Isometries for Ky Fan Norms Between Matrix Spaces

Chi-Kwong Li¹, Yiu-Tung Poon and Nung-Sing Sze²

Abstract

We characterize linear maps between different rectangular matrix spaces preserving Ky Fan norms.

Keywords: isometry, matrices, linear maps. AMS Classifications: 15A04, 15A60.

1 Introduction and statements of results

Let $M_{m,n}(M_n)$ be the linear space of $m \times n$ $(n \times n)$ complex matrices. The singular values of $A \in M_{m,n}$ are the nonnegative square roots of the eigenvalues of A^*A , and they are denoted by $s_1(A) \geq \cdots \geq s_n(A)$. For $1 \leq k \leq \min\{m, n\}$, the Ky Fan k-norm on $M_{m,n}$ is defined and denoted by

$$||A||_k = s_1(A) + \dots + s_k(A).$$

The Ky Fan 1-norm reduces to the *operator norm*; when m = n the Ky Fan *n*-norm is also known as the *trace norm*.

Evidently, Ky Fan k-norms are unitarily invariant norms, i.e.,

$$||UAV||_k = ||A||_k$$

for any $A \in M_{m,n}$, and unitary $U \in M_m$ and $V \in M_n$. Actually, they form an important class of unitarily invariant norms; see [1, Chapters 2 and 3]. For instance, given $A, B \in M_{m,n}$,

$$||A||_k \le ||B||_k$$
 for all $k = 1, \dots, \min\{m, n\}$

if and only if

 $||A|| \le ||B||$ for all unitarily invariant norms $||\cdot||$.

There has been considerable interest in studying isometries for Ky Fan norms on matrix spaces. For example, by a result of Kadison [5], one easily deduces that isometries for the operator norm on M_n has to have the from

$$A \mapsto UAV \quad \text{or} \quad A \mapsto UA^t V \tag{1}$$

for some unitary matrices $U, V \in M_n$. In [4], the authors showed that the same conclusion holds for Ky Fan k-norm isometries for any $k = 1, \ldots, \min\{m, n\}$, where the second form in (1) can occur only when m = n. In [8], the authors considered the problem on block

¹Research partially supported by NSF.

²Thanks are due to Dr. Jor-Ting Chan for his guidance and encouragement.

triangular matrix algebras in M_n , and showed that the isometries essentially have the same structure except when m = n, in this case, the second form in (1) has to be replaced by

$$A \mapsto UA^+V,$$

where A^+ is the transpose taken about the anti-diagonal so as to maintain the block triangular structure. In [3], the authors studied isometries $\phi : (M_n, \|\cdot\|_1), \to (M_p, \|\cdot\|_1)$ for $n \neq p$, and obtained a complete characterization when $p \leq 2n-2$; moreover, examples were given to show that ϕ may have complicated structure for p > 2n - 2. In view of these, one may think that isometries $\phi : (M_n, \|\cdot\|_k), \to (M_p, \|\cdot\|_k)$ also have complicated structure for k > 1. It turns out that it is not the case as shown in the corollary of our main theorem, which characterizes isometries $\phi : (M_{m,n}, \|\cdot\|_{k'}), \to (M_{p,q}, \|\cdot\|_k)$ provided k' > 1. We need some notations and definitions to describe our main result.

For two matrices A and B with $A = (a_{ij})$ denote by $A \otimes B = (a_{ij}B)$. An $r \times s$ matrix X is called a *partial isometry* if $X^*X = I_s$, i.e., X has orthonormal columns.

Theorem 1.1 Let $1 < k' \leq \min\{m, n\}$ and $1 \leq k \leq \min\{p, q\}$. Suppose $\phi : M_{m,n} \to M_{p,q}$ satisfies

$$\|\phi(A)\|_{k} = \|A\|_{k'} \quad for \ all \quad A \in M_{m,n}.$$
(2)

Then there exist nonnegative integers c_1 and c_2 with $c_1 + c_2 > 0$, and partial isometries U and V of sizes $p \times (c_1m + c_2n)$ and $q \times (c_1n + c_2m)$, respectively, such that one of the following holds.

(a) $k' < \min\{m, n\}, k = k'(c_1 + c_2), and \phi has the form$

$$A \mapsto \frac{1}{c_1 + c_2} U[(I_{c_1} \otimes A) \oplus (I_{c_2} \otimes A)^t)] V^*.$$

(b) $k' = \min\{m, n\}, k'(c_1 + c_2) \leq k$, and there are diagonal matrices $D_1 \in M_{c_1}$ and $D_2 \in M_{c_2}$ with positive diagonal entries with tr D_1 + tr $D_2 = 1$, such that ϕ has the form

$$A \mapsto U[(D_1 \otimes A) \oplus (D_2 \otimes A^t)]V^*$$

If k' = k, then either $(c_1, c_2) = (1, 0)$ or $(c_1, c_2) = (0, 1)$. By adding columns to U and V to form unitary matrices, we have the following corollary.

