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Abstract

Let M+
n be the set of entrywise nonnegative n× n matrices. Denote by r(A)

the spectral radius (Perron root) of A ∈ M+
n . Characterization is obtained for

maps f : M+
n → M+

n such that r(f(A) + f(B)) = r(A + B) for all A,B ∈ M+
n .

In particular, it is shown that such a map has the form

A 7→ S−1AS or A 7→ S−1Atr S,

for some S ∈ M+
n with exactly one positive entry in each row and each column.

Moreover, the same conclusion holds if the spectral radius is replaced by the
spectrum or the peripheral spectrum. Similar results are obtained for maps on
the set of n × n nonnegative symmetric matrices. Furthermore, the proofs are
extended to obtain analogous results when spectral radius is replaced by the
numerical range, or the spectral norm. In the case of the numerical radius, a full
description of preservers of the sum is also obtained, but in this case it turns out
that the standard forms do not describe all such preservers.
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1 Introduction

Preserver problems concern the characterization of maps on matrices or operators leav-
ing invariant a certain function, a certain subset of a certain relation. Earlier studies
focused on linear maps with these properties. The literature on this subject is exten-

sive; see, for example, [12, 23] and monographs [19, 20, 21]. Recently, researchers have

studied preserver problems under mild assumptions. In particular, for a given function
ν on a matrix set M with a binary operator A ◦ B, maps f : M → M have been
studied, that satisfy

ν(f(A) ◦ f(B)) = ν(A ◦B) ∀ A, B ∈ M (1.1)

but not a priori assumed linear or continuous; [5, 6, 13, 14, 26] is a small selection of

recent works on the topic. There has been interest in studying such problems when

ν(A) is the spectrum, the peripheral spectrum, the numerical radius, the spectral norm,

etc. (see the definitions below). See for example the papers [7, 15, 22], where preserver

problems have been studied for ν the peripheral spectrum in the context of uniform
algebras; in fact, these works served as motivation for the present study of preservers
on nonnegative matrices, as for nonnegative matrices the peripheral spectrum always
contains the spectral radius. Moreover, the problems have also been considered for in

more general contexts such as function or operator algebras [19]. It is worth noting

that even without the linearity assumption, the preservers often end up to be linear
and have certain “standard” or “expected” form. Although the statements of results in
many cases look similar to those of linear preservers, researchers often have to develop
new techniques to solve the preserver problems under mild assumptions; sometimes

these assumptions involve nothing more than validity of (1.1). In some cases, one may

get unexpected forms for preservers, which lead to deeper understanding and insight
to the structures under consideration.

The purpose of this paper is to characterize preservers of the spectral radius, nu-
merical radius, or spectral norm of the sum of nonnegative matrices. There are not
many works in the literature on preservers in the context of real entrywise nonnegative

matrices: we mention [18], where spectrum preservers are described, [1, 10, 24, 25] that

deal with column rank preservers; [2] is concerned with primitivity preservers, and in

[4] preserver problems that have to do with irreducibility are considered. In all these

works, the linearity of the map f is assumed. In contrast, in the present work we do

not assume a priori any additional hypotheses on f except for (1.1) for A ◦B = A + B

and a suitable choice of ν.
Let M+

n be the set of real entrywise nonnegative matrices, and let r(A) be the

spectral radius of a square matrix A. In Section 2, we characterize maps f : M+
n → M+

n

such that
r(f(A) + f(B)) = r(A + B) ∀ A, B ∈ M+

n .
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In particular, it is shown that such a map has the form

A 7→ S−1AS or A 7→ S−1Atr S, (1.2)

for some S ∈ M+
n with exactly one positive entry in each row and each column. More-

over, as byproducts, we show that the same conclusion holds if the spectral radius is
replaced by the spectrum or the peripheral spectrum. Similar results are obtained for
maps on the set of n × n nonnegative symmetric matrices in Section 3. Furthermore,
the proofs are extended to obtain analogous results when spectral radius is replaced
by the numerical range, radius, or the spectral norm in Section 4 and Section 5. In
the case of the numerical radius, a characterization of preservers of the sum is also

obtained, but in this case it turns out that the standard forms (1.2) do not describe all

such preservers.

The following notation will be used throughout the paper:
Mn the set of all n× n real matrices.
Kn the set of all n× n real skew-symmetric matrices.

M+
n the set of n× n real matrices with nonnegative entries.

S+
n the set of symmetric matrices in M+

n .

To avoid trivialities, we assume n ≥ 2 throughout our discussion.

i =
√
−1 complex unit

C and R stand for the complex field and the real field, respectively.

‖x‖ Euclidean length of a vector x.

ei is the ith coordinate vector: 1 in the ith position and zeros elsewhere.

Eij ∈ M+
n the matrix unit: 1 in the (i, j)th position and zeros everywhere else.

r(A) the spectral radius of a matrix A.

σ(A) the spectrum (the set of eigenvalues) of a matrix A.

σp(A) = σ(A) ∩ {λ ∈ C : |λ| = r(A)} the peripheral spectrum of A.

