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Abstract
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spectrum or the peripheral spectrum. Similar results are obtained for maps on
the set of n X n nonnegative symmetric matrices. Furthermore, the proofs are
extended to obtain analogous results when spectral radius is replaced by the
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1 Introduction

Preserver problems concern the characterization of maps on matrices or operators leav-
ing invariant a certain function, a certain subset of a certain relation. Earlier studies
focused on linear maps with these properties. The literature on this subject is exten-
sive; see, for example, [12, 23] and monographs [19, 20, 21]. Recently, researchers have
studied preserver problems under mild assumptions. In particular, for a given function
v on a matrix set M with a binary operator A o B, maps f : M — M have been
studied, that satisfy

V(f(A)o f(B) =v(AoB) ¥V A, BeM (1.1)

but not a priori assumed linear or continuous; [5, 6, 13, 14, 26] is a small selection of
recent works on the topic. There has been interest in studying such problems when
v(A) is the spectrum, the peripheral spectrum, the numerical radius, the spectral norm,
etc. (see the definitions below). See for example the papers [7, 15, 22|, where preserver
problems have been studied for v the peripheral spectrum in the context of uniform
algebras; in fact, these works served as motivation for the present study of preservers
on nonnegative matrices, as for nonnegative matrices the peripheral spectrum always
contains the spectral radius. Moreover, the problems have also been considered for in
more general contexts such as function or operator algebras [19]. It is worth noting
that even without the linearity assumption, the preservers often end up to be linear
and have certain “standard” or “expected” form. Although the statements of results in
many cases look similar to those of linear preservers, researchers often have to develop
new techniques to solve the preserver problems under mild assumptions; sometimes
these assumptions involve nothing more than validity of (1.1). In some cases, one may
get unexpected forms for preservers, which lead to deeper understanding and insight
to the structures under consideration.

The purpose of this paper is to characterize preservers of the spectral radius, nu-
merical radius, or spectral norm of the sum of nonnegative matrices. There are not
many works in the literature on preservers in the context of real entrywise nonnegative
matrices: we mention [18], where spectrum preservers are described, [1, 10, 24, 25] that
deal with column rank preservers; [2] is concerned with primitivity preservers, and in
[4] preserver problems that have to do with irreducibility are considered. In all these
works, the linearity of the map f is assumed. In contrast, in the present work we do
not assume a priori any additional hypotheses on f except for (1.1) for Ao B= A+ B
and a suitable choice of v.

Let M be the set of real entrywise nonnegative matrices, and let r(A) be the
spectral radius of a square matrix A. In Section 2, we characterize maps f : M,” — M
such that

r(f(A)+ f(B)=r(A+B) V A Be M'.



In particular, it is shown that such a map has the form
A STTAS or A STHATS, (1.2)

for some S € M with exactly one positive entry in each row and each column. More-
over, as byproducts, we show that the same conclusion holds if the spectral radius is
replaced by the spectrum or the peripheral spectrum. Similar results are obtained for
maps on the set of n X n nonnegative symmetric matrices in Section 3. Furthermore,
the proofs are extended to obtain analogous results when spectral radius is replaced
by the numerical range, radius, or the spectral norm in Section 4 and Section 5. In
the case of the numerical radius, a characterization of preservers of the sum is also
obtained, but in this case it turns out that the standard forms (1.2) do not describe all
such preservers.

The following notation will be used throughout the paper:

M, the set of all n x n real matrices.

K, the set of all n x n real skew-symmetric matrices.

M the set of n x n real matrices with nonnegative entries.

ST the set of symmetric matrices in M.

To avoid trivialities, we assume n > 2 throughout our discussion.

i = v/—1 complex unit

C and R stand for the complex field and the real field, respectively.

||z|| Euclidean length of a vector x.

e; is the 1th coordinate vector: 1 in the ith position and zeros elsewhere.

E;; € M, the matrix unit: 1 in the (4, j)th position and zeros everywhere else.

r(A) the spectral radius of a matrix A.

o(A) the spectrum (the set of eigenvalues) of a matrix A.

0p(A) =c(A)N{A € C : |\| =r(A)} the peripheral spectrum of A.

A" the transpose of A.

A* the conjugate transpose of A

W(A) = {z*Ax : x € C",2*x = 1} the numerical range of A

w(A) = max{|u| : u € W(A)} the numerical radius of A

|Al| = max{|z*Ay| : z,y € C",2*x = y*y = 1} the spectral norm of A.
X 0

0 Y }

Opxq the p x ¢ zero matrix

X@Y::{

P C M, the group of permutation matrices.

D C M, the group of diagonal matrices with positive entries on the diagonal.
PD C M, the group of matrices of the form PD where P € P and D € D.
The role of PD is exemplified by the following well-known fact:



Fact A matriz A € M," has the property that A is invertible and A™* € M," if and
only if A € PD.

To see the fact, suppose A has columns xy, ..., x, and A™! has rows i ... yo.
Suppose 1 has k positive entries. Then for j = 2,...,n, y; will have zero entries in

the corresponding nonzero positions of x; because y; is nonnegative and y;r x1 = 0. So,

all the nonzero entries of the linearly independent vectors ys, ..., y, will lie in fewer
than n — k positions. As a result, kK < 1 so that x; has only one positive entry. Similar
arguments apply to the other columns. Clearly, the nonzero entries of A must lie in
different rows because A is invertible.

2 Spectral radius preservers on M,
Here is our main theorem of this section.

Theorem 2.1 The following statements (1) - (4) are equivalent for a function f :

(1)

r(A+ B) =r(f(A)+ f(B)), ¥ ABeM? (2.1)

(2)
op(A+ B) = o,(f(A) + f(B)), ¥V A Be M (2.2)

(3)
o(A+B)=o(f(A)+ f(B)), V¥ A Be M (2.3)

(4) There exists a matriz () € PD such that either
f(A)=Q7'4Q, Vv AeM,

or
F(A)=Q'A"Q, ¥V Ae M’ (2.4)

Since for A € M} we always have r(A) € 0,(A), the implications (3) = (2) =
(1) are clear. Also, (4) = (3) is not difficult to see. It remains to prove (1) = (4).

First, we present some general results and easy observations that will be often used,
sometimes without explicit reference, throughout the paper. We will use the directed

graph I'(A) associated with A € M. Recall that {1,2,...,n} is the set of vertices
of I'(A), and (7,7) is a directed edge in I'(A) if and only if the (7, j)th entry of A is
positive.



A matrix A € M, is said to be irreducible if there is no permutation matrix P such

Ay Agg
0 Ay

useful well-known criterion for irreducibility is given in terms I'(A):

that PAPY = { 1 such that Ay, and A,y are non-trivial square matrices. A

Lemma 2.2 A € M, is irreducible if and only if T'(A) is strongly connected.

Next, we list several well-known properties of nonnegative matrices and their spec-
tral radii (see, for example, [8, Theorem 8.4.5] or [3]).

Lemma 2.3 Let A € M. Then:
(a) 7(A) > r(A") for any principal submatriz A" of A. In particular,

r(A) > max{d : d is a diagonal entry of A}.

(b) If A € M is nilpotent, i.e., r(A) = 0, then all diagonal entries of A are zeros.