Corollary 1.2 Let $1 < k \le \min\{m, n\}$. Suppose $\phi : M_{m,n} \to M_{p,q}$ satisfies

$$\|\phi(A)\|_k = \|A\|_k \quad for \ all \quad A \in M_{m,n}$$

Then there are unitary matrices $U \in M_p$ and $V \in M_q$ such that ϕ has the form

$$A \mapsto U[A \oplus 0_{p-m,q-n}]V$$
 or $A \mapsto U[A^t \oplus 0_{p-n,q-m}]V.$

2 Auxiliary results and proofs

Replacing ϕ by the mapping(s) $A \mapsto \phi(A^t)$ and/or $A \mapsto [\phi(A)]^t$, we may assume that $m \leq n$ and $p \leq q$. Two nonzero matrices $A, B \in M_{m,n}$ are said to be *orthogonal* if $AB^* = 0$ and $A^*B = 0$, equivalently, there are unitary matrices U and V such that $UAV = \sum_{j=1}^r a_j E_{jj}$ and $UBV = \sum_{j=r+1}^{r+s} b_j E_{jj}$ with $a_1 \geq \cdots \geq a_r > 0$ and $b_1 \geq \cdots \geq b_s > 0$ for some r, swith $r + s \leq \min\{m, n\}$. The nonzero matrices $A_1, \cdots, A_d \in M_{m,n}$ are said to be *pairwise orthogonal* $m \times n$ matrices if $A_i A_j^* = 0$ and $A_i^* A_j = 0$ for any distinct pair (i, j). In such case, there are unitary $U \in M_m$ and $V \in M_n$, $0 = r_0 < r_1 < \cdots < r_d \leq \min\{m, n\}$ and positive numbers a_1, \cdots, a_{r_d} such that $UA_i V = \sum_{r_{i-1} < j \leq r_i} a_j E_{jj}$.

We begin with the following lemma from [8, Lemma 5].

Lemma 2.1 Let $A, B \in M_{m,n}$ be nonzero. Then $||aA + bB||_k = |a|||A||_k + |b|||B||_k$ for every $a, b \in \mathbb{C}$ if and only if A and B are orthogonal and rank $A + \operatorname{rank} B \leq k$.

By Lemma 2.1 and a simple inductive argument, we have the following.

Lemma 2.2 Let $\phi : M_{m,n} \to M_{p,q}$ be a map satisfying (2). Suppose the rank one matrices $A_1, \ldots, A_d \in M_{m,n}, d \leq \min\{m, n\}$, are pairwise orthogonal. Then $\phi(A_1), \ldots, \phi(A_d) \in M_{p,q}$ are nonzero and pairwise orthogonal. Furthermore, for any $1 \leq s_1 < \cdots < s_{k'} \leq d$, $\sum_{i=1}^{k'} \operatorname{rank} \phi(A_{s_i}) \leq k$.

Proof of Theorem 1.1.

For the sufficiency part of the Theorem 1.1, one readily sees that singular values of $\phi(A)$ has $c = (c_1 + c_2)$ copies of $\frac{s_1(A)}{c}, \ldots, \frac{s_m(A)}{c}$, if ϕ has the form (a). On the other hand, if k' = m and ϕ has the form (b), then $k \ge ck'$ and so the Ky Fan k-norm of $\phi(A)$ is just the sum of its singular values. Let $D_1 \oplus D_2 = \text{diag}(d_1, \ldots, d_c)$. Then,

$$\|\phi(A)\|_{k} = d_{1}\|A\|_{k'} + \dots + d_{c}\|A\|_{k'} = tr(D_{1} \oplus D_{2})\|A\|_{k'} = \|A\|_{k'}$$

To prove the necessity part, let $(p',q') = (p - c_1m - c_2n, q - c_1n - c_2m)$. It suffices to prove that there are unitary matrices $U \in M_p$ and $V \in M_q$ such that ϕ has the form

(a)
$$A \mapsto \frac{1}{c_1 + c_2} U[(I_{c_1} \otimes A) \oplus (I_{c_2} \otimes A^t) \oplus 0_{p',q'}] V^*$$
 if $k' < m$,
(b) $A \mapsto U[(D_1 \otimes A) \oplus (D_2 \otimes A^t) \oplus 0_{p',q'}] V^*$ if $k' = m$.