Atr the transpose of A.
A∗ the conjugate transpose of A

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1} the numerical range of A

w(A) = max{|µ| : µ ∈ W (A)} the numerical radius of A

‖A‖ = max{|x∗Ay| : x, y ∈ Cn, x∗x = y∗y = 1} the spectral norm of A.

X ⊕ Y :=

[
X 0
0 Y

]
0p×q the p× q zero matrix

P ⊂ M+
n the group of permutation matrices.

D ⊂ M+
n the group of diagonal matrices with positive entries on the diagonal.

PD ⊂ M+
n the group of matrices of the form PD where P ∈ P and D ∈ D.

The role of PD is exemplified by the following well-known fact:
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Fact A matrix A ∈ M+
n has the property that A is invertible and A−1 ∈ M+

n if and

only if A ∈ PD.

To see the fact, suppose A has columns x1, . . . , xn and A−1 has rows ytr
1 , . . . , ytr

n .

Suppose x1 has k positive entries. Then for j = 2, . . . , n, yj will have zero entries in

the corresponding nonzero positions of x1 because yj is nonnegative and ytr
j x1 = 0. So,

all the nonzero entries of the linearly independent vectors y2, . . . , yn will lie in fewer
than n− k positions. As a result, k ≤ 1 so that x1 has only one positive entry. Similar
arguments apply to the other columns. Clearly, the nonzero entries of A must lie in
different rows because A is invertible.

2 Spectral radius preservers on M+
n

Here is our main theorem of this section.

Theorem 2.1 The following statements (1) - (4) are equivalent for a function f :

M+
n −→ M+

n .

(1)

r(A + B) = r(f(A) + f(B)), ∀ A, B ∈ M+
n . (2.1)

(2)

σp(A + B) = σp(f(A) + f(B)), ∀ A, B ∈ M+
n . (2.2)

(3)

σ(A + B) = σ(f(A) + f(B)), ∀ A, B ∈ M+
n . (2.3)

(4) There exists a matrix Q ∈ PD such that either

f(A) = Q−1AQ, ∀ A ∈ M+
n ,

or
f(A) = Q−1AtrQ, ∀ A ∈ M+

n . (2.4)

Since for A ∈ M+
n we always have r(A) ∈ σp(A), the implications (3) =⇒ (2) =⇒

(1) are clear. Also, (4) =⇒ (3) is not difficult to see. It remains to prove (1) =⇒ (4).

First, we present some general results and easy observations that will be often used,
sometimes without explicit reference, throughout the paper. We will use the directed

graph Γ(A) associated with A ∈ M+
n . Recall that {1, 2, . . . , n} is the set of vertices

of Γ(A), and (i, j) is a directed edge in Γ(A) if and only if the (i, j)th entry of A is
positive.
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A matrix A ∈ M+
n is said to be irreducible if there is no permutation matrix P such

that PAP tr =

[
A11 A12

0 A22

]
such that A11 and A22 are non-trivial square matrices. A

useful well-known criterion for irreducibility is given in terms Γ(A):

Lemma 2.2 A ∈ M+
n is irreducible if and only if Γ(A) is strongly connected.

Next, we list several well-known properties of nonnegative matrices and their spec-

tral radii (see, for example, [8, Theorem 8.4.5] or [3]).

Lemma 2.3 Let A ∈ M+
n . Then:

(a) r(A) ≥ r(A′) for any principal submatrix A′ of A. In particular,

r(A) ≥ max{d : d is a diagonal entry of A}.

(b) If A ∈ M+
n is nilpotent, i.e., r(A) = 0, then all diagonal entries of A are zeros.

(c) If A ∈ M+
n is irreducible and B ∈ M+

n is nonzero, then r(A + B) > r(A).

(d) If A ∈ M+
n is reducible, then there is a permutation matrix P such that PAP tr

is upper triangular block form [Aij]1≤i,j≤k such that A11, . . . , Akk are irreducible square

matrices and
r(A) = max{r(Ajj) : 1 ≤ j ≤ k}.

(e) If A, B ∈ M+
n and A ≥ B entrywise, then r(A) ≥ r(B).

Notice that (b) is an immediate consequence of (a).

Lemma 2.4 Let A1, A2 ∈ M+
n have irreducible principal submatrices B1 and B2, re-

spectively, such that r(A1) = r(B1), r(A2) = r(B2). If the row and column indices of

B1 and B2 have non-empty intersection, then

r(A1 + A2) > max{r(A1), r(A2)}. (2.5)

Proof. For t1, t2 ∈ (0, 1] consider t1A1 + t2A2 and its irreducible principal submatrix

B(t1, t2) whose set of row and column indices is the union of the set of row and column

indices of B1 and that of B2. Since row and column indices of B1 and B2 have non-
empty intersection, the matrix B(t1, t2) is irreducible in view of Lemma 2.2, for all

t1, t2 ∈ (0, 1]. Now

r(A1 + A2) ≥ r(B(1, 1)) > max{r(B(1, 1/2)), r(B(1/2, 1))}
≥ max{r(B1), r(B2)} = max{r(A1), r(A2)},

where the strict inequality holds by Lemma 2.3 (c), and the non-strict inequalities hold

in view of Lemma 2.3 (e). 2
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Proof of Theorem 2.1

We focus on the implication (1) =⇒ (4). Assume that the function f satisfies the

condition (1) of Theorem 2.1. We divide the proof into several assertions.