(c) If A € Mt is irreducible and B € M;F is nonzero, then r(A + B) > r(A).

(d) If A € M is reducible, then there is a permutation matriz P such that PAP™
is upper triangular block form [A;;]1<ij<k such that A, ..., Ak are irreducible square
matrices and

r(A) = max{r(4,;) : 1 <j < k}.

(e) If A, B € M, and A > B entrywise, then r(A) > r(B).
Notice that (b) is an immediate consequence of (a).

Lemma 2.4 Let Ay, Ay € M," have irreducible principal submatrices By and Bs, re-
spectively, such that r(Ay) = r(By), r(As) = r(Bs). If the row and column indices of
By and Bs have non-empty intersection, then

r(A; + Ag) > max{r(A;),r(As)}. (2.5)

Proof. For tq,ty € (0, 1] consider t; A; +t5 Ay and its irreducible principal submatrix
B(t1,t2) whose set of row and column indices is the union of the set of row and column

indices of B; and that of By. Since row and column indices of B; and By have non-
empty intersection, the matrix B(tj,ts) is irreducible in view of Lemma 2.2, for all

tl,tg S (O, 1] Now

r(A; + Ay) r(B(1,1)) > max{r(B(1,1/2)),r(B(1/2,1))}

>
> max{r(By),r(By)} = max{r(A4;),r(A42)},

where the strict inequality holds by Lemma 2.3 (c), and the non-strict inequalities hold
in view of Lemma 2.3 (e). 0



Proof of Theorem 2.1

We focus on the implication (1) = (4). Assume that the function f satisfies the
condition (1) of Theorem 2.1. We divide the proof into several assertions.

Assertion 2.5 (a) For any A € M5 we have r(A) = r(f(A)).
(b) A € M,F is nilpotent if and only if f(A) is nilpotent.
(c) If A is nonzero, then f(A) is nonzero.

Proof. Condition (a) follows from setting A = B in (2.1).

Condition (b) follows readily from (a).

Suppose A in nonzero and the (i, j) entry of A is nonzero. If i = j then A is not
nilpotent and neither is f(A). Thus, f(A) is nonzero. If ¢ # j, then for B = Ej;, the
submatrix of A+ B with row and column indices {i, 7} has positive spectral radius. If
f(A) =0 then r(f(A) + f(B)) =r(f(B)) = r(B) = 0, which is a contradiction. O

Assertion 2.6 There is a permutation P such that for any p > 0 the diagonal of the
matriz Pf(uEy;)PY™ is the same as that of pEy fori=1,... n.

Proof. In what follows we let Fj; = f(E;;). First, consider p = 1. For each
Jj=1,...,n,let G;; be an irreducible principal submatrix of F}; such that

r(Gjj) = r(Fj) = 1.

(The existence of principal submatrices Gj; is guaranteed by Lemma 2.3 (d).) We
will show that G;; = [1]. Note that the row (column) indices of Gy, ..., Gy, cannot

overlap. If it is not true and the row indices of G;; and Gj; overlap, then by Lemma
2.4,
T‘(Fn -+ Fjj) > T(Ez) =1= T’(E” + Ejj)a

which is a contradiction. Thus, Gy, ..., G,, are one-by-one with non-overlapping row
(column) indices. Since r(Gj;) = 1, we see that G;; = [1] for all j = 1,...,n. Thus,
there exists P € P such that PF;;P" has one in the (j,j) position. Suppose i # j.
the (4,7) entry PF;;P"™ is zero. Otherwise, the (i,7) entry of P(F; + Fj;;)P" is larger
than 1 so that by Lemma 2.3 (a),

r(Fi + Fj;) = r(P(Fi + Fj;)P") > 1 = r(Ey + Ejj).

For any p > 0, we can apply the preceding proof to show that there is a permutation
matrix P, such that P, f(uFE;)P;" has p at the (i,i) position and all other diagonal

entries equal to zero. If P, # P, then there will be indices i # j and k so that f(uE;;)
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has p in the (k, k) position, and f(E;;) has one in the (k, k) position. But then by
Lemma 2.3 (a),
r(f(uEi) + f(Ej) = 1+ p > r(pky + Ejj),

which is a contradiction. O

Assertion 2.7 Let P be the permutation satisfying the conclusion of Assertion 2.6.
Then for any i # j, the 2 x 2 submatriz of P(E;j + Ej;)P™ lying at rows and columns

with indices {i,j} has the form {g() 962} with giago1 = 1.
21

Proof. For simplicity, we assume that P is the identity matrix. Otherwise, consider
the map X — Pf(X)P™.
For each i # j, let X = E;; + Ej; and let G;; be an irreducible principal submatrix
of f(X) such that
r(Gij) = r(f(X)) =r(X) = 1. (2.6)

We claim that G;; must lie in a submatrix of f(X) with row and column indices in the
set {7,5}. Indeed, suppose this is not true, and let k£ be a row and column index of
G; different from ¢ and from j. Denote by [f(Ej)] the principal submatrix of f(Ej)
having the same row and column indices as G;; does. Then:

r(f(X) + f(BEw) > 7(Gi+ [f(Ew)]) > r(Gij)
= 1=r(X+ Ew) =r(f(X) + f(Ew)),

where the strict inequality follows from Lemma 2.3 (c). A contradiction is obtained.

g1 912
921 g22
(2.6) we must have g1; = 1 or gos = 1. But then for Y = Ej; or Ej;, f(X)+ f(Y) a

diagonal entry larger than or equal to 2. By Lemma 2.3 (a), we have

r(f(X)+ f(Y)) >2> L +2\/5 =r(X+Y),

Suppose G;; = { } If at least one of gio and g9; is zero, then, in view of

which is a contradiction. Thus, g12921 # 0.
Next, we claim that g;; = 0. If it is not true, then for sufficiently large p > 0, the
matrix f(uF;;) + f(X) has p+ gi1 at the (4,4) position so that

r(f(pEa) + [(X)) 2 ptgu > [p+ V2 +4]/2 = r(pEi + X)),

which is a contradiction. Similarly, we can show that goe = 0. Since r(G;;) = 1, we see
that giogo1 = 1. O



In the rest of the proof, we assume that Assertions 2.6 and 2.7 hold with P = I for
simplicity.

Assertion 2.8 For every p > 0 and every pair of indices i # j, f(puEi;) is a nonzero
multiple of E;; or of Ej;.