We divide the proof into three cases:

 ${\rm (I)} \quad k' < m = n, \quad {\rm (II)} \quad k' = m = n, \quad \text{ and } \quad {\rm (III)} \quad m < n.$

First consider case (I) : k' < m = n. For any $A \in M_{m,n}$ with singular values $1, 0, \ldots, 0$, there are unitary X and Y such that $A = XE_{11}Y$. Let $A_j = XE_{jj}Y$ for $j = 1, \ldots, m$.

Then A_1, \ldots, A_m are pairwise orthogonal. By Lemma 2.2, $\phi(A_1), \ldots, \phi(A_m)$ are pairwise orthogonal. Thus, there exist unitary U and V, $0 = r_0 < r_1 < \cdots < r_d \leq m$ and positive numbers a_1, \cdots, a_{r_d} such that

$$B_i = U\phi(A_i)V = \sum_{r_{i-1} < j \le r_i} a_j E_{jj} \text{ for any } i = 1, \dots, m.$$

By Lemma 2.2 again, the sum of any k' matrices chosen from B_1, \ldots, B_m has rank at most k. Let $1 \leq t_1 < \cdots < t_{k'} \leq m$. Then

$$s_{\ell}\left(\sum_{j=1}^{k'} B_{t_j}\right) = 0, \quad \text{for all } \ell > k.$$
(3)

Moreover, if $t \in \{1, \ldots, m\} \setminus \{t_1, \ldots, t_{k'}\}$, we claim that

$$s_1(B_t) \le s_k \left(\sum_{j=1}^{k'} B_{t_j}\right) \,. \tag{4}$$

If (4) does not hold, then $s_1(B_t) > s_k\left(\sum_{j=1}^{k'} B_{t_j}\right)$, which gives the following contradiction:

$$k' = \left\| A_t + \sum_{j=1}^{k'} A_{t_j} \right\|_{k'} = \left\| B_t + \sum_{j=1}^{k'} B_{t_j} \right\|_{k} > \left\| \sum_{j=1}^{k'} B_{t_j} \right\|_{k} = \left\| \sum_{j=1}^{k'} A_{t_j} \right\|_{k'} = k'$$

Let c = k/k'. It follows from (2), (3) and (4) that for each $1 \le j \le m$, $s_i(B_j) = 1/c$ for $1 \le i \le c$ and $s_i(B_j) = 0$ for $c < i \le p$. Thus, we see that

- (i) every rank one matrix is mapped to a rank c matrix, and
- (ii) every unitary matrix is mapped to a matrix with singular values $\underbrace{1/c, \ldots, 1/c}_{cm}, 0, \ldots, 0.$

Since (i) holds, by Theorem 2.5 in [7] ϕ has the form

$$A \mapsto R[(I_{c_1} \otimes A) \oplus (I_{c_2} \otimes A^t) \oplus 0_{p',q'}]S^*$$

for some invertible $R \in M_p$ and $S \in M_q$. Let R_1 (respectively, S_1) be obtained from R (respectively, S) by removing its last p' (respectively, q') columns. Then

$$R[(I_{c_1} \otimes A) \oplus (I_{c_2} \otimes A^t) \oplus 0_{p',q'}]S^* = R_1[(I_{c_1} \otimes A) \oplus (I_{c_2} \otimes A^t)]S_1^*.$$

By polar decomposition, there are unitary matrices $U \in M_p, V \in M_q$ and positive definite matrices $P \in M_{c_1m+c_2n}$ and $Q \in M_{c_1n+c_2m}$ such that

$$R_1 = U\begin{pmatrix} P\\ 0_{p',c_1m+c_2n} \end{pmatrix}$$
 and $S_2 = V\begin{pmatrix} Q\\ 0_{q',c_1n+c_2m} \end{pmatrix}$.

Thus,

$$\phi(X) = U\left\{P[(I_{c_1} \otimes A) \oplus (I_{c_2} \otimes A^t)]Q^* \oplus 0_{p',q'}\right\}V^*.$$

Define $\psi : M_m \to M_{cm}$ such that $\psi(X) = cP[(I_{c_1} \otimes A) \oplus (I_{c_2} \otimes A^t)]Q^*$. By (ii), we see that ψ maps unitary matrices to unitary matrices. By the result in [2], we see that $\psi(A) = W_1[(I_{c_1} \otimes A) \oplus (I_{c_2} \otimes A^t)]W_2$ for some unitary $W_1, W_2 \in M_{cm}$. Thus, condition (a) holds.