Assertion 2.5 (a) For any A ∈ M+
n we have r(A) = r(f(A)).

(b) A ∈ M+
n is nilpotent if and only if f(A) is nilpotent.

(c) If A is nonzero, then f(A) is nonzero.

Proof. Condition (a) follows from setting A = B in (2.1).

Condition (b) follows readily from (a).

Suppose A in nonzero and the (i, j) entry of A is nonzero. If i = j then A is not

nilpotent and neither is f(A). Thus, f(A) is nonzero. If i 6= j, then for B = Eji, the

submatrix of A + B with row and column indices {i, j} has positive spectral radius. If

f(A) = 0 then r(f(A) + f(B)) = r(f(B)) = r(B) = 0, which is a contradiction. 2

Assertion 2.6 There is a permutation P such that for any µ > 0 the diagonal of the

matrix Pf(µEii)P
tr is the same as that of µEii for i = 1, . . . , n.

Proof. In what follows we let Fij = f(Eij). First, consider µ = 1. For each

j = 1, . . . , n, let Gjj be an irreducible principal submatrix of Fjj such that

r(Gjj) = r(Fjj) = 1.

(The existence of principal submatrices Gjj is guaranteed by Lemma 2.3 (d).) We

will show that Gjj = [1]. Note that the row (column) indices of G11, . . . , Gnn cannot

overlap. If it is not true and the row indices of Gii and Gjj overlap, then by Lemma
2.4,

r(Fii + Fjj) > r(Fii) = 1 = r(Eii + Ejj),

which is a contradiction. Thus, G11, . . . , Gnn are one-by-one with non-overlapping row

(column) indices. Since r(Gjj) = 1, we see that Gjj = [1] for all j = 1, . . . , n. Thus,

there exists P ∈ P such that PFjjP
tr has one in the (j, j) position. Suppose i 6= j.

the (i, i) entry PFjjP
tr is zero. Otherwise, the (i, i) entry of P (Fii + Fjj)P

tr is larger

than 1 so that by Lemma 2.3 (a),

r(Fii + Fjj) = r(P (Fii + Fjj)P
tr ) > 1 = r(Eii + Ejj).

For any µ > 0, we can apply the preceding proof to show that there is a permutation

matrix Pµ such that Pµf(µEii)P
tr
µ has µ at the (i, i) position and all other diagonal

entries equal to zero. If Pµ 6= P , then there will be indices i 6= j and k so that f(µEii)
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has µ in the (k, k) position, and f(Ejj) has one in the (k, k) position. But then by

Lemma 2.3 (a),

r(f(µEii) + f(Ejj)) ≥ 1 + µ > r(µEii + Ejj),

which is a contradiction. 2

Assertion 2.7 Let P be the permutation satisfying the conclusion of Assertion 2.6.

Then for any i 6= j, the 2× 2 submatrix of P (Eij + Eji)P
tr lying at rows and columns

with indices {i, j} has the form

[
0 g12

g21 0

]
with g12g21 = 1.

Proof. For simplicity, we assume that P is the identity matrix. Otherwise, consider

the map X 7→ Pf(X)P tr .

For each i 6= j, let X = Eij + Eji and let Gij be an irreducible principal submatrix

of f(X) such that

r(Gij) = r(f(X)) = r(X) = 1. (2.6)

We claim that Gij must lie in a submatrix of f(X) with row and column indices in the

set {i, j}. Indeed, suppose this is not true, and let k be a row and column index of

Gij different from i and from j. Denote by [f(Ekk)] the principal submatrix of f(Ekk)

having the same row and column indices as Gij does. Then:

r(f(X) + f(Ekk)) ≥ r(Gij + [f(Ekk)]) > r(Gij)

= 1 = r(X + Ekk) = r(f(X) + f(Ekk)),

where the strict inequality follows from Lemma 2.3 (c). A contradiction is obtained.

Suppose Gij =

[
g11 g12

g21 g22

]
. If at least one of g12 and g21 is zero, then, in view of

(2.6) we must have g11 = 1 or g22 = 1. But then for Y = Eii or Ejj, f(X) + f(Y ) a

diagonal entry larger than or equal to 2. By Lemma 2.3 (a), we have

r(f(X) + f(Y )) ≥ 2 >
1 +

√
5

2
= r(X + Y ),

which is a contradiction. Thus, g12g21 6= 0.
Next, we claim that g11 = 0. If it is not true, then for sufficiently large µ > 0, the

matrix f(µEii) + f(X) has µ + g11 at the (i, i) position so that

r(f(µEii) + f(X)) ≥ µ + g11 > [µ +
√

µ2 + 4]/2 = r(µEii + X),

which is a contradiction. Similarly, we can show that g22 = 0. Since r(Gij) = 1, we see

that g12g21 = 1. 2
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In the rest of the proof, we assume that Assertions 2.6 and 2.7 hold with P = I for
simplicity.