Proof. By Assertion 2.7, for any i # j, the matrix f(E;; + Ej;;) has a submatrix

Gij = [90 g(i)j } with row and column indices in {7, j} such that g;;g;; = 1.
j
Now, suppose > 0, i # j, and let f(uE;;) = [z} Then z, = 0 for all k.

r,s=1°*

Otherwise, the (k, k) entry of f(Ey) + f(uk;;) is larger than 1 so that

r(f(Ewx) + f(uEij)) > 1= 1(Eg, + pEij),

which is a contradiction. We also have z,, = 0 if at least one of the indices p and ¢
(p # q) does not belong to the two-element set {7,j}. Otherwise, the submatrix of
f(Epq + Egp) + f(uE;;) with row and column indices in {p, ¢} has the form

C - 0 9pa T Zpg
9ap + Zap 0 7

with ggpgps = 1, so that

r(f(Epg + Egp) + f(pEij)) 2 7(C) > 1 =1(Epy + Egp + pEij),

which is a contradiction.
Since 0 = r(pE;;) = r(f(nEi;)), we see that z;;z;; = 0. Hence f(uE;;) is a multiple
of E;; or Ej;. Similarly, f(uE;;) is a multiple of E;; or of Ej;. O

Assertion 2.9 Let X = Xy @ 0,,_3, where Xg € M; is nilpotent. Then f(X) =

Zoy D 0,,—3 such that Zy € M3+ 18 milpotent with at most 3 nonzero entries. Moreover,
let

and
fOS) =A{pi;EBij -1 <i,5 <3,i#j},  for some p;; > 0.

(The form of f(S) follows from Assertion 2.8.) One of the following is true:

(1) If f(X) has only one nonzero entry, then r(f(X)+ Z) > 0 for only one matriz
Z in f(S).



(2) If f(X) has exactly two nonzero entries, and they lie in the same row or the same
column, then r(f(X)+ Z) > 0 for exactly two matrices Z in f(5).

(3) If f(X) has two or three nonzero entries such that two of them are not in the
same row or column, then r(f(X)+Z) > 0 for at least three matrices Z in f(S).

Proof Let f(X) = [Ypglp4=1- Then f(X) is nilpotent so that y;; = 0 for all j =
1,...,n. Also, if i # j and at least one of ¢ and j is larger than 3, then y;; = 0.
Otherwise,

r(f(X)+ f(Ey) > 0=r(X + Ej) or  r(f(X)+ [(Ep) >0=r(X+ Ej)

by the fact that f(E;;) or f(Ej;;) is a multiple of E;;. So, if y;; # 0, then 7 # j and
1 <i,j < 3. Moreover, since 0 = r(X) = r(f(X)), we see that y,;;y;; = 0 for i # j
(otherwise, the 2 x 2 principal submatrix of f(X) with row and column indices {i,j}
would have a positive spectral radius, a contradiction with Lemma 2.3 (a)). Thus, there
are at most three nonzero entries in f(X), and they all lie in the leading 3 x 3 principal
submatrix of f(X). Using the condition that f(X) = [y;]},—; With y;y; = 0, we see
that one of the condition (1) — (3) is true. 0

Assertion 2.10 There is D € D such that either
(a) f(uEij) = uDE;;D" for all p > 0 and all pairs (i, j), or
(b) f(nEij) = uDE; D™ for all p > 0 and all pairs (i, 7).

Proof. First consider the case when p = 1, for all pairs of indices (7, j) such that
1% 7.

By Assertion 2.8, f(FE13) = ugEia or f(E12) = psEs for some py > 0. Assume
f(F12) = poFE1a. Otherwise, replace f by the map X — f(X)™. Since

L=1r(Ei+ Eyn) = r(f(Ew) + f(Ea)) = r(p2Bra + f(E2)),

using the result of Assertion 2.8 again, we see that f(Fa1) = Eo1/p9. We get the desired
conclusion for f(E;;) with ¢ # j if n = 2.

Assume n > 3. For any j > 2, we claim that f(Ey;) = p;E; for some p; > 0.
For simplicity, suppose that j = 3. Let X = Fj» + Ej3 and let f(X) = [z4]},-,. By
Assertion 2.9, z;; can be nonzero only if ¢ # j and 1 < 4,5 < 3; also, z;;2;; = 0 for all
i,7. Since r(X +Y) > 0 for exactly two matrices Y € S (the set S is defined in (2.7)),
we conclude that r(f(X) + Z) > 0 for exactly two matrices Z in f(5), and therefore

condition (2) of Assertion 2.9 holds. Note that
1=7(X+ Ey) =r(f(X) + f(E2n)) = r(f(X) + Eaxn/p2). (2.8)
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As a result, z;2 must be one of the two nonzero entries of f(X) in the same row or
same column. Thus, either

(a) 212213 7é O, or (b) 212232 7A 0.
If (a) holds, then
1=r(X+ E3) =r(f(X)+ f(Es)).

Applying Assertion 2.8 for f(FEj3;) we see that f(Es51) is a multiple of Esy, and f(E3) =
usEh3 as asserted. Suppose (b) holds. Then

f(Eas + Esp) — (kEoz + k™' E3)
is nonnegative for some k£ > 0 by Assertion 2.7. It follows that
T'(X + E23 + E32> =1< T(f(X) + kEQg + k71E32) S T(f(X) =+ f(E23 —+ E32))

(the inequality < holds by Lemma 2.3 (e)), which is a contradiction.
Now, we have f(E;) = p;Erj with p; > 0 for j =2,...,n. Let

D =diag (1, pa, ..., fin)-

We may replace f by the map X — Df(X)D™! so that f(Ey;) = Ey; for j =2,...,n.
Since

1=r(Ey+ Ejn) =r(f(Ey) + f(Ep)) =r(Ey + f(Ejn)),
and since by Assertion 2.8 f(Ej;) is a multiple of either E;; or Ej;, we have in fact
f(Ej)=FEj foral j=2,...,n.

Next, we show that f(E;;) = E;; if i # j and 4,5 > 2. Assume that (4, j) = (2,3)
for simplicity. Let X = Ei5 + E3 and f(X) = [z}, We claim that f(X) = X.
Note that X = Xy @ 0,,_3 with Xy € M;" is nilpotent. Since r(X +Y) > 0 for at least
three matrices Y in S, it follows that r(f(X) + 37) > 0 for at least three matrices Y in
f(S). Hence, f(X) satisfies condition (3) of Assertion 2.9. Since

0=r(X+Y)=r(f(X)+f(Y))

for Y = Ei9, F31 and Fs3o, we see that 291 = 0, 213 = 0 and 293 = 0, i.e.,

0 212 0
f(X) =10 0 O
231 232 0

Since
1= T(X + Egl) = T(f(X) + E21)7
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we see that z15 = 1; since
1 =7r(X+ Ei3) =r(f(X) + E3),
we see that z3;1 = 1. If Y = FEb3 + FEj39, then by Assertion 2.7 there is v > 0 such that
f(Y) —vEy — Ess /v (2.9)

is nonnegative. Let
Z=Epy+ E31 + 23035 + vEa3 + Esa.
Assuming for the moment that v > 1, we have
r(f(X)+ f(Y)) 2r(Z) 2 r(X +Y) =r(f(X) + f(Y)), (2.10)
where the second inequality follows by comparison between the largest roots of the

characteristic polynomials —A3 + A + 1 and —A3 + (vz3, + 1)A + v of X + Y and of Z,
respectively. Since the second inequality in (2.10) is an equality, we see that in fact

v=1 and 23 =0. (2.11)
Hence f(X) = X. Now, by Assertion 2.8, f(Fa3) is a multiple of Fo3 or F3s. Since
1 =7r(X + E) =r(X + f(E2s)),

we see that f(FEs3) = FEa3 as asserted.
If v of (2.9) is smaller than 1, we apply the arguments in the preceding paragraph

to X = FEy + Ei3 rather than to X, replacing v by v~! and interchanging everywhere
the subscripts. Then a contradiction with (2.11) will be obtained, thus v < 1 is not
possible.