Next, we turn to case (II) : k' = m = n. From the first part of the proof in case (I), we can see that for any unitary $X, Y \in M_m$ and $\lambda_1, \ldots, \lambda_m \in \mathbb{C}$, $\sum_{i=1}^m \lambda_i \phi(XE_{ii}Y)$ has rank at most k. Hence, $\phi(A)$ has rank at most k for all $A \in M_m$. We may assume that p = q by appending q - p zero rows to $\phi(A)$ for each $A \in M_m$. So, we assume that $\phi : M_m \to M_p$ and suppose $\phi(I_m) = D$ is a nonnegative diagonal matrix with diagonal entries arranged in descending order. For any Hermitian $X \in M_m$ with trace zero and spectrum in [-1, 1] and $t \in [-1, 1]$,

$$\|\phi(I_m + tX)\|_k = \|I_m + tX\|_{k'} = k' = \|I_m\|_{k'} = \|\phi(I_m)\|_k = \operatorname{tr} D.$$

Let $Y = \phi(X)$. Then tr Y = 0 because

$$|\operatorname{tr} D + \operatorname{ttr} Y| \le ||\phi(I_m + tX)||_p = ||\phi(I_m + tX)||_k = \operatorname{tr} D$$

for $t = \pm 1$. Moreover,

$$k' = \operatorname{tr}(D \pm Y) \le \|\phi(I_m + tX)\|_p = \|\phi(I_m + tX)\|_k = k'.$$

By [6, Corollary 3.2], we conclude that $D \pm Y$ is positive semi-definite. As a result, if $\phi(I_m) = D = \text{diag}(d_1, \ldots, d_r, 0, \ldots, 0)$ with $d_1 \geq \cdots \geq d_r > 0$, then $\phi(X)$ has the form $Y \oplus 0_{p-r}$. We may now consider $\psi : M_m \to M_r$ such that $\phi(A) = \psi(A) \oplus 0_{p-r}$. It follows from the above argument that ψ maps Hermitian matrices to Hermitian matrices and $\|\psi(A)\|_r = \|\phi(A)\|_k = \|A\|_{k'}$. We claim that

- (i) ψ maps positive semidefinite matrices to positive semidefinite matrices, and
- (ii) ψ maps invertible Hermitian matrices to invertible Hermitian matrices.

To see (i), suppose $A \in M_m$ is positive semidefinite. Let $D_1 = \psi(I_m) = \text{diag}(d_1, \ldots, d_r)$. Choose t > 0 such that $D_1 + t\psi(A)$ is positive semidefinite. Then we have

$$\operatorname{tr}(D_1 + t\psi(A)) = \|D_1 + t\psi(A)\|_r = \|I_m + tA\|_{k'} = \operatorname{tr}(I_m) + t\operatorname{tr}(A)$$

= $\|I_m\|_{k'} + t\|A\|_{k'} = \|\psi(I_m)\|_r + t\|\psi(A)\|_r = \operatorname{tr} D_1 + t\|\psi(A)\|_r.$

Thus, $\operatorname{tr} \psi(A) = \|\psi(A)\|_r$, and it follows form [6, Corollary 3.2] again that $\psi(A)$ is positive semidefinite.

To prove (ii), let

$$A = U^* \left(\sum_{j=1}^m \lambda_j E_{jj} \right) U$$

for some unitary U and $\lambda_j \in \mathbb{R} \setminus \{0\}$ for j = 1, ..., m. Since $\phi(U^*E_{11}U), ..., \phi(U^*E_{mm}U)$ are pairwise orthogonal and $\phi(I_m) = D$, $\phi(U^*E_{jj}U) = V^*F_jV \oplus 0_{p-r}$ for j = 1, ..., m, such that $F_i = \sum_{r_{i-1} < s \le r_i} a_s E_{ss}$ for $0 = r_0 < \cdots < r_m = r$ and positive numbers $a_1, ..., a_{r_m}$. Therefore, $\psi(A) = V^* \left(\sum_{j=1}^m \lambda_j (\sum_{r_{i-1} < s \le r_i} a_s E_{ss}) \right) V$ is also invertible. Thus, condition (ii) holds.

Now, $\psi(I_m)$ is positive definite and ψ maps invertible Hermitian matrices to invertible Hermitian matrices. By (the proof of) [7, Proposition 3.4], we see that

$$\psi(X) = T^*[(I_{c_1} \otimes X) \oplus (I_{c_2} \otimes X^t)]T$$
(5)

for some invertible $T \in M_r$. In particular, we see that

(iii) ψ maps rank s matrices to rank cs matrices for $s = 1, \dots, m$.