Assertion 2.8 For every µ > 0 and every pair of indices i 6= j, f(µEij) is a nonzero

multiple of Eij or of Eji.

Proof. By Assertion 2.7, for any i 6= j, the matrix f(Eij + Eji) has a submatrix

Gij =

[
0 gij

gij 0

]
with row and column indices in {i, j} such that gijgij = 1.

Now, suppose µ > 0, i 6= j, and let f(µEij) = [zrs]
n
r,s=1. Then zkk = 0 for all k.

Otherwise, the (k, k) entry of f(Ekk) + f(µEij) is larger than 1 so that

r(f(Ekk) + f(µEij)) > 1 = r(Ekk + µEij),

which is a contradiction. We also have zpq = 0 if at least one of the indices p and q

(p 6= q) does not belong to the two-element set {i, j}. Otherwise, the submatrix of

f(Epq + Eqp) + f(µEij) with row and column indices in {p, q} has the form

C =

[
0 gpq + zpq

gqp + zqp 0

]
,

with gqpgpq = 1, so that

r(f(Epq + Eqp) + f(µEij)) ≥ r(C) > 1 = r(Epq + Eqp + µEij),

which is a contradiction.
Since 0 = r(µEij) = r(f(µEij)), we see that zijzji = 0. Hence f(µEij) is a multiple

of Eij or Eji. Similarly, f(µEji) is a multiple of Eij or of Eji. 2

Assertion 2.9 Let X = X0 ⊕ 0n−3, where X0 ∈ M+
3 is nilpotent. Then f(X) =

Z0 ⊕ 0n−3 such that Z0 ∈ M+
3 is nilpotent with at most 3 nonzero entries. Moreover,

let
S = {Eij : 1 ≤ i, j ≤ 3, i 6= j}, (2.7)

and
f(S) = {µijEij : 1 ≤ i, j ≤ 3, i 6= j}, for some µij > 0.

(The form of f(S) follows from Assertion 2.8.) One of the following is true:

(1) If f(X) has only one nonzero entry, then r(f(X) + Z) > 0 for only one matrix

Z in f(S).
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(2) If f(X) has exactly two nonzero entries, and they lie in the same row or the same

column, then r(f(X) + Z) > 0 for exactly two matrices Z in f(S).

(3) If f(X) has two or three nonzero entries such that two of them are not in the

same row or column, then r(f(X)+Z) > 0 for at least three matrices Z in f(S).

Proof Let f(X) = [ypq]
n
p,q=1. Then f(X) is nilpotent so that yjj = 0 for all j =

1, . . . , n. Also, if i 6= j and at least one of i and j is larger than 3, then yij = 0.

Otherwise,

r(f(X) + f(Eij)) > 0 = r(X + Eij) or r(f(X) + f(Eji)) > 0 = r(X + Eji)

by the fact that f(Eij) or f(Eji) is a multiple of Eij. So, if yij 6= 0, then i 6= j and

1 ≤ i, j ≤ 3. Moreover, since 0 = r(X) = r(f(X)), we see that yijyji = 0 for i 6= j

(otherwise, the 2 × 2 principal submatrix of f(X) with row and column indices {i, j}
would have a positive spectral radius, a contradiction with Lemma 2.3 (a)). Thus, there

are at most three nonzero entries in f(X), and they all lie in the leading 3×3 principal

submatrix of f(X). Using the condition that f(X) = [yij]
n
i,j=1 with yijyji = 0, we see

that one of the condition (1) – (3) is true. 2

Assertion 2.10 There is D ∈ D such that either
(a) f(µEij) = µDEijD

−1 for all µ > 0 and all pairs (i, j), or

(b) f(µEij) = µDEjiD
−1 for all µ > 0 and all pairs (i, j).

Proof. First consider the case when µ = 1, for all pairs of indices (i, j) such that

i 6= j.

By Assertion 2.8, f(E12) = µ2E12 or f(E12) = µ2E21 for some µ2 > 0. Assume

f(E12) = µ2E12. Otherwise, replace f by the map X 7→ f(X)tr . Since

1 = r(E12 + E21) = r(f(E12) + f(E21)) = r(µ2E12 + f(E21)),

using the result of Assertion 2.8 again, we see that f(E21) = E21/µ2. We get the desired

conclusion for f(Eij) with i 6= j if n = 2.

Assume n ≥ 3. For any j ≥ 2, we claim that f(E1j) = µjE1j for some µj > 0.

For simplicity, suppose that j = 3. Let X = E12 + E13 and let f(X) = [zij]
n
i,j=1. By

Assertion 2.9, zij can be nonzero only if i 6= j and 1 ≤ i, j ≤ 3; also, zijzji = 0 for all

i, j. Since r(X + Y ) > 0 for exactly two matrices Y ∈ S (the set S is defined in (2.7)),

we conclude that r(f(X) + Z) > 0 for exactly two matrices Z in f(S), and therefore

condition (2) of Assertion 2.9 holds. Note that

1 = r(X + E21) = r(f(X) + f(E21)) = r(f(X) + E21/µ2). (2.8)
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As a result, z12 must be one of the two nonzero entries of f(X) in the same row or

same column. Thus, either

(a) z12z13 6= 0, or (b) z12z32 6= 0.