At this point, we may assume that f(E;;) = E;; if i # j. Now consider f(uE;;) =
[2pglp 4=1 for 1 > 0 and i # j. Then z,, = 0 for all p € {1,...,n}. Otherwise, we obtain

a contradiction (in the next formula W stands for a matrix with zero diagonal):
r(f(nEi) + f(Ep)) = r(f(nEi) + Epp + W) Z r((1+ 2pp) Epp) > 1 = r(pEij + Epp),

where the first equality follows from Assertion 2.6, and the non-strict inequality follows
from Lemma 2.3 (e). Also, z,, = 0 for p # ¢ if (p, q) # (4, j). Otherwise, a contradiction
again:

r(f(uEij) + f(Egw)) = 1(2pqEpg + [(Egp)) = 1(2pgEpg + Egp) > 0 =r(uEi; + Egp).
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Finally,
Vi =r(pEij + Eji) = r(f(nEiy) + f(Ej)) = r(f (nEi) + Eji)
implies that
f(uEij) = pEi;. (2.12)
Next, consider f(uF;) = [z, for fixed g > 0 and fixed i € {1,...,n}. Then

zi; = pand z;; = 0 for j # ¢ by Assertion 2.6. Also, z,, = 0 for any p # ¢. Otherwise,

r(f(nEi) + f(vEw)) = r(zpqlipg + f(VE))
= 1(2pgEpg +VEy) (using (2.12))
> p=r(pEi+ vEy)

for a sufficiently large v. Hence f(uE;) = pE;;. O

Assertion 2.11 The function f has the form as in (4) of Theorem 2.1.

Proof. Let D € D satisfy the conclusion of Assertion 2.10. We may replace f
by the map X — D7!f(X)D and assume that D = I. We may further assume
that f(uE;;) = pE;; for all 4 > 0 and (7, 7) pairs. Otherwise, replace f by the map
X s f(X)

Suppose A = [aij]?’j:l € M,F and f(A) = [Zz‘j]?,j:y First, we show that z;; = a;; for

each j. For simplicity, we consider z;;. Let

a=[in ] maosw= 2]
Suppose t > r(A) =r(f(A)) > max{r(Aw),r(Z2)},
By = Awa(tly 1 — Asp) Aoy and By = Zig(thy 1 — Za2) " Zor.
Since det(tl, — (A + pFE11)) is equal (as a function of u) to
—p(det(tl,—1 — Ag)) + det(tl, — A),
it follows that there is (unique) p; > 0 such that
det(t, — (A + 1 E1q)) = 0.
Using Schur complements, we see that

det(t]n — (A + ,utEll)) = (t — Q11 — MUt — Bt> det(t]n_l — AQQ) = 0,
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ie.,

[e.9]

t—a — e — ka*lAHAgQAm = 0.
k=0
Obviously,
§—ay — Mt — Z sTF AR AL, Ay > 0
k=0

for every s > t; thus
t =r(A+ mEn) =r(f(A)+ mEn).

Now
0 =det(tl, — (f(A) + wFE1)) = (t — 211 — pp — By) det(tly_1 — Zan),
ie.,
0=1%—z11 — s — Z t " 20928, 7.
k=0
As a result,

ay + ka*lAmAggAzl = —1l=r2n+ kailZHZgQZZl
k=0 k=0

for all sufficiently large t, and hence a;; = 211 as asserted.
Next, we show that a;; = z; for i # j. For simplicity, we consider z5. First,
suppose n = 2. Since

T(A + tEgl) = [(an + CLQQ) + \/(CLH — a22)2 + 4a12(a21 + t)]/?

and

T’(f(A) + tEgl) = [(211 + 2’22) + \/(211 — ZQQ)Q + 4212(221 + t)]/Q

are equal for all £ > 0, and using a1 = 211, a9 = 299, We see that a;o = bys.
Next, suppose n > 2. Let

AH A12 le Zl2
|:A21 A22:| o f( ) |:ZQI ZQQ:| ’

with Ay, Z1; € M. Arguing by contradiction, assume that

E = Q12 — 212 > 0. (213)
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[If the opposite inequality holds, interchange the roles of A and f(A) in the following
argument.] Suppose t > r(A) =r(f(A)) and

By = Ap(tl — Axp)” "Ay = Zt 1A12 1A22)kA21-

There is T' > 0 such that each entry of B, lies in [0,£/3) whenever ¢ > T If

by b
B, =" " and  Cy, = A+ pEy + By, (p>0),
bai  bao

then Cy, has eigenvalues

(@11 + age + b1 + bae) £ \/(an + b11 — agg — b2)? + 4(a1a + bia) (a1 + bayr + 1) | /2.

(2.14)
Note that
det(t[n — (A + ,LLEQl)) = det(t[2 - Ct“u) det(t]n,z — AQQ) (215)

so that det(tly — C;,) > 0 if 4 = 0. Inequality (2.13) implies that a;2 > 0, which,
together with formula (2.14), shows that there is (unique) v, > 0 such that the larger
eigenvalue of Cy,, equals t. Moreover, for any A > ¢, we have

det()J —A— l/tEgl) 7é 0= det(t] —A— l/tEgl).

Hence,
=r(A+vEyn) =1r(f(A) +vExn)).

Similarly, if
Et = Z12<t[n,2 — 222)71Z21 = [/51.7]22,]=1 € M2+ and 5)5 = Z11 + VtE21 + Et,

then
det(tl, — f(A) — v, Eyy) = det(tly — Cy) det(tL,—o — Za),

and there exists T > 0 such that every entry of Et is smaller than /3 whenever ¢ > T.

Observe that C; has eigenvalues

(211 + 222 +511 +g22) + \/(211 +511 — Z99 —522)2 + 4(z12 +312)(221 +g21 + )| /2.

So, 2r(A+vEo ) and 2r(f(A)+vEa) are equal to the following quantities, respectively:

a1 + 929 + b11 + b22 + \/(CLH + b11 — A99 — b22>2 + 4(&12 + blg)(CLQl + bzl + l/t) (216)
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and

211 + %22 -l—gn +322 + \/(2’11 +g11 — 292 —522)2 + 4(z10 +g12)(221 +321 + ). (2.17)
Evidently, v, — oo as t — oco. Since
a12 + b12 — (212 +312) > e — 2(8/3) >0 for t> ITIELX{T’7 T},

we have
7”(A + VtE21) > T(f(A) + Vthl)

for sufficiently large ¢, which is the desired contradiction. O

3 Spectral radius preservers on S

An adaptation of the proof of Theorem 2.1 yields the following preserver result on the
set ST of n x n symmetric nonnegative matrices.

Theorem 3.1 The following statements (1) - (4) are equivalent for a function f :
St — St

(1)

r(A+ B) =r(f(A)+ f(B)), ¥ ABEeS;. (3.1)

(2)
o)(A+ B) = o,(f(A) + f(B)), V¥ A BeST (3.2)

(3)
o(A+B)=o(f(A) + f(B), ¥ ABeS (3.3)

(4) There exists a matriz Q € P such that f(A) = Q71 AQ, vV Ae St

Proof. We only need to deal with the non-trivial implication (1) = (4). So assume
that f satisfies (3.1). Then r(A) = r(f(A)) for every A € S},
f(A) =0 if and only if A = 0.