Next, we show that ψ has the form $X \mapsto U^*[(D_1 \otimes X) \oplus (D_2 \otimes X^t)]U$ for some unitary matrix U and diagonal matrices D_1 and D_2 with positive diagonal entries such that tr D_1 + tr $D_2 = 1$. Equivalently, we show that ψ has the form

$$A = (a_{uv}) \longmapsto V^* BV$$
, where $B = (B_{uv})_{1 \le u, v \le m}$ with $B_{uv} = a_{uv} D_1 \oplus a_{vu} D_2$

for some unitary V. First, by a suitable permutation, we can rewrite ψ in (5) as

$$A = (a_{uv}) \longmapsto S^*BS, \quad \text{where} \quad B = (B_{uv})_{1 \le u, v \le m} \quad \text{with} \quad B_{uv} = a_{uv}I_{c_1} \oplus a_{vu}I_{c_2} \tag{6}$$

for some nonsingular $S \in M_r$. By Lemma 2.2, we see that $\phi(E_{11}), \ldots, \phi(E_{mm})$ are pairwise orthogonal. Then for any distinct pair *i* and *j*,

$$[S^*(E_{ii} \otimes I_c)S]^*[S^*(E_{jj} \otimes I_c)S] = \psi(E_{ii})^*\psi(E_{jj}) = 0.$$

Thus, $(E_{ii} \otimes I_c)SS^*(E_{jj} \otimes I_c) = 0$ whenever $i \neq j$. It follows that $SS^* = S_1 \oplus \cdots \oplus S_n$ where $S_i \in M_c$.

Let i > 1, $X = E_{11} + E_{1i}$ and $Y = E_{i1} - E_{ii}$. From (6), $\psi(X) = S^*(B_{rs})S$ and $\psi(Y) = S^*(C_{rs})S$ so that

$$\tilde{B} = \begin{pmatrix} B_{11} & B_{1i} \\ B_{i1} & B_{ii} \end{pmatrix} = \begin{pmatrix} I_c & I_{c_1} \oplus 0_{c_2} \\ 0_{c_1} \oplus I_{c_2} & 0_c \end{pmatrix}, \quad \tilde{C} = \begin{pmatrix} C_{11} & C_{1i} \\ C_{i1} & C_{ii} \end{pmatrix} = \begin{pmatrix} 0_c & 0_{c_1} \oplus I_{c_2} \\ I_{c_1} \oplus 0_{c_2} & -I_c \end{pmatrix}$$

and all other B_{uv} and C_{uv} are 0_c . Let $J_1 = I_{c_1} \oplus 0_{c_2}$ and $J_2 = 0_{c_1} \oplus I_{c_2}$. Since X and Y are orthogonal, so are $\psi(X)$ and $\psi(Y)$. Hence $B^*(SS^*)C = 0$ and $B(SS^*)C^* = 0$. Thus,

$$\begin{pmatrix} J_2 S_i J_1 & S_1 J_2 - J_2 S_i \\ 0 & J_1 S_1 J_2 \end{pmatrix} = \tilde{B}^* (S_1 \oplus S_i) \tilde{C} = 0 = \tilde{B} (S_1 \oplus S_i) \tilde{C}^* = \begin{pmatrix} J_1 S_i J_2 & S_1 J_1 - J_1 S_i \\ 0 & J_2 S_1 J_1 \end{pmatrix}.$$

Since $J_2S_1J_1 = J_1S_1J_2 = J_2S_iJ_1 = J_1S_iJ_2 = 0$, each of the matrices S_1 and S_i is a direct sum of a matrix in M_{c_1} and a matrix in M_{c_2} . Furthermore, we can conclude that $S_1 = S_i = P_1 \oplus P_2$, where $P_1 \in M_{c_1}$ and $P_2 \in M_{c_2}$, from $S_1J_1 - J_1S_i = 0 = S_1J_2 - J_2S_i$. As *i* is arbitrary, $SS^* = I_m \otimes (P_1 \oplus P_2)$ with P_1 and P_2 are both positive definite. Thus there exist unitary $U_1 \in M_{c_1}$ and $U_2 \in M_{c_2}$ such that $U_1P_1U_1^* = D_1$ and $U_2P_2U_2^* = D_2$, where D_1 and D_2 are diagonal matrices with positive diagonal entries.