If (a) holds, then

1 = r(X + E31) = r(f(X) + f(E31)).

Applying Assertion 2.8 for f(E31) we see that f(E31) is a multiple of E31, and f(E13) =

µ3E13 as asserted. Suppose (b) holds. Then

f(E23 + E32)− (kE23 + k−1E32)

is nonnegative for some k > 0 by Assertion 2.7. It follows that

r(X + E23 + E32) = 1 < r(f(X) + kE23 + k−1E32) ≤ r(f(X) + f(E23 + E32))

(the inequality ≤ holds by Lemma 2.3 (e)), which is a contradiction.

Now, we have f(E1j) = µjE1j with µj > 0 for j = 2, . . . , n. Let

D = diag (1, µ2, . . . , µn).

We may replace f by the map X 7→ Df(X)D−1 so that f(E1j) = E1j for j = 2, . . . , n.

Since
1 = r(E1j + Ej1) = r(f(E1j) + f(Ej1)) = r(E1j + f(Ej1)),

and since by Assertion 2.8 f(Ej1) is a multiple of either E1j or Ej1, we have in fact

f(Ej1) = Ej1 for all j = 2, . . . , n.

Next, we show that f(Eij) = Eij if i 6= j and i, j ≥ 2. Assume that (i, j) = (2, 3)

for simplicity. Let X = E12 + E31 and f(X) = [zij]
n
i,j=1. We claim that f(X) = X.

Note that X = X0 ⊕ 0n−3 with X0 ∈ M+
3 is nilpotent. Since r(X + Y ) > 0 for at least

three matrices Y in S, it follows that r(f(X) + Ŷ ) > 0 for at least three matrices Ŷ in

f(S). Hence, f(X) satisfies condition (3) of Assertion 2.9. Since

0 = r(X + Y ) = r(f(X) + f(Y ))

for Y = E12, E31 and E32, we see that z21 = 0, z13 = 0 and z23 = 0, i.e.,

f(X) =

 0 z12 0
0 0 0

z31 z32 0

 .

Since
1 = r(X + E21) = r(f(X) + E21),
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we see that z12 = 1; since

1 = r(X + E13) = r(f(X) + E13),

we see that z31 = 1. If Y = E23 + E32, then by Assertion 2.7 there is ν > 0 such that

f(Y )− νE23 − E32/ν (2.9)

is nonnegative. Let

Ẑ = E12 + E31 + z32E32 + νE23 + E32.

Assuming for the moment that ν ≥ 1, we have

r(f(X) + f(Y )) ≥ r(Ẑ) ≥ r(X + Y ) = r(f(X) + f(Y )), (2.10)

where the second inequality follows by comparison between the largest roots of the

characteristic polynomials −λ3 + λ + 1 and −λ3 + (νz32 + 1)λ + ν of X + Y and of Ẑ,

respectively. Since the second inequality in (2.10) is an equality, we see that in fact

ν = 1 and z32 = 0. (2.11)

Hence f(X) = X. Now, by Assertion 2.8, f(E23) is a multiple of E23 or E32. Since

1 = r(X + E23) = r(X + f(E23)),

we see that f(E23) = E23 as asserted.

If ν of (2.9) is smaller than 1, we apply the arguments in the preceding paragraph

to X̂ := E21 + E13 rather than to X, replacing ν by ν−1 and interchanging everywhere

the subscripts. Then a contradiction with (2.11) will be obtained, thus ν < 1 is not

possible.

At this point, we may assume that f(Eij) = Eij if i 6= j. Now consider f(µEij) =

[zpq]
n
p,q=1 for µ ≥ 0 and i 6= j. Then zpp = 0 for all p ∈ {1, . . . , n}. Otherwise, we obtain

a contradiction (in the next formula W stands for a matrix with zero diagonal):

r(f(µEij) + f(Epp)) = r(f(µEij) + Epp + W ) ≥ r((1 + zpp)Epp) > 1 = r(µEij + Epp),

where the first equality follows from Assertion 2.6, and the non-strict inequality follows

from Lemma 2.3 (e). Also, zpq = 0 for p 6= q if (p, q) 6= (i, j). Otherwise, a contradiction

again:

r(f(µEij) + f(Eqp)) ≥ r(zpqEpq + f(Eqp)) = r(zpqEpq + Eqp) > 0 = r(µEij + Eqp).
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Finally, √
µ = r(µEij + Eji) = r(f(µEij) + f(Eji)) = r(f(µEij) + Eji)

implies that

f(µEij) = µEij. (2.12)

Next, consider f(µEii) = [zrs]
n
r,s=1 for fixed µ > 0 and fixed i ∈ {1, . . . , n}. Then

zii = µ and zjj = 0 for j 6= i by Assertion 2.6. Also, zpq = 0 for any p 6= q. Otherwise,

r(f(µEii) + f(νEqp)) ≥ r(zpqEpq + f(νEqp))

= r(zpqEpq + νEqp) (using (2.12))

> µ = r(µEii + νEpq)

for a sufficiently large ν. Hence f(µEii) = µEii. 2

Assertion 2.11 The function f has the form as in (4) of Theorem 2.1.

