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We briefly describe some recent results on inequalities relating the eigenvalues of the sum of
Hermitian or real matrices, and how to use these them inequalities relating the eigenvalues and
singular values of a matrix and its submatrices. These results are joint work with Poon, Fomin,
and Fulton [4, 14, 15]. Some open problems and remarks are also mentioned.

1 Sum of Hermitian (Real Symmetric) Matrices

Let Hn be the set of n× n Hermitian matrices. Denote the vector of eigenvalues of X ∈ Hn by

λ(X) = (λ1(X), . . . , λn(X))

with λ1(X) ≥ · · · ≥ λn(X). There has been a great deal of interest in studying the following.

Problem Let A,E ∈ Hn and Ã = A+E. Determine inequalities relating the eigenvalues of Ã and
those of A and E.

One can regard E as a small perturbation of the matrix A. So, we are interested in the relations

between the eigenvalues of the original matrix A and the perturbed matrix Ã.
One may see [6] for an excellent survey on this problem and its solution. To motivate our

discussion, we collect several well known results by Weyl, Liskii, Mirsky, Wielandt, Thompson and
Freede; see [1, 17].

• For i = 1, . . . , n, λn(E) ≤ λi(Ã)− λi(A) ≤ λ1(E).

• Suppose 1 ≤ i1 < · · · < im ≤ n and 1 ≤ j1 < · · · < jm ≤ n. Then

m∑
s=1

λn−s+1(E) ≤
m∑

s=1

(λjs(Ã)− λjs(A)) ≤
m∑

s=1

λs(E).

Consequently, for any unitarily invariant norm ‖ · ‖ we have

−‖E‖ ≤ ‖Ã‖ − ‖A‖ ≤ ‖E‖.

• Suppose 1 ≤ i1 < · · · < im ≤ n and 1 ≤ j1 < · · · < jm ≤ n. If im + jm −m ≤ n, then

m∑
s=1

λis+js−s(Ã) ≤
m∑

s=1

λis(A) +
m∑

s=1

λjs(E).

One may apply the result to −Ã = −A− E to get a dual set of inequalities.
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All the above and many more other early results suggest that there are inequalities of the form

∑
j∈J0

λj(Ã) ≤
∑
j∈J1

λj(A) +
∑
j∈J2

λj(E)

for some suitable subsets J0, J1, J2 of {1, . . . , n}. It turns out that a complete set of inequalities

can be described in this way; see [9] and also [6].

Theorem 1.1 There exist A,B, C ∈ Hn satisfying C = A + B with λ(A) = (a1, . . . , an), λ(B) =

(b1, . . . , bn), λ(C) = (c1, . . . , cn) if and only if we have the trace equality

n∑
s=1

cs =
n∑

s=1

(as + bs),

and for any (J0, J1, J2) ∈ LRn
m with m < n

∑
j∈J0

cj ≤
∑
j∈J1

aj +
∑
j∈J2

bj .

In the theorem, we use the concepts of Littlewood-Richardson sequences LRn
m. A good reference

for this concept is [5]. Here we describe the formal definition and give a simple example.

Let [n] = (1, . . . , n) and J = (j1, . . . , jm) be an increasing subsequences of [n], i.e., 1 ≤ j1 <

· · · < jm ≤ n. Define
µ(J) = (jm −m, . . . , j1 − 1).

Suppose J0, J1, J2 are increasing subsequences of [n]. Then (J0, J1, J2) ∈ LRn
m if µ(J0) can be

generated from µ(J1) and µ(J2) according to the Littlewood-Richardson rules:

Display µ(J0) = (r1, . . . , rm), µ(J1) = (s1, . . . , sm), and µ(J2) = (t1, . . . , tm) as Young diagrams.

Add t1 + · · · + tm entries from {1, . . . ,m} to the rows of the Young diagram of µ(J1) to generate

the Young diagram of µ(J0) so that:

• The entries i occurs exactly ti so many times.

• The entries in each row is weakly increasing from left to right.

• The entries in each column is strictly increasing from top to bottom.

• For any p with 1 ≤ p ≤
∑m

j=1 tj , define p(i) to be the number of i in the first p assigned values

counting from right to left and top to bottom, we have p(i) ≥ p(i + 1).