Let $U = I_m \otimes (U_1 \oplus U_2)$ and $\tilde{S} = US$. Then $\tilde{S}\tilde{S}^* = I_m \otimes (D_1 \oplus D_2)$. As the row vectors of \tilde{S} form an orthogonal basis, we may write $\tilde{S} = DV$, where $D = I_m \otimes (D_1 \oplus D_2)^{1/2}$ and V is unitary.

On the other hand, we have $U^*BU = B$ for the block matrix B in (6), as

$$a_{uv}I_{c_1} \oplus a_{vu}I_{c_2} = (U_1 \oplus U_2)^* (a_{uv}I_{c_1} \oplus a_{vu}I_{c_2})(U_1 \oplus U_2).$$

Then $S^*BS = S^*U^*BUS = \tilde{S}^*B\tilde{S} = V^*D^*BDV$. In fact, the (i, j)-th block of D^*BD is equal to

$$(D_1 \oplus D_2)^{1/2} (a_{uv} I_{c_1} \oplus a_{vu} I_{c_2}) (D_1 \oplus D_2)^{1/2} = a_{uv} D_1 \oplus a_{vu} D_2.$$

Thus, ϕ has the asserted form. Since $||I_m \otimes (D_1 \oplus D_2)||_{k'} = ||\psi(I_m)||_r = ||I_m||_{k'} = m$, it follows that tr $(D_1 \oplus D_2) = \operatorname{tr} D_1 + \operatorname{tr} D_2 = 1$.

Finally, we consider case (III) : m < n. We prove the desired conclusion by induction on n - m starting from n - m = 0, which follows from case (I) and (II). Suppose that n - m = r > 0 and the result holds for the cases when n - m < r. Applying the assumption on the restriction of ϕ on $M_{m,n}^0$, the subspace of $M_{m,n}$ which consists of matrices with zero n-th column, we conclude that for any $A \in M_{m,n}^0$,

$$\phi(A) = U[(D_1 \otimes \hat{A}) \oplus (D_2 \otimes \hat{A}^t) \oplus 0_{p',q'}]V$$

where A denotes $m \times (n-1)$ matrices obtained by deleted the *n*-th column of A, $(p', q') = (p - c_1m - c_2(n-1), q - c_1(n-1) - c_2m), U \in M_p$ and $V \in M_q$ are unitary and the following holds.

- (a) If k' < m, $c = c_1 + c_2 = k/k'$, $D_1 = \frac{1}{c}I_{c_1}$ and $D_2 = \frac{1}{c}I_{c_2}$;
- (b) If k' = m, $c = c_1 + c_2 \leq k/k'$, $D_1 \in M_{c_1}$ and $D_2 \in M_{c_2}$ are diagonal matrices with positive diagonal entries such that tr $D_1 + \text{tr } D_2 = 1$.

Now replacing ϕ by $X \mapsto U^* \phi(X) V^*$, we may assume that $U = I_p$ and $V = I_q$.

For any $\mathbf{x} \in M_{m,1}$, let A be the $m \times n$ matrix with \mathbf{x} as the *n*-th column and zero in others, and $X = (X_{uv})_{1 \le u, v \le c+1} = \phi(A)$, where $X_{uu} \in M_{m,n-1}$ for $1 \le u \le c_1$, $X_{uu} \in M_{n-1,m}$ for $c_1 < u \le c$ and $X_{c+1,c+1} \in M_{p',q'}$.

Take any nonzero $\mathbf{y} \in M_{m,1}$ such that $\mathbf{x}^*\mathbf{y} = 0$. (Note that $1 < k \leq m$ and hence \mathbf{y} exists.) For any l < n, let B be the $m \times n$ matrix with \mathbf{y} as the l-th column and zero in others. Then $Y = \phi(B) = (D_1 \otimes \tilde{B}) \oplus (D_2 \otimes (\tilde{B})^t) \oplus \mathbf{0}_{p',q'}$.

Since A and B are orthogonal, $X^*Y = 0_q$ and $XY^* = 0_p$. It follows from the structure of Y that

$$\begin{aligned} X_{uv}^* \tilde{B} &= 0 \quad \text{when} \quad 1 \leq u \leq c_1 \text{ and } 1 \leq v \leq c+1, \\ X_{uv}^* \tilde{B}^t &= 0 \quad \text{when} \quad c_1 < u \leq c \text{ and } 1 \leq v \leq c+1, \\ X_{uv} \tilde{B}^* &= 0 \quad \text{when} \quad 1 \leq u \leq c+1 \text{ and } 1 \leq v \leq c_1, \\ X_{uv} (\tilde{B}^t)^* &= 0 \quad \text{when} \quad 1 \leq u \leq c+1 \text{ and } c_1 < v \leq c. \end{aligned}$$

Since the *l*-th column of the $m \times (n-1)$ matrix \tilde{B} is the nonzero vector y, if $X_{uv}\tilde{B}^* = 0$, then the *l*-th row of X_{uv} must be the zero. Furthermore, as *l* can be any integer in $\{1, \ldots, n-1\}$, we conclude that $X_{uv} = 0$. Similarly, X_{uv} must be the zero matrix if $X_{uv}^*\tilde{B}^t = 0$.