Proof. Let D ∈ D satisfy the conclusion of Assertion 2.10. We may replace f

by the map X 7→ D−1f(X)D and assume that D = I. We may further assume

that f(µEij) = µEij for all µ > 0 and (i, j) pairs. Otherwise, replace f by the map

X 7→ f(X)tr .

Suppose A = [aij]
n
i,j=1 ∈ M+

n and f(A) = [zij]
n
i,j=1. First, we show that zjj = ajj for

each j. For simplicity, we consider z11. Let

A =

[
a11 A12

A21 A22

]
and f(A) =

[
z11 Z12

Z21 Z22

]
.

Suppose t > r(A) = r(f(A)) ≥ max{r(A22), r(Z22)},

Bt := A12(tIn−1 − A22)
−1A21 and B̂t := Z12(tIn−1 − Z22)

−1Z21.

Since det(tIn − (A + µE11)) is equal (as a function of µ) to

−µ(det(tIn−1 − A22)) + det(tIn − A),

it follows that there is (unique) µt > 0 such that

det(tIn − (A + µtE11)) = 0.

Using Schur complements, we see that

det(tIn − (A + µtE11)) = (t− a11 − µt −Bt) det(tIn−1 − A22) = 0,

12



i.e.,

t− a11 − µt −
∞∑

k=0

t−k−1A12A
k
22A21 = 0.

Obviously,

s− a11 − µt −
∞∑

k=0

s−k−1A12A
k
22A21 > 0

for every s > t; thus

t = r(A + µtE11) = r(f(A) + µtE11).

Now

0 = det(tIn − (f(A) + µtE11)) = (t− z11 − µt − B̂t) det(tIn−1 − Z22),

i.e.,

0 = t− z11 − µt −
∞∑

k=0

t−k−1Z12Z
k
22Z21.

As a result,

a11 +
∞∑

k=0

t−k−1A12A
k
22A21 = µt − t = z11 +

∞∑
k=0

t−k−1Z12Z
k
22Z21

for all sufficiently large t, and hence a11 = z11 as asserted.
Next, we show that aij = zij for i 6= j. For simplicity, we consider z12. First,

suppose n = 2. Since

r(A + tE21) = [(a11 + a22) +
√

(a11 − a22)2 + 4a12(a21 + t)]/2

and

r(f(A) + tE21) = [(z11 + z22) +
√

(z11 − z22)2 + 4z12(z21 + t)]/2

are equal for all t > 0, and using a11 = z11, a22 = z22, we see that a12 = b12.
Next, suppose n > 2. Let

A =

[
A11 A12

A21 A22

]
and f(A) =

[
Z11 Z12

Z21 Z22

]
,

with A11, Z11 ∈ M+
2 . Arguing by contradiction, assume that

ε := a12 − z12 > 0. (2.13)
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[If the opposite inequality holds, interchange the roles of A and f(A) in the following

argument.] Suppose t > r(A) = r(f(A)) and

Bt := A12(tI − A22)
−1A21 =

∞∑
k=0

t−1A12(t
−1A22)

kA21.

There is T > 0 such that each entry of Bt lies in [0, ε/3) whenever t ≥ T . If

Bt =

[
b11 b12

b21 b22

]
and Ct,µ = A11 + µE21 + Bt, (µ > 0),

then Ct,µ has eigenvalues[
(a11 + a22 + b11 + b22)±

√
(a11 + b11 − a22 − b22)2 + 4(a12 + b12)(a21 + b21 + µ)

]
/2.

(2.14)

Note that
det(tIn − (A + µE21)) = det(tI2 − Ct,µ) det(tIn−2 − A22) (2.15)

so that det(tI2 − Ct,µ) > 0 if µ = 0. Inequality (2.13) implies that a12 > 0, which,

together with formula (2.14), shows that there is (unique) νt > 0 such that the larger

eigenvalue of Ct,νt equals t. Moreover, for any λ > t, we have

det(λI − A− νtE21) 6= 0 = det(tI − A− νtE21).

Hence,

t = r(A + νtE21) = r(f(A) + νtE21)).

Similarly, if

B̃t := Z12(tIn−2 − Z22)
−1Z21 = [̃bij]

2
i,j=1 ∈ M+

2 and C̃t := Z11 + νtE21 + B̃t,

then

det(tIn − f(A)− νtE21) = det(tI2 − C̃t) det(tIn−2 − Z22),

and there exists T̃ > 0 such that every entry of B̃t is smaller than ε/3 whenever t > T̃ .

Observe that C̃t has eigenvalues[
(z11 + z22 + b̃11 + b̃22)±

√
(z11 + b̃11 − z22 − b̃22)2 + 4(z12 + b̃12)(z21 + b̃21 + νt)

]
/2.