We divide the rest of the proof into several steps.

and in particular

Step 1. Assertion 2.6, together with its proof, remains valid. Thus, there exists a
permutation @ such that for any p > 0 the diagonal of the matrix Q f(uE;)Q™ is the
same as that of uFEj;; fori=1,... n.
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Step 2. Let () be the matrix in Step 1. We show, by following the proof of Assertion
2.7 that for i # j, the 2 x 2 submatrix in Qf(E;; + F;;)Q " with row and column

indices 7, 7 has the form {(1) (1)} :

Step 3. Assuming the matrix @ in Step 1 equal I,,, we prove that f(X) is a nonzero
multiple of X, for X = p(E;; + E;;) with 1> 0 and ¢ # j.

Proof of Step 3. By Step 2, for any i # j, the matrix f(E;; + E;;) has a submatrix

l(l) é} with row and column indices in {4,5}. Let f(X) = [2.s];,—;. As in the proof of

Assertion 2.8 (but using E;; + Ej; in place of E;;) we show that zj, = 0 for all k, and

that z,, = 0 for all pairs {p, ¢}, p # ¢ such that at least one of p and ¢ does not belong
to {i,7}. Since f(X) is symmetric and f(X) # 0, the result of Step 3 follows. O

Step 4. Again assuming () = I, we prove the symmetric analog of Assertion 2.10: The
equality
f(W(Eyj + Ej)) = n(Eyj + Ej) (3.4)

holds for all > 0 and all pairs (i, ).

Proof of Step 4. For i # j, the result follows easily from Step 3: f(u(E;; + Ej;)) =
W (E;; + Ej;) for some ' > 0, but the equality

r(f(u(Ey + Ej))) = r(w(Ey + Eji))

yields p/ = p, as claimed.

Next, consider f(uF;;) = [zvs]),—y € S, for fixed p > 0 and fixed i € {1,...,n}.

Then z; = p and zj; = 0 for j # ¢ by Step 1. Also, z,, = 0 for any p # ¢g. Suppose it
is not true and z,; = 24 # 0 for some p # ¢q. Then using the already proved part of
(3.4), we can choose v > p so that

r(f(uEi) + f(W(Ep + Epy)))
> (B + z2pg(Epg + Egp) + [(V(Egp + Epg)))
(HEii + 2pg(Epg + Egp) + v(Eqp + Epg))
Zpg +V it p#1,q+#1,

=r

%<u+\/u2—|—4(zpq+y)2> if p=iorq=1i,

and

<

it p#i,q#1,
%(u+\/u2+4yz> ifp=iorqg=u.

16
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But then the right hand side of (3.6) is smaller than that of (3.5), a contradiction with
(3.1). Hence f(ukE;;) = pFEy. O

n

Step 5. Conclusion of the proof that (assuming @ = I) f(A) = A for all A € SF.
= [2i]7j=1- As in the proof

Proof of Step 5. Suppose A = [a;]};—; € S; and f(A)
of Assertion 2.11, we show that z;; = a;; for each j.
Next, we will prove the equalities a;; = z;; for i # 7, following the (suitably modified)

arguments of the proof of Assertion 2.11. We use the notation introduced in the proof
of Assertion 2.11, with obvious additional properties that follow from symmetry; thus

A = Aoy, AY, = Agy, ete. For simplicity, consider z15. First, suppose n = 2. Since

T(A + t(Egl + E12)) = [(CLH + CLQQ) + \/((111 — a22)2 + 4(@12 + t) (CL21 + t)]/2

and

r(f(A) + t(Ea + Er2)) = [(211 + 222) + \/(211 — 292)2 + 4(z12 + t) (221 + 1)]/2

are equal for all t > O, and llSiIlg ail] = 211, Q29 = Z99, Q192 = A21, 212 = Z921, WE See that

aiz = <12-
Now suppose n > 2. We argue as in the proof of Assertion 2.11, replacing everywhere
FE5 with Es 4+ Eqo, and using the partitions

All A12 le Z12
A= A) =
|:A21 A22:| ’ f( ) |:Z21 222:| ’

where Ay = AY,, Zoy = Z, and A;;, Z;; are symmetric for j = 1,2,
12 12 jir 45
B = Apa(tl, o — Agy) 1 Ag = [bij]ij:l € Sy,

Et = Zo(tly o — Zoo) ' Zoy = [gij]z?,jzl €Sy

Then
(A + v (Fa + Ea)) = r(f(A) + n(FEa + E2)), (3.7)

on the other hand, r(A + v4(Es + E12)) and r(f(A) + v4(Ea + Ei2)) are equal to the
quantities (2.16) and (2.17), respectively, with bjs replaced by bis + v, and with 312

replaced by 512 + 1. Let € = aj9 — 219 = @91 — 297 > 0. Then
~ ~ 1
a1 + b12 + a9 + b21 — (212 + b12 + 291 + le) > §€ >0

for large t, a contradiction with (3.7). O
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4 Numerical radius and numerical range preservers

It turns out that preservers of the numerical radius of the sum of nonnegative matrices
have more complicated form than the “standard” maps as in other results of this paper.

To state and prove the result, we need to work with the set K, of n x n real
skew-symmetric matrices.

Theorem 4.1 Let f: Mt — M. Then
WA+ B)=w(f(4) + f(B)), Y A BeM; (41)

if and only if there is a permutation matriz P and a function g : M7 — K, satisfying
A+ A" — g(A) € M} for each A such that

f(A) = P(A+ A" +g(A))P"™ /2 for all Ae MF. (4.2)
Proof. Observe that we have
w(A)=r(A+A")/2, Ae M,, (4.3)

because for any unit length vector = we can let |x| be obtained from z by replacing all
its entries by their absolute values so that

2" Ax| < |z Alz| = |z|™ (A + A™)|z|/2 < r(A+ A™) /2, (4.4)

and for x a nonnegative eigenvector corresponding to the largest eigenvalue of the
symmetric matrix A + A" the equality prevails in (4.4). Thus, (4.1) reads

r(A+ A" + B4+ B") =r(f(A) + f(A)" + f(B)+ f(B)™), VY A,Be M. (4.5)

With this observation, the “if” part of Theorem 4.1 is clear.
We focus on the “only if” part. First, note that w(f(A)+ f(A)) = w(A+ A) implies
that w(A) = w(f(A)) for all A€ M. Also, w(A) =r(A) for all A € S;.

Assertion 4.2 There is a permutation matriz P such that for any A € S we have
f(A) = P(A+ Ag)P"™
with Ak € K,, such that A+ Ax € M.
Proof. Consider the map fo : S — S defined by fo(A) = [f(A)+ f(A)™]/2. Then
r(fo(A) + fo(B)) = w(f(A) + f(B)) =w(A+ B)=r(A+B) VA, BeS;.
By Theorem 3.1, we see that fy has the form A — PAP'" for some permutation matrix

P, and Assertion 4.2 follows. O
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Assertion 4.3 Let P be as in Assertion 4.2. For any A € M, we have f(A) =

P(A+ A™ + Ag)P™ /2 with Ak € K,, such that A+ A™ + A € M, .