On the other hand, if $X_{uv}^* \tilde{B} = 0$, then all the columns of X_{uv} must be orthogonal to **y**. Since **y** can be any vector orthogonal to **x**, all columns of X_{uv} must be multiples of **x**. Hence, $X_{uv} = \mathbf{x}\mathbf{w}^t$ for some vector **w** of suitable size. Similarly, since $X_{uv}(\tilde{B}^t)^* = 0$, we have $X_{uv} = \mathbf{z}\mathbf{x}^t$ for some **z**.

By the arguments in the last two paragraphs, if $1 \leq u \leq c_1$ and $c_1 < v \leq c$, then $\mathbf{x}\mathbf{w}^t = X_{uv} = \mathbf{z}\mathbf{x}^t$ for some \mathbf{w} and \mathbf{z} of suitable sizes. Thus, $\mathbf{w} = \lambda \mathbf{x}$ for some constant λ in \mathbb{C} . That is, $X_{uv} = \lambda \mathbf{x}\mathbf{x}^t$.

Combining the above analysis, we know that

$$\phi[0_{m,n-1} \mid \mathbf{x}] = \begin{pmatrix} 0_{c_1m,c_1n} & E(\mathbf{x}) & F(\mathbf{x}) \\ 0_{c_2n,c_1n} & 0_{c_2n,c_2m} & 0_{c_2n,q'} \\ 0_{p',c_1n} & G(\mathbf{x}) & H(\mathbf{x}) \end{pmatrix}$$

where $E(\mathbf{x}) = (\lambda_{uv} \mathbf{x} \mathbf{x}^t)_{1 \le u \le c_1, 1 \le v \le c_2}, F(\mathbf{x}) = \begin{pmatrix} \mathbf{x} \mathbf{w}_1^t \\ \vdots \\ \mathbf{x} \mathbf{w}_{c_1}^t \end{pmatrix}, G(\mathbf{x}) = (\mathbf{z}_1 \mathbf{w}^t \cdots \mathbf{z}_{c_2} \mathbf{x}^t), H(\mathbf{x}),$

 λ_{uv} , \mathbf{w}_u and \mathbf{z}_v all depend on \mathbf{x} . By linearity of ϕ , λ_{uv} , \mathbf{w}_u and \mathbf{z}_v must be the same for all \mathbf{x} , and λ_{uv} must be zero. i.e., $E(\mathbf{x}) = 0_{c_1m,c_2m}$.

Now we consider the orthogonal pair $A = E_{11} + E_{1n}$ and $B = -E_{21} + E_{2n}$. Let \mathbf{e}_i be the *i*-th column of I_m . Then

$$\phi(A) = \begin{pmatrix} D_1 \otimes \tilde{E}_{11} & 0_{c_1m,c_2m} & F(\mathbf{e}_1) \\ 0_{c_2n,c_1n} & D_2 \otimes \tilde{E}_{11}^t & 0_{c_2n,q'} \\ 0_{p',c_1n} & G(\mathbf{e}_1) & H(\mathbf{e}_1) \end{pmatrix}$$

and

$$\phi(B) = \begin{pmatrix} D_1 \otimes -\tilde{E}_{21} & 0_{c_1m,c_2m} & F(\mathbf{e}_2) \\ 0_{c_2n,c_1n} & D_2 \otimes -\tilde{E}_{21}^t & 0_{c_2n,q'} \\ 0_{p',c_1n} & G(\mathbf{e}_2) & H(\mathbf{e}_2) \end{pmatrix}$$