So, 2r(A+νtE21) and 2r(f(A)+νtE21) are equal to the following quantities, respectively:

a11 + a22 + b11 + b22 +
√

(a11 + b11 − a22 − b22)2 + 4(a12 + b12)(a21 + b21 + νt) (2.16)
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and

z11 + z22 + b̃11 + b̃22 +

√
(z11 + b̃11 − z22 − b̃22)2 + 4(z12 + b̃12)(z21 + b̃21 + νt). (2.17)

Evidently, νt →∞ as t →∞. Since

a12 + b12 − (z12 + b̃12) > ε− 2(ε/3) > 0 for t > max{T, T̃},

we have
r(A + νtE21) > r(f(A) + νtE21)

for sufficiently large t, which is the desired contradiction. 2

3 Spectral radius preservers on S+
n

An adaptation of the proof of Theorem 2.1 yields the following preserver result on the

set S+
n of n× n symmetric nonnegative matrices.

Theorem 3.1 The following statements (1) - (4) are equivalent for a function f :

S+
n −→ S+

n .

(1)

r(A + B) = r(f(A) + f(B)), ∀ A, B ∈ S+
n . (3.1)

(2)

σp(A + B) = σp(f(A) + f(B)), ∀ A, B ∈ S+
n . (3.2)

(3)

σ(A + B) = σ(f(A) + f(B)), ∀ A, B ∈ S+
n . (3.3)

(4) There exists a matrix Q ∈ P such that f(A) = Q−1AQ, ∀ A ∈ S+
n .

Proof. We only need to deal with the non-trivial implication (1) ⇒ (4). So assume

that f satisfies (3.1). Then r(A) = r(f(A)) for every A ∈ S+
n , and in particular

f(A) = 0 if and only if A = 0.

We divide the rest of the proof into several steps.

Step 1. Assertion 2.6, together with its proof, remains valid. Thus, there exists a

permutation Q such that for any µ > 0 the diagonal of the matrix Qf(µEii)Q
tr is the

same as that of µEii for i = 1, . . . , n.

15



Step 2. Let Q be the matrix in Step 1. We show, by following the proof of Assertion

2.7 that for i 6= j, the 2 × 2 submatrix in Qf(Eij + Eji)Q
−1 with row and column

indices i, j has the form

[
0 1
1 0

]
.

Step 3. Assuming the matrix Q in Step 1 equal In, we prove that f(X) is a nonzero

multiple of X, for X = µ(Eij + Eji) with µ > 0 and i 6= j.

Proof of Step 3. By Step 2, for any i 6= j, the matrix f(Eij + Eji) has a submatrix[
0 1
1 0

]
with row and column indices in {i, j}. Let f(X) = [zrs]

n
r,s=1. As in the proof of

Assertion 2.8 (but using Eij + Eji in place of Eij) we show that zkk = 0 for all k, and

that zpq = 0 for all pairs {p, q}, p 6= q such that at least one of p and q does not belong

to {i, j}. Since f(X) is symmetric and f(X) 6= 0, the result of Step 3 follows. 2

Step 4. Again assuming Q = I, we prove the symmetric analog of Assertion 2.10: The
equality

f(µ(Eij + Eji)) = µ(Eij + Eji) (3.4)

holds for all µ > 0 and all pairs (i, j).

Proof of Step 4. For i 6= j, the result follows easily from Step 3: f(µ(Eij + Eji)) =

µ′(Eij + Eji) for some µ′ > 0, but the equality

r(f(µ(Eij + Eji))) = r(µ(Eij + Eji))

yields µ′ = µ, as claimed.

Next, consider f(µEii) = [zrs]
n
r,s=1 ∈ S+

n for fixed µ > 0 and fixed i ∈ {1, . . . , n}.

Then zii = µ and zjj = 0 for j 6= i by Step 1. Also, zpq = 0 for any p 6= q. Suppose it

is not true and zpq = zqp 6= 0 for some p 6= q. Then using the already proved part of

(3.4), we can choose ν > µ so that

r(f(µEii) + f(ν(Eqp + Epq)))

≥ r(µEii + zpq(Epq + Eqp) + f(ν(Eqp + Epq)))

= r(µEii + zpq(Epq + Eqp) + ν(Eqp + Epq))

=


zpq + ν if p 6= i, q 6= i,

1
2

(
µ +

√
µ2 + 4(zpq + ν)2

)
if p = i or q = i,

(3.5)

and

r(µEii + ν(Epq + Eqp)) =


ν if p 6= i, q 6= i,

1
2

(
µ +

√
µ2 + 4ν2

)
if p = i or q = i.

(3.6)
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But then the right hand side of (3.6) is smaller than that of (3.5), a contradiction with

(3.1). Hence f(µEii) = µEii. 2

Step 5. Conclusion of the proof that (assuming Q = I) f(A) = A for all A ∈ S+
n .

Proof of Step 5. Suppose A = [aij]
n
i,j=1 ∈ S+

n and f(A) = [zij]
n
i,j=1. As in the proof

of Assertion 2.11, we show that zjj = ajj for each j.