In such a case, the Littlewood-Richardson coefficient c
µ(J0)
µ(J1)µ(J2) of the three partitions µ(J0), µ(J1),

and µ(J2) is positive.
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Example 1.2 Suppose µ(J0) = (5, 4, 3, 1), µ(J1) = (3, 2, 1, 0), µ(J2) = (3, 2, 2, 0). Here are three

examples of good constructions:

∗ ∗ ∗ 1 1
∗ ∗ 1 2
∗ 2 3
3

∗ ∗ ∗ 1 1
∗ ∗ 2 2
∗ 1 3
3

∗ ∗ ∗ 1 1
∗ ∗ 2 2
∗ 3 3
1

Here are three examples of bad constructions:

∗ ∗ ∗ 1 1
∗ ∗ 2 1
∗ 2 3
3

∗ ∗ ∗ 1 1
∗ ∗ 2 3
∗ 2 1
3

∗ ∗ ∗ 1 1
∗ ∗ 1 2
∗ 3 3
2

One can use the LR rules to explain the Weyl inequalities, and the standard inequalities of
Thompson.

[Weyl’s inequalities] ((j0), (j1), (j2)) ∈ LRn
1 if and only if j0 = j1 + j2 − 1.

[Thompson’s standard inequalities] If J1 = (i1, . . . , im) and J2 = (j1, . . . , jm) satisfy im+jm−m ≤ n,

then J0 = (i1 + j1 − 1, . . . , im + jm −m) is admissible.

Note that one can do a good construction by adding jr − r to the (m− r + 1)st row of µ(J1) to

get µ(J2).

In general, it is not easy to solve the following.

Problem How to generate all the (J0, J1, J2) sequences, and do it efficiently?

By the result in [12], one can focus on (J0, J1, J2) sequences with LR coefficient equal to one,

i.e., there is a unique construction of µ(J0) from µ(J1) and µ(J2).

However, it is hard to determine when the LR coefficient is positive or equals one. In particular,
it is difficult to write a computer program to generate all LR sequences. in some situations, one
may prefer to generate a class of sequences systematically even though the class may contain many
redundant sequences. Taking this approach, one can use the Horn’s consistent sequences (R,S, T ),
which is defined recursively as follows.

Let R = (r1, . . . , rm), S = (s1, . . . , sm), T = (t1, . . . , tm) ∈ [n].

• For m ≥ 1,
∑m

`=1(r` − `) =
∑m

`=1(s` + t` − 2`).

• If m > 1, then for any consistent triple (U, V, W ):

U = (u1, . . . , um′), V = (v1, . . . , vm′), W = (w1, . . . , wm′)
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with m′ ∈ {1, . . . ,m− 1}, we have

m′∑
`=1

(ru`
− `) ≥

m′∑
`=1

(sv`
+ tw`

− 2`).

One can extend Theorem 1.1 to the sum of r Hermitian matrices over real, complex, or real
quaternions; see [6].

Theorem 1.3 There are A1, . . . , Ar ∈ Hn with λ(As) = (a(s)
1 , . . . , a

(s)
n ) for s = 1, . . . , r, and

λ(
∑

Aj) = (a(0)
1 , . . . , a

(0)
n ) if and only if∑

j

a
(0)
j =

∑
j

a
(1)
j + · · ·+

∑
j

a
(r)
j

and for any (J0, J1, . . . , Jr) ∈ LRn
m(r) with m < n∑

j∈J0

a
(0)
j ≤

∑
j∈J1

a
(1)
j + · · ·+

∑
j∈Jr

a
(r)
j .

It is interesting that the same set of inequalities govern the eigenvalues of the sum of Hermitian
matrices over real, complex, or real quaternions. To elaborate this comment, note that for every
A = [aij ] ∈ Hn there are A1, . . . , An ∈ Hn with the same eigenvalues as A such that

diag (a11, . . . , ann) =
1
n

(A1 + · · ·+ An).

In fact, if w = e2πi/n and D = diag (1, w, . . . , wn−1), then

diag (a11, . . . , ann) =
1
n

 n∑
j=1

DjA(Dj)∗
 .

Now, by Theorem 1.3, the same result holds for real symmetric matrices. However, even for n = 3,
it is hard to construct B1, B2, B3! Let us consider the following.

Example 1.4 Let

A =

 4 2 1
2 3 1
1 1 1

 , D =

 1 0 0
0 ei2π/3 0
0 0 ei4π/3

 .

Then B1 = D∗AD,B2 = (D2)∗AD2, B3 = A ∈ H3 satisfy

(a) λ(A) = λ(B1) = λ(B2) = λ(B3), and

(b)

 4 0 0
0 3 0
0 0 1

 = 1
3(B1 + B2 + B3).

Even for this specific example, it is not easy to construct B1, B2, B3 ∈ S3 such that (a) and (b)
hold.
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2 Principal Submatrices of a Hermitian Matrix

Using the result on the sum of Hermitian matrices, we can obtain inequalities relating the eigen-
values of a Hermitian matrix and those of the principal submatrices. Here is the specific problem.
Problem Study the relations between the eigenvalues of A ∈ Hn and those of its principal sub-
matrices.