Set
$$W = \begin{pmatrix} \mathbf{w}_1^t \\ \vdots \\ \mathbf{w}_{c_1}^t \end{pmatrix}$$
. Since $\phi(A)\phi(B)^* = 0$, the (1, 1)-th block equals

$$0_{c_1m} = (D_1 \otimes \tilde{E}_{11})(D_1 \otimes -\tilde{E}_{21})^* + F(\mathbf{e}_1)F(\mathbf{e}_2)^*$$

$$= -(D_1^2 \otimes E_{12}) + (WW^* \otimes E_{12})$$

 $= (WW^* - D_1^2) \otimes E_{12}.$

Thus,
$$WW^* = D_1^2$$
. Let $D_1 = \text{diag}(d_1, \ldots, d_{c_1})$. Hence, $\{\mathbf{w}_1/d_1, \ldots, \mathbf{w}_{c_1}/d_{c_1}\}$ is a set of orthonormal vectors. Let $U \in M_{q'}$ be a unitary matrix with $\mathbf{w}_1^t/d_1, \ldots, \mathbf{w}_{c_1}^t/d_{c_1}$ as the first c_1 rows. Then $F'(\mathbf{x}) = F(\mathbf{x})U^* = [D_1 \otimes \mathbf{x} \mid 0_{c_1m,q'-c_1}]$.

 c_1 rows. Then $F'(\mathbf{x}) = F(\mathbf{x})U^* = [D_1 \otimes \mathbf{x} \mid 0_{c_1m,q'-c_1}].$ Similarly, by considering $\phi(A)^*\phi(B) = 0$, we write $G'(\mathbf{x}) = V^*G(\mathbf{x}) = \begin{pmatrix} D_2 \otimes \mathbf{x}^t \\ 0_{p'-c_2,c_2m} \end{pmatrix}$ for some unitary V. Now, we write

$$\phi[0_{m,n-1} \mid \mathbf{x}] = (I_{cn} \oplus V) \begin{pmatrix} 0_{c_1m,c_1n} & 0_{c_1m,c_2m} & F'(\mathbf{x}) \\ 0_{c_2n,c_1n} & 0_{c_2n,c_2m} & 0_{c_2n,q'} \\ 0_{p',c_1n} & G'(\mathbf{x}) & H'(\mathbf{x}) \end{pmatrix} (I_{cn} \oplus U)$$

On the other hand, by applying the assumption on the restriction of ϕ on the subspace of $M_{m,n}$ which consists of matrices with zero in the (n-1)-th column, we conclude that

$$\operatorname{rank} \phi[0_{m,n-1} \mid \mathbf{x}] = \operatorname{rank} \phi[\mathbf{x} \mid 0_{m,n-2} \mid \mathbf{x}] = \operatorname{rank} \phi[\mathbf{x} \mid 0_{m,n-1}] = c.$$

(Note that here we use that fact that $n > m \ge 2$ to ensure nontrivial consideration.) Therefore, $H'(\mathbf{x}) = 0$ for all \mathbf{x} . Finally, there exist permutation matrices P and Q such that for $A = [0_{m,n-1} | \mathbf{x}]$,

$$\phi(A) = (I_{cn} \oplus V)P[(D_1 \otimes A) \oplus (D_2 \otimes A^t) \oplus 0_{p'-c_2,q'-c_1}]Q(I_{cn} \oplus U).$$

The result follows.

References

- [1] R. Bhatia, Matrix Analysis, Springer, New York, 1997.
- [2] W.S. Cheung and C.K. Li, Linear maps transforming the unitary group, Bulletin Canad. Math. Soc. 46 (2003), 54-58.
- [3] W.S. Cheung, C.K. Li and Y.T. Poon, Isometries between matrix algebras, to appear in J. Australian Math. Soc. pdf file available at http://www.resnet.wm.edu/~cklixx/poon-7.pdf.

- [4] R. Grone and M. Marcus, Isometries of matrix algebras, J. Algebra 47 (1977), 180-189.
- [5] R. V. Kadison, Isometries of operator algebras, Ann. of Math. (2) 54 (1951), 325-338.
- [6] C.K. Li, Matrices with some extremal properties, Linear Algebra Appl. 101 (1988), 255-267.
- [7] C.K. Li, L. Rodman, and P. Šemrl, Linear transformations between matrix spaces that map one rank specific set into another, Linear Algebra Appl. 357 (2002), 197-208.
- [8] C.K. Li, P. Šemrl, and A.R. Sourour, Isometries for Ky-Fan norms on block triangular matrix algebras, to appear in Archiv Math.

pdf file available at http://www.resnet.wm.edu/~cklixx/kyfan.pdf.

Chi-Kwong Li

Department of Mathematics, College of William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795, USA. (ckli@math.wm.edu)

Yiu-Tung Poon

Department of Mathematics, Iowa State University, Ames, Iowa 50011, USA, and Department of Mathematics, HKIEd, Hong Kong. (ytpoon@ied.edu.hk).

Nung-Sing Sze Department of Mathematics, The University of Hong Kong, Hong Kong. (math2000@graduate.hku.hk)