Proof. For simplicity, we may assume that P = I. Suppose A = A; + A, and
f(A) = Z1 + Zy with (A1, As), (21, Z3) € S;f x K,,. Then for any B € S, we have

F(As + B) = w(A + B) = w(f(A) + [(B)) = r(Z + ~(/(B) + f(B)*)) = r(Z, + B),

2
(4.6)
where the last but one equality follows from (4.3), and the last equality holds by

Assertion 4.2.
We now prove that

Ay = laglio = [zli2 = 21

First we prove a;; = z;;, and for simplicity assume ¢ = 1. Then we argue as in the proof
of Assertion 2.11, using the partitions

ail A12 211 Zl2
A =A= dZ, =
! {Am A22} e < |:Z21 222] ’

and the property (which follows from (4.6)) that
r(Ay 4+ pEn) =r(Zy + pEh), Y p>0.

For the proof that a;; = z;;, ¢ # j, and assume for simplicity (¢, j) = (1,2), proceed in
the same way as in Step 5 of the proof of Theorem 3.1; here, we use the partitions

_ All Al? _ le ZlQ +
Al - [A21 A22 ’ Zl — 221 222 ) A117ZII € SQ )

and the property that

T(A1+V(E12—|—E21>) :T(Zl+V<E12—|—E21)), Vv>D0.

O

Now, define g : M;F — K, by g(A) = 2f(A) — P(A+ A™ )P . In view of Assertion
4.3 we see that f has the desired form (4.2). O

Theorem 4.4 Let f: Mt — M. Then

W(A+ B)=W(f(A) + f(B)), ¥ ABeM (4.7)
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if and only if there is a permutation matrixz Q) such that either
f(A)=Q7AQ, vV AeM],

or

F(A)=Q'A"Q, Vv Ae M.

In the proof the following well known facts will be used. See, for example, Theorem
1.3.6 and Theorem 1.5.2 in [9].

Lemma 4.5 (a) For n x n complex matrices X and Y, the equality W(X) = W(Y')
holds if and only if the largest eigenvalues of the two matrices e* X +e " X* and 'Y +
e *Y™* are always the same for every t € [0, 2m).

(b) For a complex 2 x 2 matriz X, W(X) is an elliptical disk with foci at the
eigenvalues of X .

Proof of Theorem 4.4. The implication “if” is clear. (Note that W (X) = W(X™)
for any n x n complex matrix X.) We focus on the converse. Thus, suppose f satisfies
(4.7). Note that W (f(A) + f(A)) = W(A+ A) implies that W(f(A)) = W(A) for all
Ae M .

Clearly, since (4.7) holds, then (4.1) holds as well. By Theorem 4.1, f(A) has
symmetric part P(A + A™)P"™ /2 for each A € M. For simplicity, we may assume
that P =1,,. If A € S;f, then W(f(A)) = W(A) C R and hence f(A) = f(A)™ € S;}F.
It follows that

f(A)=A V AeSh. (4.8)

We divide the rest of the proof into two steps.

Step 1. One of the following holds:

(a) f(pkij) = pkij; for all i # j and p > 0, or
(b) f(uE;j) = pE;; for all i # j and p > 0.

Proof of Step 1. Let f(E;2) = X +Y with (X,Y) € St x K,. Then X =
(Erg+ E2)/2 and X +Y € M, only the (1,2) and (2, 1) entries of Y can be nonzero.
Since W(E2) = W(X +Y), by Lemma 4.5(b) we see that X + Y is nilpotent. Thus,
Y = (B2 — Es1)/2 or (B9 — E12)/2. Hence f(F12) = Ej5 or Fy;. We may assume that
the former case holds. Otherwise, replace f by the map X — f(X)™.

Now, we will show that (a) holds. First, we can use the argument in the preceding
paragraph to show that for p > 0, either f(uFEs) = pFEs or f(uEs) = ukis holds.

Since
W(pEy + Erp) = W(f(nE2) + f(Er2)) = W(f () + Er),
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Lemma 4.5(b) yields f(uFEs) = pFs. Now, change the roles of Ejp and Es; in the
above argument. We see that f(uFE12) = uEis for any p > 0. We are done if n = 2.
Suppose n > 3. We can show (as in the preceding paragraph) that for g > 0 and
J > 2, either f(uE1;) = pkhj or f(uky;) = pEj. For simplicity, assume that j = 3.
Suppose f(uE13) = pls;. Let A = pu(FEas + Es) and B = p(E9 + Ej3). Then

f(A)y=4,  f(B)+f(B)" =B+ B".
Since
B+ B + f(B) — f(B)" = f(B) + f(B)" + f(B) — f(B)" =2f(B) € M,

the skew-symmetric matrix f(B)— f(B)" can have nonzero entries only in (1,2), (1,3),
(2,1), (3,1) positions, and the absolute value of these entries cannot exceed p. On the
other hand, W(f(B)) = W(B), which is known to be the circular disk centered at zero
with radius 1/v/2 (see [16] or [11, Theorem 4.1], for example), and therefore +ij\/2 are
eigenvalues of the matrix f(B) — f(B)"™. It follows that the (1,2), (2,1), (1,3), (3,1)
entries of f(B) — f(B)" have absolute values equal to p, and f(B) must be one of the
following four matrices:

p(Erg + Evg), By + Es1), p(Ere + Esp), p(Ea + Eis).

Suppose the third or the fourth case holds. Then for X = A+ B and Y = f(A)+ f(B),
the largest eigenvalues of €™3X + e ™/3X%" and €™/3Y + ¢ ™/3Y*" are 1.6861u and
1.6007u, respectively, by a Matlab computation. Thus, W(X) # W(Y), which is a
contradiction with (4.7). Now, if f(B) = p(Ea + Es1), then for X = uFis + B and
Y = pFEiy + f(B), the largest eigenvalues of i(X — X™) and i(Y — Y™) are p and
V5, tespectively. Thus, W (uEs + B) # W (uE1s + f(B)), a contradiction again.
So, we must have f(B) = p(Ew + Ei3) = B. Now, consider X = pFE3 + B and
Y = f(uE13) + B = pEs + B. But then W(X) # W(Y) (indeed, W(X) is a circular
disk but W(Y') is not because Y has 3 distinct eigenvalues [11, Corollary 2.5]), a
contradiction. So f(uFE3) = ukEs is impossible, and we see that f(uFEi3) = pFEis
holds. Analogously we show that f(uE:;) = pFEsj and f(uEj;) = pkj for all j > 2.
Now, consider 7, j > 2 and ¢ # j. Repeat the arguments of the preceding paragraph
with o, Foi, Eis, Esp replaced by Eji1, Ey;, Eij, Ej;, respectively, thereby proving the
equalities f(uE;;) = pnki;, p > 0. O

