again that $\psi(A)$ is positive semidefinite.

To prove (ii), let

$$
A=U^{*}\left(\sum_{j=1}^{m} \lambda_{j} E_{j j}\right) U
$$

for some unitary U and $\lambda_{j} \in \mathbb{R} \backslash\{0\}$ for $j=1, \ldots, m$. Since $\phi\left(U^{*} E_{11} U\right), \ldots, \phi\left(U^{*} E_{m m} U\right)$ are pairwise orthogonal and $\phi\left(I_{m}\right)=D, \phi\left(U^{*} E_{j j} U\right)=V^{*} F_{j} V \oplus 0_{p-r}$ for $j=1, \ldots, m$, such that $F_{i}=\sum_{r_{i-1}<s \leq r_{i}} a_{s} E_{s s}$ for $0=r_{0}<\cdots<r_{m}=r$ and positive numbers $a_{1}, \ldots, a_{r_{m}}$. Therefore, $\psi(A)=V^{*}\left(\sum_{j=1}^{m} \lambda_{j}\left(\sum_{r_{i-1}<s \leq r_{i}} a_{s} E_{s s}\right)\right) V$ is also invertible. Thus, condition (ii) holds.

Now, $\psi\left(I_{m}\right)$ is positive definite and ψ maps invertible Hermitian matrices to invertible Hermitian matrices. By (the proof of) [7, Proposition 3.4], we see that

$$
\begin{equation*}
\psi(X)=T^{*}\left[\left(I_{c_{1}} \otimes X\right) \oplus\left(I_{c_{2}} \otimes X^{t}\right)\right] T \tag{5}
\end{equation*}
$$

for some invertible $T \in M_{r}$. In particular, we see that
(iii) ψ maps rank s matrices to rank $c s$ matrices for $s=1, \ldots, m$.

Next, we show that ψ has the form $X \mapsto U^{*}\left[\left(D_{1} \otimes X\right) \oplus\left(D_{2} \otimes X^{t}\right)\right] U$ for some unitary matrix U and diagonal matrices D_{1} and D_{2} with positive diagonal entries such that $\operatorname{tr} D_{1}+$ $\operatorname{tr} D_{2}=1$. Equivalently, we show that ψ has the form

$$
A=\left(a_{u v}\right) \longmapsto V^{*} B V, \quad \text { where } \quad B=\left(B_{u v}\right)_{1 \leq u, v \leq m} \quad \text { with } \quad B_{u v}=a_{u v} D_{1} \oplus a_{v u} D_{2}
$$

for some unitary V. First, by a suitable permutation, we can rewrite ψ in (5) as

$$
\begin{equation*}
A=\left(a_{u v}\right) \longmapsto S^{*} B S, \quad \text { where } \quad B=\left(B_{u v}\right)_{1 \leq u, v \leq m} \quad \text { with } \quad B_{u v}=a_{u v} I_{c_{1}} \oplus a_{v u} I_{c_{2}} \tag{6}
\end{equation*}
$$

for some nonsingular $S \in M_{r}$. By Lemma 2.2, we see that $\phi\left(E_{11}\right), \ldots, \phi\left(E_{m m}\right)$ are pairwise orthogonal. Then for any distinct pair i and j,

$$
\left[S^{*}\left(E_{i i} \otimes I_{c}\right) S\right]^{*}\left[S^{*}\left(E_{j j} \otimes I_{c}\right) S\right]=\psi\left(E_{i i}\right)^{*} \psi\left(E_{j j}\right)=0
$$

Thus, $\left(E_{i i} \otimes I_{c}\right) S S^{*}\left(E_{j j} \otimes I_{c}\right)=0$ whenever $i \neq j$. It follows that $S S^{*}=S_{1} \oplus \cdots \oplus S_{n}$ where $S_{i} \in M_{c}$.

Let $i>1, X=E_{11}+E_{1 i}$ and $Y=E_{i 1}-E_{i i}$. From (6), $\psi(X)=S^{*}\left(B_{r s}\right) S$ and $\psi(Y)=S^{*}\left(C_{r s}\right) S$ so that

$$
\tilde{B}=\left(\begin{array}{ll}
B_{11} & B_{1 i} \\
B_{i 1} & B_{i i}
\end{array}\right)=\left(\begin{array}{cc}
I_{c} & I_{c_{1}} \oplus 0_{c_{2}} \\
0_{c_{1}} \oplus I_{c_{2}} & 0_{c}
\end{array}\right), \quad \tilde{C}=\left(\begin{array}{ll}
C_{11} & C_{1 i} \\
C_{i 1} & C_{i i}
\end{array}\right)=\left(\begin{array}{cc}
0_{c} & 0_{c_{1}} \oplus I_{c_{2}} \\
I_{c_{1}} \oplus 0_{c_{2}} & -I_{c}
\end{array}\right)
$$