Again, let us begin by describing some well known results; see [1, 3].

• There is A ∈ Hn with the vector of diagonal entries (d1, . . . , dn) if and only if it is majorized

by λ(A), i.e.,
∑

j=1 dj =
∑n

j=1 λj(A) and for k = 1, . . . , n− 1.

• There is A ∈ Hn with an m×m principal submatrix B ∈ Hm such that λ(A) = (a1, . . . , an)

and λ(B) = (b1, . . . , bm) if and only if

aj ≥ bj ≥ an−m+j for j = 1, . . . ,m.

We have the following result; see [14].

Theorem 2.1 There is A =
(

A1 ∗
∗ A2

)
∈ Hn with λ(A) = (a1, . . . , an), A1 ∈ Hk and A2 ∈ Hn−k

such that

λ(A1) = (a(1)
1 , . . . , a

(1)
k ) and λ(A2) = (a(2)

1 , . . . , a
(2)
n−k)

if and only if ∑
j

aj =
∑
j

a
(1)
j +

∑
j

a
(2)
j

and for any (J0, J1, J2) ∈ LRn
m with m < n

∑
j∈J0

(aj − an) ≤
∑
j∈J1

(
a

(1)
j − an

)
+

∑
j∈J2

(
a

(2)
j − an

)
,

here a
(s)
j = an whenever j > ns.

More generally, we have the following.

Theorem 2.2 Suppose n1 + · · · + nr = n. There exists A = (Aij)1≤i,j≤r ∈ Hn such that λ(A) =

(a1, . . . , an), and Ajj ∈ Hnj with λ(Ajj) = (a(j)
1 , . . . , a

(j)
nj ) for j = 1, . . . , r if and only if

∑
j

aj =
∑
s

∑
j

a
(s)
j
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and for any (J0, J1, . . . , Jr) ∈ LRn
m(r) with m < n

∑
j∈J0

(aj − an) ≤
r∑

s=1

∑
j∈Js

(
a

(s)
j − an

)
,

here a
(s)
j = an whenever j > ns.

Similar to the results on the sum of matrices, one would like to reduce the list of inequalities.

For each s = 1, . . . , r, only consider Js = (j(s)
1 , . . . , j

(s)
m ) such that either j

(s)
m ≤ ns or the last p

terms have the form: ns + 1, ns + 2, . . . , ns + p. Also, we did the case when nj ≤ 2. To describe

the result, we need some more notation.

Suppose Aii ∈ H2 has eigenvalues a
(i)
1 ≥ a

(i)
2 for 1 ≤ i ≤ m, and Aii = [a(i)

1 ] ∈ H1 for

m + 1 ≤ i ≤ n−m Let (i1, · · · , im) be a permutation of (1, · · · , m) such that a
(i1)
2 ≥ · · · ≥ a

(im)
2 .

For any subset R ⊆ {1, · · · , m} with |R| = r, let bR
1 ≥ · · · ≥ bR

n−m−2r be the eigenvalues of ⊕i/∈RAi.

Theorem 2.3 There exists A = (Aij) ∈ Hn with eigenvalues c1 ≥ · · · ≥ cn, such that Aii ∈ H2

has eigenvalues a
(i)
1 ≥ a

(i)
2 for 1 ≤ i ≤ m, and Aii = [a(i)

1 ] ∈ H1 for m + 1 ≤ i ≤ n−m if and only

if
n∑

i=1

ci =
n−m∑
i=1

a
(i)
1 +

m∑
i=1

a
(i)
2

and for any (s, t) ∈ {0, · · · , m} × {0, . . . , n − 2s} with 0 < s + t < n and any s element subset

S ⊆ {i1, · · · , i`} with ` = min{m, s + t}, we have

t∑
i=1

ci +
s+t+1∑
i=t+2

ci ≥
∑
j∈S

a
(j)
2 +

t∑
i=1

bS
i .

3 Off-diagonal blocks

In this section, we study the following.

Problem Determine when a matrix X ∈ Mk,n−k can be the off-diagonal block of a matrix C ∈ Hn

with prescribed eigenvalues.

Observation There is C =
(

∗ X
X∗ ∗

)
∈ Hn with λ(C) = (c1, . . . , cn) if and only if there are (for

any) unitary matrices U ∈ Mk and V ∈ Mn−k the matrix

C̃ =
(

∗ UXV
(UXV )∗ ∗

)
∈ Hn with λ(C̃) = (c1, . . . , cn).

Denote by s(X) = (s1(X), . . . , sk(X)) the vector of singular values of X ∈ Mk,n−k with entries

arranged in descending order.
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We have the following result; [15].