Step 2. Assume that condition (a) of Step 1 holds. Then f(A) = A for all A € M, .
Proof of Step 2. Suppose f(A) = [z;]! Since f(A) + f(A)" = A+ A™ | we see

ij=1°
that zj; = a;; for all j =1,...,n. Suppose

A— A" = [xij]ZjZI and f(A) = f(A)" = [yij]szl'
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Suppose there is z;; > v;; > 0 for some 7 # j. (We may interchange the roles of A and
f(A) in the following if 0 < z;; < v;;.) Say,

T2 > Y12 2> 0. (4.9)

Then for sufficiently large 1 > 0, one can use a similar argument in the proof of
Assertion 2.11 to show that

P ((A+ pEw) = (A+ pEw)") # 1 (f(A) + pBi) — (f(A) + puBwp)™) . (4.10)

For the reader’s benefit, we provide details.
By Step 1 and (4.8) we know that f(uFE;;) = pE;; for all pairs (4, j) and all x> 0.
If n = 2, inequality (4.10) is immediate. So assume n > 3. Partition:

Ay A Zn Z
A At — |1 A d A) — (A = |21 L2
[Am Az and - f(A) = f(4) Lo Zz
with
An =AY € My, Zy=—Zj} € My, Ay = A}, (4.11)
Zn = —2yy, Ap=—A% € M, o, Zy=—Zyp € My_s. (4.12)

For sufficiently large ¢t € R and for u > 0, consider

bll b12

Bt = Alg(lt[ — A22)71A21 = |:b21 b22

} and  Cp, = A+ (uErg — pEsn) + By

Note that B, and C} , are complex skew-Hermitian matrices. Then C; , has eigenvalues
(note that z1; = x99 = 0)

[bn + bog = \/(bn — bg)? + 4(x19 + bio + ) (21 + bog — )| /2. (4.13)

(Here and in the rest of the proof, for a negative number w, we denote \/w = i|\/—wl.)
Also, since Trace (By) is obviously an analytic function of ¢ in a neighborhood of infinity,
we have

Trace (B;) = iq(t),

where ¢(t) € R has a fixed sign for all sufficiently large values of ¢; say ¢(t) > 0. We

note also the formula
o0

By = (it) " Apa((it) " Aga)* Agy. (4.14)

k=0
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Formula (4.13) shows that there is (unique) v, > 0 such that the eigenvalue of C;,,
with the larger absolute value equals it; here we use the inequality ¢(¢) > 0. Moreover,
for any || > ¢, A € C, we have

det(A] — (A — A") — 1 (E1g — Eo1)) # 0 =det(it] — (A — A") — 1(E12 — Ey))
(this follows from a Schur complement equality analogous to (2.15)). Hence,
t=r((A—A") + 1y (Fi2 — Ea))
and

—I27”<A — Atr + Vt(E12 - Egl))

= by + by + \/(bn — b92)? + 4(x12 + bia + i) (o1 + boy — 1),

Similarly, if
Et = Zyo(itl—o — 222)_1221 = [gij]?,jzl € M, and @ = Zn + (B — Ey) + Et,

then ét has eigenvalues

{(511 +522) + \/@11 —f522)2 + 4(y12 +612 + 1) (Y1 +521 — )| /2.

So, for sufficiently large ¢, and hence for sufficiently large v;, we have

—i2r(f(A) — f(A)Y + v(Ey2 — Ea))

= gn —I—EQQ + \/(511 —?9/22)2 + 4(y12 —I-Zm + 1) (o1 +521 — ). (4.15)

Since T12 > Y12, T21 = —Z12, Y21 = —Y12, and since the absolute values of bij and bij7

i,7 = 1,2, are small in view of (4.14) and an analogous formula for Et, we see that the
right hand sides of (4.15) and (4.15) are not equal for sufficiently large 4. This proves
(4.10).

Now, in view of (4.10), we have

W(A+ pEo) # W(f(A) + pEwz) = W(f(A) + f(uE1)),

where the equality follows from Step 1. This is a contradiction with (4.7). So, A— A" =
f(A) — f(A)™, and we conclude that f(A) = A. 0
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5 Spectral norm preservers

In this section, we consider spectral norm preservers on nonnegative matrices. In
contrast with other sections in the paper, here it is natural to prove the result in the
framework of the set M of m X n entrywise nonnegative matrices.

Theorem 5.1 Let f: M, — M . Then
A+ Bl =l/(A)+ B, ¥V ABeM,, (5.1)

if and only if there exist permutation matrices P € M} and Q € M, such that one of
the following holds.

(a) f(A) = PAQ for all A€ M} .

(b) m =n and f(A) = PA"Q for all A € M ..

Proof. We focus on the non-trivial “only if” part. Thus, assume (5.1) holds. We
may assume that m < n and n > 2 (The case m > n can treated similarly, and the
case m = n = 1 is trivial.) The following easy observation will be used repeatedly:

Observation 5.2 (a) For ;1> 0, we have
L+ p = || Eij + pEpq|l

if and only if (i, j) = (p, q)-

(b) The equality /2 = || Eyj + E,|| holds if and only if either i = p, j # q, ori # p,
J=q

We divide the proof into several steps.

Step 1 For every p > 0, there exist permutation matrices P € M and Q € M}
(which a priori may depend on p) such that

(a) Pf(ub;;)Q = pEy fori=1,...,m, and

(b) for j = 1,...,n — m, the equalities Pf(uE1 m+;)Q = pEymy; hold, in case
n>m.

Proof of Step 1. Fix u > 0, and let f(uFEy;) = F; for 1 < i < m. The condition
(5.1) implies that || f(A)|| = || 4| for every A € M.} ; in particular,

m,n’

| Full = p. (5.2)

Since Fj; is entrywise nonnegative, there exist entrywise nonnegative vectors of unit
length x; € R™ such that

|zi" Fy|| = p, i=1,..,m.
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For any ¢ # 7, since

p2 = |pEi + pE;|? = ||Fu + Fj;)?
> xf (Fii + Fj)(Fy + Fjy)"
Z :L,tr Fqu;tZr P MZ’

we see that xj" (Fj; Fj5 )u; = 0. So, x; is an eigenvector of Fj;Fjj corresponding to the

(smallest) eigenvalue 0. Recall that x; is the eigenvector of Fj;F ]t]r corresponding to

the (largest) eigenvalue p*. So, z; and xz; are orthogonal. As a result, {z1,...,z,}

is an orthonormal basis of R™. Since z1,...,x,, are nonnegative, we can conclude
that x1,...,x, is a permutation of eq,.....e,,. We may replace f by a map of the
form A — P(f(A)) for a suitable permutation matrix P and assume that z; = e;.
Then ej" Fj;Fjie; = 0 (i # j). It follows that the (4,4) entry of Fj;Fj5 is zero for all
i # j. Since Fj;F}} is positive semidefinite of norm p?, we see that Fj;Fjf = (/°Ej;.
As a result, Fj; = uejv;r for some nonnegative vector v; € R"™ of unit length, for
Jj=1,2,...,m. Moreover, the equation || F}; + Fj;|| = p for i # j implies that v{" v; = 0
for i # 7, i.e., the vectors vy, ..., v,, have positive entries at different positions.