and all other $B_{u v}$ and $C_{u v}$ are 0_{c}. Let $J_{1}=I_{c_{1}} \oplus 0_{c_{2}}$ and $J_{2}=0_{c_{1}} \oplus I_{c_{2}}$. Since X and Y are orthogonal, so are $\psi(X)$ and $\psi(Y)$. Hence $B^{*}\left(S S^{*}\right) C=0$ and $B\left(S S^{*}\right) C^{*}=0$. Thus,

$$
\left(\begin{array}{cc}
J_{2} S_{i} J_{1} & S_{1} J_{2}-J_{2} S_{i} \\
0 & J_{1} S_{1} J_{2}
\end{array}\right)=\tilde{B}^{*}\left(S_{1} \oplus S_{i}\right) \tilde{C}=0=\tilde{B}\left(S_{1} \oplus S_{i}\right) \tilde{C}^{*}=\left(\begin{array}{cc}
J_{1} S_{i} J_{2} & S_{1} J_{1}-J_{1} S_{i} \\
0 & J_{2} S_{1} J_{1}
\end{array}\right) .
$$

Since $J_{2} S_{1} J_{1}=J_{1} S_{1} J_{2}=J_{2} S_{i} J_{1}=J_{1} S_{i} J_{2}=0$, each of the matrices S_{1} and S_{i} is a direct sum of a matrix in $M_{c_{1}}$ and a matrix in $M_{c_{2}}$. Furthermore, we can conclude that $S_{1}=S_{i}=P_{1} \oplus P_{2}$, where $P_{1} \in M_{c_{1}}$ and $P_{2} \in M_{c_{2}}$, from $S_{1} J_{1}-J_{1} S_{i}=0=S_{1} J_{2}-J_{2} S_{i}$. As i is arbitrary, $S S^{*}=I_{m} \otimes\left(P_{1} \oplus P_{2}\right)$ with P_{1} and P_{2} are both positive definite. Thus there exist unitary $U_{1} \in M_{c_{1}}$ and $U_{2} \in M_{c_{2}}$ such that $U_{1} P_{1} U_{1}^{*}=D_{1}$ and $U_{2} P_{2} U_{2}^{*}=D_{2}$, where D_{1} and D_{2} are diagonal matrices with positive diagonal entries.

Let $U=I_{m} \otimes\left(U_{1} \oplus U_{2}\right)$ and $\tilde{S}=U S$. Then $\tilde{S} \tilde{S}^{*}=I_{m} \otimes\left(D_{1} \oplus D_{2}\right)$. As the row vectors of \tilde{S} form an orthogonal basis, we may write $\tilde{S}=D V$, where $D=I_{m} \otimes\left(D_{1} \oplus D_{2}\right)^{1 / 2}$ and V is unitary.

On the other hand, we have $U^{*} B U=B$ for the block matrix B in (6), as

$$
a_{u v} I_{c_{1}} \oplus a_{v u} I_{c_{2}}=\left(U_{1} \oplus U_{2}\right)^{*}\left(a_{u v} I_{c_{1}} \oplus a_{v u} I_{c_{2}}\right)\left(U_{1} \oplus U_{2}\right) .
$$

Then $S^{*} B S=S^{*} U^{*} B U S=\tilde{S}^{*} B \tilde{S}=V^{*} D^{*} B D V$. In fact, the (i, j)-th block of $D^{*} B D$ is equal to

$$
\left(D_{1} \oplus D_{2}\right)^{1 / 2}\left(a_{u v} I_{c_{1}} \oplus a_{v u} I_{c_{2}}\right)\left(D_{1} \oplus D_{2}\right)^{1 / 2}=a_{u v} D_{1} \oplus a_{v u} D_{2}
$$

Thus, ϕ has the asserted form. Since $\left\|I_{m} \otimes\left(D_{1} \oplus D_{2}\right)\right\|_{k^{\prime}}=\left\|\psi\left(I_{m}\right)\right\|_{r}=\left\|I_{m}\right\|_{k^{\prime}}=m$, it follows that $\operatorname{tr}\left(D_{1} \oplus D_{2}\right)=\operatorname{tr} D_{1}+\operatorname{tr} D_{2}=1$.