Theorem 3.1 Let c1 ≥ · · · ≥ cn and s1 ≥ · · · ≥ sk ≥ 0 be given, where k ≤ n/2. The following
are equivalent.

(a) There is C =
(

∗ X
X∗ ∗

)
∈ Hn such that X ∈ Mk,n−k, λ(C) = (c1, . . . , cn) and s(X) =

(s1, . . . , sk).

(b) There exist C1, C2, S ∈ Hk such that C1 − C2 ≥ 2S, where λ(C1) = (c1, . . . , ck), λ(C2) =

(cn−k+1, . . . , cn), and λ(S) = (s1, . . . , sk).

(c) For each (J0, J1, J2) ∈ LRk
m with m ≤ k

2
∑
j∈J0

sj ≤
∑
j∈J1

cj −
∑
j∈J2

cn−j+1.

There are some interesting consequences of this theorem. Let Sk(c) be the set of k × (n − k)

matrices for the existence of C =
(

∗ X
X∗ ∗

)
∈ Hn with λ(C) = c = (c1, . . . , cn).

• Suppose X ∈ Sk(c). Then for any contractions R ∈ Mk and T ∈ Mn−k, we have RXT ∈ Sk(c).

In particular, if X ∈ Sk(c) then tX ∈ Sk(c) for any t ∈ [0, 1]. So, Sk(c) is star-shaped with
the zero matrix as the star-center.

• The set Sk(c) is convex if and only if (c1, . . . , ck) and (cn−k+1, . . . , cn) are arithmetic progres-
sions with the same common difference.

4 Complex Symmetric Matrices

In this section, we consider the following.

Problem Study the singular values of the off-diagonal blocks of complex symmetric and general
matrices.

It turns out that there are not much difference between complex symmetric or general matrices
with real symmetric matrices! We have the following result; see [4].

Theorem 4.1 Let γ1 ≥ · · · ≥ γn and s1 ≥ · · · ≥ sk ≥ 0 be given, where k ≤ n/2. The following
are equivalent.

(a) There is a symmetric matrix C =
(

∗ X
Xt ∗

)
∈ Mn with X ∈ Mk,n−k, s(C) = (γ1, . . . , γn)

and s(X) = (s1, . . . , sk).
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(b) There is C =
(
∗ Y
Z ∗

)
∈ Mn with s(C) = (γ1, . . . , γn) such that Y, Z ∈ Mk,n−k have a

combined list of singular values: s1, s1, s2, s2, . . . , sk, sk.

(c) There exists a real symmetric matrix C =
(

∗ X
Xt ∗

)
such that X ∈ Mk,n−k, s(X) =

(s1, . . . , sk), and

λ(C) = (γ1,−γ2, γ3 . . . , (−1)nγn).

(d) There exist C1, C2, S ∈ Hk such that C1 + C2 ≥ 2S with λ(S) = (s1, . . . , sk),

λ(C1) = (γ1, γ3 . . . , c2k−1), and λ(C2) = (γ2, γ4, . . . , γ2k).

(e) For each (J0, J1, J2) ∈ LRk
m with m ≤ k

2
∑
j∈J0

sj ≤
∑
j∈J1

γ2j−1 +
∑
j∈J2

γ2j .

Again, there are some interesting consequences of this result.

• If X ∈ Mk,n−k is the (1, 2) block of C ∈ Hn with eigenvalues values c1, . . . , cn, such that

|c1| ≥ · · · ≥ |cn|, then X is the (1, 2) block of C̃ ∈ Hn with eigenvalues

|c1|,−|c2|, |c3|,−|c4|, . . . .

• If A,B, C ∈ Hn satisfies C = A + B and the combined list of eigenvalues of A and B is

γ1 ≥ · · · ≥ γ2n, then C = Ã + B̃ such that

λ(Ã) = (γ1, γ3, . . . , γ2n−1) and λ(B̃) = (γ2, γ4, . . . , γ2n).

• Same result work for A0 = A1 + · · ·+ Ar, we can rearrange the eigenvalues:

Ã1 has eigenvalues γ1, γr+1, γ2r+1, . . .

Ã2 has eigenvalues γ2, γr+2, γ2r+2, . . .

Ã3 has eigenvalues γ3, γr+3, γ2r+3, . . .
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5 Future research

There are many interesting problems deserve further study. We mention a few of them in the
following.

• Determine numerical algorithms to construct the matrices with desired properties.

• Study the relations between the singular values of complementary blocks; see [4, 16].

• Study the relations between the singular values of C and those of S, or those of R and T , for

C =
(

R 0
S T

)
;

see [13].

• Study the implications of the results in the real world!
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