If m = n, then the vectors vy,...,v,, are a permutation of e,...,e,,, and the
proof of Step 1 is complete. Suppose n > m. Consider F(uEy;) = Fy; for j > m.
Applying the preceding argument to Fyj;, Foo,. .., Fium, we see that [y, = ,uelwﬁr for
some nonnegative unit length vector w; € R™ such that w; and v, has positive entries

at different positions for any £ = 2,...,m. Note that (for j > m)

W = puBn+ uEyl? = 1P+ Fyll? = leaul + pulf)]?
=l +pwl P = (por + pwy)™ (poy + pw;) = 2p* + 2w vy,

hence w; and v; also have positive entries at different positions. Applying the same
reasoning to pEs j, and pkE, j,, (ji1,72 > m), we see that also wj, and w;, have positive
entries at different positions. Now it follows that each of the vectors

UVly e e oy Uy Wiy e oy Wi, (5.3)

has exactly one positive entry and the positions of these positive entries are different
for different vectors in the set (5.3). Thus, the set (5.3) is a permutation of ey, ... e,,
and the results of Step 1 follows. O

Step 2 There exist permutation matrices P € M} and Q) € M, such that
(a) Pf(uE;)Q = uEy; fori=1,...,m and all g > 0, and
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(b) for j =1,...,n—m, the equalities P f(uFE1 y4;)Q = pE1 ;4 hold for all 1 > 0,
in case n > m.
Proof of Step 2. By Step 1, there exist permutations P(u) and Q(u) such that

P(p)f(pBu)Q(p) = ply, i=1,...,m,

and
P(M)f(MEl,m-‘r])Q(:u) = MEl,m—i-j) j = ]-a e, =m

(if m < n).
We may assume that P(1)

= I, and Q(1) = I,,. Otherwise, replace f by the map
of the form X — P(1)71f(X)Q(1)~

. Hence, if
S={E;; :1<j<n}U{E;:m<j<n},

then f(X) = X for any X € S. Moreover, for any p > 0 and X € S, f(uX) =
P(p)uXQ(p) = uE,, for some (p,q) pair. Since

L = [ X+ p X = [[F(X) + f(pXOl = X + F(eX)],

we see (using Observation 5.2) that f(uX) = puX.
]

Step 3. Assume that P = I and () = [ in Step 2. Then one of the two following
possibilities holds:

(a) f(uEi;) = pE;; for all ;> 0 and (i, 7) pairs,

(b) m =n and f(ukE;;) = pEj; for all p > 0 and (i, j) pairs.

Proof of Step 3. We may suppose i # j (the cases when ¢ = j are taken care of in
Step 2). Here 1 <i<m;1<j<n.

First, we prove Step 3 for the case m = 1. By Step 2, we have f(uFE1;) = ukEy; for
all p > 0. If f([z1,29,...,2,])) = |21, .., zn), then

(p+a+ Y a2 = |uButlay, o, mllP = luButla, ozl = () +) 22
=2 =2
for all 1 > 0 which implies 27 = z;. In particular, f maps the set {[ay,...,a,] € Mffn

a; = 0} to itself, and using the induction on n, we obtain the equalities f(uFE1;) = pE;
forall u > 0 and 5 = 2,3,...,n. From now on in the proof of Step 3 we assume m > 2.

Next, for any pair (7,7), 1 <i <m, 1 < j < n, we can find permutation matrices
R (of size m x m) and S (of size n x n) such that E;; = RE;;S. Then, applying the
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result of Step 2 to the map f(X) = f(RXS), X € M}

m,n’

for some index pair (p, ¢) which is independent of u. It remains to show that

(a) (p,q) always equals (7, j), or
(b) m =n and (p, q) always equals (7,1).

To this end, consider f(E;;) with i # j. By Step 1,

1 (Bi) + Eell = 1 (Bip) + f(Ew) | = | By + Bl = V2
for k € {i,j}, 7 < m. By Observation 5.2 (b), we see that
f(By)=Ey;  or  f(Ey) = Ej.
Consider f(F1q). If n > m, then

V2 =B+ Eipii| = | f(Er2) + Er |-

we see that f(uk;;) =

Nqu

Thus, f(E12) = E12. Suppose m = n and f(Ej3) = Ey;. We may replace f by the map

A f(A)™ and assume that f(E2) = Ea.

Assuming that f(E)2) = Ej9, we can easily shows that f(E;;) = Ey; for all j =

3,...,m, because

V2 =B+ Byl = || f(Ew) + f(Ey)] = 1B + f(Ey)],

where (5.4) was used. Note that f(E;) = Eiy; for j > m by Step 1. Recall that for

i=3,...,m, we have f(FE;) = E; or f(E;;) = Ey;. Since
1= ||Ey+ Eall = | f(Ew) + f(Ea)| = | Eu+ f(Ea),

we see that f(E;) = Ey fori=2,...,m.
Now, for any £;; for 2 <i,j < m, since

V2 = ||By; + Eyll = || f(Ev;) + f(Ei) |l = |1 Evj + f(Ei)]l,

and using Observation 5.2, we see that f(E;;) = E;;. For E;; with ¢ > 2 and j > m,

we have

V2 =By + Eyll = | F(Ey) + F(Eg)ll = 1By + Epgll,
where the pair (p, q) is such that f(E;;) = E,,, and

V2 =||Ei + Eij|| = ||Eiv + Epgll, 7=1,2,...m,
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so by Observation 5.2 we must have (p,q) = (i,7). So, for any (r,s) pair, we have
f(Ers) = Ers- U

Step 4. Assume that (a) in Step 3 holds, and assume also P = I, = I. Then
f(A) = Aforall Aec M} .

Proof of Step 4. Let A = [ay] and f(A) = [z;;] in M} .. We show that a;; = z;; for
each (7, j) pair. Arguing by contradiction, assume a;; # z;; for some pair (¢,7). Say,
(7,7) = (1,1) (for other pairs (i,7) the proof is exactly the same). Suppose a;; > 213
(if the opposite inequality holds, interchange the roles of A and f(A) in the subsequent
argument). Then for u > 0,

(A+ pEn)" (A4 pky) = M2E11 + u(A*Ey + EnA) + ATA.

Note that the largest eigenvalue of A= W2 Ey + p(A*Ey + EjA) equals

(e + 2a11) + /2 (p + 2011)? + p2al /2 with o = 42 at;.

j=2
Similarly, we have
(F(A) + pBEn)* (f(A) + pEn) = p*En + p(f(A)*En + En f(A) + f(A) f(A)

and the largest eigenvalue of 7 = w2 Ey + p(f(A)*Ey + Ep f(A)) equals

[ + 2211) + /12 (1 + 2201)2 + 23] /2 Withﬁ:‘lzzfj-
=2

Denote by A1 (X) the largest eigenvalue of X € S;¥. Since ay; > 211, there is a sufficiently
large p > 0 such that

(g + 2a11) > p(p + 2211) + 20 (f(A)" f(A))

and
(1 +2a11)° + a > (u+2211)° + 6.

Consequently,

M (B + A) (pEn + A)) > M(A)

> M(Z) + M(FA)f(A) = M((pEn + f(A) (nEn + f(A))).

It follows that ||A+puEr1|| > || f(A)+ pE11||, which is the desired contradiction, because
by Step 3 we have f(uEh1) = pEy. O
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