Finally, we consider case (III) : $m<n$. We prove the desired conclusion by induction on $n-m$ starting from $n-m=0$, which follows from case (I) and (II). Suppose that $n-m=r>0$ and the result holds for the cases when $n-m<r$. Applying the assumption on the restriction of ϕ on $M_{m, n}^{0}$, the subspace of $M_{m, n}$ which consists of matrices with zero n-th column, we conclude that for any $A \in M_{m, n}^{0}$,

$$
\phi(A)=U\left[\left(D_{1} \otimes \tilde{A}\right) \oplus\left(D_{2} \otimes \tilde{A}^{t}\right) \oplus 0_{\left.p^{\prime}, q^{\prime}\right]}\right] V
$$

where \tilde{A} denotes $m \times(n-1)$ matrices obtained by deleted the n-th column of $A,\left(p^{\prime}, q^{\prime}\right)=$ $\left(p-c_{1} m-c_{2}(n-1), q-c_{1}(n-1)-c_{2} m\right), U \in M_{p}$ and $V \in M_{q}$ are unitary and the following holds.
(a) If $k^{\prime}<m, c=c_{1}+c_{2}=k / k^{\prime}, D_{1}=\frac{1}{c} I_{c_{1}}$ and $D_{2}=\frac{1}{c} I_{c_{2}}$;
(b) If $k^{\prime}=m, c=c_{1}+c_{2} \leq k / k^{\prime}, D_{1} \in M_{c_{1}}$ and $D_{2} \in M_{c_{2}}$ are diagonal matrices with positive diagonal entries such that $\operatorname{tr} D_{1}+\operatorname{tr} D_{2}=1$.

Now replacing ϕ by $X \mapsto U^{*} \phi(X) V^{*}$, we may assume that $U=I_{p}$ and $V=I_{q}$.
For any $\mathbf{x} \in M_{m, 1}$, let A be the $m \times n$ matrix with \mathbf{x} as the n-th column and zero in others, and $X=\left(X_{u v}\right)_{1 \leq u, v \leq c+1}=\phi(A)$, where $X_{u u} \in M_{m, n-1}$ for $1 \leq u \leq c_{1}, X_{u u} \in M_{n-1, m}$ for $c_{1}<u \leq c$ and $X_{c+1, c+1} \in M_{p^{\prime}, q^{\prime}}$.

Take any nonzero $\mathbf{y} \in M_{m, 1}$ such that $\mathbf{x}^{*} \mathbf{y}=0$. (Note that $1<k \leq m$ and hence \mathbf{y} exists.) For any $l<n$, let B be the $m \times n$ matrix with \mathbf{y} as the l-th column and zero in others. Then $Y=\phi(B)=\left(D_{1} \otimes \tilde{B}\right) \oplus\left(D_{2} \otimes(\tilde{B})^{t}\right) \oplus 0_{p^{\prime}, q^{\prime}}$.

Since A and B are orthogonal, $X^{*} Y=0_{q}$ and $X Y^{*}=0_{p}$. It follows from the structure of Y that

$$
\begin{aligned}
X_{u v}^{*} \tilde{B} & =0 \quad \text { when } \quad 1 \leq u \leq c_{1} \text { and } 1 \leq v \leq c+1 \\
X_{u v}^{*} \tilde{B}^{t} & =0 \quad \text { when } \quad c_{1}<u \leq c \text { and } 1 \leq v \leq c+1 \\
X_{u v} \tilde{B}^{*} & =0 \quad \text { when } 1 \leq u \leq c+1 \text { and } 1 \leq v \leq c_{1} \\
X_{u v}\left(\tilde{B}^{t}\right)^{*} & =0 \quad \text { when } 1 \leq u \leq c+1 \text { and } c_{1}<v \leq c .
\end{aligned}
$$

Since the l-th column of the $m \times(n-1)$ matrix \tilde{B} is the nonzero vector y, if $X_{u v} \tilde{B}^{*}=0$, then the l-th row of $X_{u v}$ must be the zero. Furthermore, as l can be any integer in $\{1, \ldots, n-1\}$, we conclude that $X_{u v}=0$. Similarly, $X_{u v}$ must be the zero matrix if $X_{u v}^{*} \tilde{B}^{t}=0$.

On the other hand, if $X_{u v}^{*} \tilde{B}=0$, then all the columns of $X_{u v}$ must be orthogonal to \mathbf{y}. Since \mathbf{y} can be any vector orthogonal to \mathbf{x}, all columns of $X_{u v}$ must be multiples of \mathbf{x}. Hence, $X_{u v}=\mathbf{x w}^{t}$ for some vector \mathbf{w} of suitable size. Similarly, since $X_{u v}\left(\tilde{B}^{t}\right)^{*}=0$, we have $X_{u v}=\mathbf{z x}{ }^{t}$ for some \mathbf{z}.

By the arguments in the last two paragraphs, if $1 \leq u \leq c_{1}$ and $c_{1}<v \leq c$, then $\mathbf{x w}^{t}=X_{u v}=\mathbf{z x}^{t}$ for some \mathbf{w} and \mathbf{z} of suitable sizes. Thus, $\mathbf{w}=\lambda \mathbf{x}$ for some constant λ in \mathbb{C}. That is, $X_{u v}=\lambda \mathbf{x x}^{t}$.

Combining the above analysis, we know that

$$
\phi\left[0_{m, n-1} \mid \mathbf{x}\right]=\left(\begin{array}{ccc}
0_{c_{1} m, c_{1} n} & E(\mathbf{x}) & F(\mathbf{x}) \\
0_{c_{2} n, c_{1} n} & 0_{c_{2} n, c_{2} m} & 0_{c_{2} n, q^{\prime}} \\
0_{p^{\prime}, c_{1} n} & G(\mathbf{x}) & H(\mathbf{x})
\end{array}\right)
$$

where $E(\mathbf{x})=\left(\lambda_{u v} \mathbf{x x}^{t}\right)_{1 \leq u \leq c_{1}, 1 \leq v \leq c_{2}}, F(\mathbf{x})=\left(\begin{array}{c}\mathbf{x w}_{1}^{t} \\ \vdots \\ \mathbf{x w}_{c_{1}}^{t}\end{array}\right), G(\mathbf{x})=\left(\begin{array}{lll}\mathbf{z}_{1} \mathbf{w}^{t} & \cdots & \mathbf{z}_{c_{2}} \mathbf{x}^{t}\end{array}\right), H(\mathbf{x})$,
$\lambda_{u v}, \mathbf{w}_{u}$ and \mathbf{z}_{v} all depend on \mathbf{x}. By linearity of $\phi, \lambda_{u v}, \mathbf{w}_{u}$ and \mathbf{z}_{v} must be the same for all \mathbf{x}, and $\lambda_{u v}$ must be zero. i.e., $E(\mathbf{x})=0_{c_{1} m, c_{2} m}$.

Now we consider the orthogonal pair $A=E_{11}+E_{1 n}$ and $B=-E_{21}+E_{2 n}$. Let \mathbf{e}_{i} be the i-th column of I_{m}. Then

$$
\phi(A)=\left(\begin{array}{ccc}
D_{1} \otimes \tilde{E}_{11} & 0_{c_{1} m, c_{2} m} & F\left(\mathbf{e}_{1}\right) \\
0_{c_{2} n, c_{1} n} & D_{2} \otimes \tilde{E}_{11}^{t} & 0_{c_{2} n, q^{\prime}} \\
0_{p^{\prime}, c_{1} n} & G\left(\mathbf{e}_{1}\right) & H\left(\mathbf{e}_{1}\right)
\end{array}\right)
$$

and

$$
\phi(B)=\left(\begin{array}{ccc}
D_{1} \otimes-\tilde{E}_{21} & 0_{c_{1} m, c_{2} m} & F\left(\mathbf{e}_{2}\right) \\
0_{c_{2} n, c_{1} n} & D_{2} \otimes-\tilde{E}_{21}^{t} & 0_{c_{2} n, q^{\prime}} \\
0_{p^{\prime}, c_{1} n} & G\left(\mathbf{e}_{2}\right) & H\left(\mathbf{e}_{2}\right)
\end{array}\right) .
$$

Set $W=\left(\begin{array}{c}\mathbf{w}_{1}^{t} \\ \vdots \\ \mathbf{w}_{c_{1}}^{t}\end{array}\right)$. Since $\phi(A) \phi(B)^{*}=0$, the $(1,1)$-th block equals

$$
\begin{aligned}
0_{c_{1} m} & =\left(D_{1} \otimes \tilde{E}_{11}\right)\left(D_{1} \otimes-\tilde{E}_{21}\right)^{*}+F\left(\mathbf{e}_{1}\right) F\left(\mathbf{e}_{2}\right)^{*} \\
& =-\left(D_{1}^{2} \otimes E_{12}\right)+\left(W W^{*} \otimes E_{12}\right) \\
& =\left(W W^{*}-D_{1}^{2}\right) \otimes E_{12} .
\end{aligned}
$$

Thus, $W W^{*}=D_{1}^{2}$. Let $D_{1}=\operatorname{diag}\left(d_{1}, \ldots, d_{c_{1}}\right)$. Hence, $\left\{\mathbf{w}_{1} / d_{1}, \ldots, \mathbf{w}_{c_{1}} / d_{c_{1}}\right\}$ is a set of orthonormal vectors. Let $U \in M_{q^{\prime}}$ be a unitary matrix with $\mathbf{w}_{1}^{t} / d_{1}, \ldots, \mathbf{w}_{c_{1}}^{t} / d_{c_{1}}$ as the first c_{1} rows. Then $F^{\prime}(\mathbf{x})=F(\mathbf{x}) U^{*}=\left[D_{1} \otimes \mathbf{x} \mid 0_{c_{1} m, q^{\prime}-c_{1}}\right]$.

Similarly, by considering $\phi(A)^{*} \phi(B)=0$, we write $G^{\prime}(\mathbf{x})=V^{*} G(\mathbf{x})=\binom{D_{2} \otimes \mathbf{x}^{t}}{0_{p^{\prime}-c_{2}, c_{2} m}}$ for some unitary V. Now, we write

$$
\phi\left[0_{m, n-1} \mid \mathbf{x}\right]=\left(I_{c n} \oplus V\right)\left(\begin{array}{ccc}
0_{c_{1} m, c_{1} n} & 0_{c_{1} m, c_{2} m} & F^{\prime}(\mathbf{x}) \\
0_{c_{2} n, c_{1} n} & 0_{c_{2} n, c_{2} m} & 0_{c_{2} n, q^{\prime}} \\
0_{p^{\prime}, c_{1} n} & G^{\prime}(\mathbf{x}) & H^{\prime}(\mathbf{x})
\end{array}\right)\left(I_{c n} \oplus U\right)
$$

On the other hand, by applying the assumption on the restriction of ϕ on the subspace of $M_{m, n}$ which consists of matrices with zero in the $(n-1)$-th column, we conclude that

$$
\operatorname{rank} \phi\left[0_{m, n-1} \mid \mathbf{x}\right]=\operatorname{rank} \phi\left[\mathbf{x}\left|0_{m, n-2}\right| \mathbf{x}\right]=\operatorname{rank} \phi\left[\mathbf{x} \mid 0_{m, n-1}\right]=c
$$

(Note that here we use that fact that $n>m \geq 2$ to ensure nontrivial consideration.) Therefore, $H^{\prime}(\mathbf{x})=0$ for all \mathbf{x}. Finally, there exist permutation matrices P and Q such that for $A=\left[0_{m, n-1} \mid \mathbf{x}\right]$,

$$
\phi(A)=\left(I_{c n} \oplus V\right) P\left[\left(D_{1} \otimes A\right) \oplus\left(D_{2} \otimes A^{t}\right) \oplus 0_{p^{\prime}-c_{2}, q^{\prime}-c_{1}}\right] Q\left(I_{c n} \oplus U\right) .
$$

The result follows.

References

[1] R. Bhatia, Matrix Analysis, Springer, New York, 1997.
[2] W.S. Cheung and C.K. Li, Linear maps transforming the unitary group, Bulletin Canad. Math. Soc. 46 (2003), 54-58.
[3] W.S. Cheung, C.K. Li and Y.T. Poon, Isometries between matrix algebras, to appear in J. Australian Math. Soc.
pdf file available at http://www.resnet.wm.edu/~cklixx/poon-7.pdf.
[4] R. Grone and M. Marcus, Isometries of matrix algebras, J. Algebra 47 (1977), 180-189.
[5] R. V. Kadison, Isometries of operator algebras, Ann. of Math. (2) 54 (1951), 325338.
[6] C.K. Li, Matrices with some extremal properties, Linear Algebra Appl. 101 (1988), 255-267.
[7] C.K. Li, L. Rodman, and P. Šemrl, Linear transformations between matrix spaces that map one rank specific set into another, Linear Algebra Appl. 357 (2002), 197-208.
[8] C.K. Li, P. Šemrl, and A.R. Sourour, Isometries for Ky-Fan norms on block triangular matrix algebras, to appear in Archiv Math.
pdf file available at http://www.resnet.wm.edu/~cklixx/kyfan.pdf.

Chi-Kwong Li
Department of Mathematics, College of William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795, USA. (ckli@math.wm.edu)
Yiu-Tung Poon
Department of Mathematics, Iowa State University, Ames, Iowa 50011, USA, and Department of Mathematics, HKIEd, Hong Kong. (ytpoon@ied.edu.hk).
Nung-Sing Sze
Department of Mathematics, The University of Hong Kong, Hong Kong. (math2000@graduate.hku.hk)

[^0]: ${ }^{1}$ Research partially supported by NSF.
 ${ }^{2}$ Thanks are due to Dr. Jor-Ting Chan for his guidance and encouragement.