Next, we will prove the equalities aij = zij for i 6= j, following the (suitably modified)

arguments of the proof of Assertion 2.11. We use the notation introduced in the proof
of Assertion 2.11, with obvious additional properties that follow from symmetry; thus

Atr
12 = A21, Atr

22 = A22, etc. For simplicity, consider z12. First, suppose n = 2. Since

r(A + t(E21 + E12)) = [(a11 + a22) +
√

(a11 − a22)2 + 4(a12 + t)(a21 + t)]/2

and

r(f(A) + t(E21 + E12)) = [(z11 + z22) +
√

(z11 − z22)2 + 4(z12 + t)(z21 + t)]/2

are equal for all t > 0, and using a11 = z11, a22 = z22, a12 = a21, z12 = z21, we see that
a12 = z12.

Now suppose n > 2. We argue as in the proof of Assertion 2.11, replacing everywhere
E21 with E21 + E12, and using the partitions

A =

[
A11 A12

A21 A22

]
, f(A) =

[
Z11 Z12

Z21 Z22

]
,

where A21 = Atr
12 , Z21 = Ztr

12 , and Ajj, Zjj are symmetric for j = 1, 2,

Bt := A12(tIn−2 − A22)
−1A21 = [bij]

2
i,j=1 ∈ S+

2 ,

B̃t := Z12(tIn−2 − Z22)
−1Z21 = [̃bij]

2
i,j=1 ∈ S+

2 .

Then
r(A + νt(E21 + E12)) = r(f(A) + νt(E21 + E12)), (3.7)

on the other hand, r(A + νt(E21 + E12)) and r(f(A) + νt(E21 + E12)) are equal to the

quantities (2.16) and (2.17), respectively, with b12 replaced by b12 + νt, and with b̃12

replaced by b̃12 + νt. Let ε = a12 − z12 = a21 − z21 > 0. Then

a12 + b12 + a21 + b21 − (z12 + b̃12 + z21 + b̃21) >
1

3
ε > 0

for large t, a contradiction with (3.7). 2
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4 Numerical radius and numerical range preservers

It turns out that preservers of the numerical radius of the sum of nonnegative matrices
have more complicated form than the “standard” maps as in other results of this paper.

To state and prove the result, we need to work with the set Kn of n × n real
skew-symmetric matrices.

Theorem 4.1 Let f : M+
n → M+

n . Then

w(A + B) = w(f(A) + f(B)), ∀ A, B ∈ M+
n (4.1)

if and only if there is a permutation matrix P and a function g : M+
n → Kn satisfying

A + Atr − g(A) ∈ M+
n for each A such that

f(A) = P (A + Atr + g(A))P tr /2 for all A ∈ M+
n . (4.2)

Proof. Observe that we have

w(A) = r(A + Atr )/2, A ∈ Mn, (4.3)

because for any unit length vector x we can let |x| be obtained from x by replacing all

its entries by their absolute values so that

|x∗Ax| ≤ |x|tr A|x| = |x|tr (A + Atr )|x|/2 ≤ r(A + Atr )/2, (4.4)

and for x a nonnegative eigenvector corresponding to the largest eigenvalue of the

symmetric matrix A + Atr the equality prevails in (4.4). Thus, (4.1) reads

r(A + Atr + B + Btr ) = r(f(A) + f(A)tr + f(B) + f(B)tr ), ∀ A, B ∈ M+
n . (4.5)

With this observation, the “if” part of Theorem 4.1 is clear.

We focus on the “only if” part. First, note that w(f(A)+f(A)) = w(A+A) implies

that w(A) = w(f(A)) for all A ∈ M+
n . Also, w(A) = r(A) for all A ∈ S+

n .

Assertion 4.2 There is a permutation matrix P such that for any A ∈ S+
n we have

f(A) = P (A + AK)P tr

with AK ∈ Kn such that A + AK ∈ M+
n .

Proof. Consider the map f0 : S+
n → S+

n defined by f0(A) = [f(A)+f(A)tr ]/2. Then

r(f0(A) + f0(B)) = w(f(A) + f(B)) = w(A + B) = r(A + B) ∀A, B ∈ S+
n .

By Theorem 3.1, we see that f0 has the form A 7→ PAP tr for some permutation matrix
P , and Assertion 4.2 follows. 2
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Assertion 4.3 Let P be as in Assertion 4.2. For any A ∈ M+
n , we have f(A) =

P (A + Atr + AK)P tr /2 with AK ∈ Kn such that A + Atr + AK ∈ M+
n .

Proof. For simplicity, we may assume that P = I. Suppose A = A1 + A2 and

f(A) = Z1 + Z2 with (A1, A2), (Z1, Z2) ∈ S+
n ×Kn. Then for any B ∈ S+

n , we have

r(A1 + B) = w(A + B) = w(f(A) + f(B)) = r(Z1 +
1

2
(f(B) + f(B)tr )) = r(Z1 + B),

(4.6)

where the last but one equality follows from (4.3), and the last equality holds by

Assertion 4.2.
We now prove that

A1 = [aij]
n
i,j=1 = [zij]

n
i,j=1 = Z1.

First we prove aii = zii, and for simplicity assume i = 1. Then we argue as in the proof
of Assertion 2.11, using the partitions

A1 = A =

[
a11 A12

A21 A22

]
and Z1 =

[
z11 Z12

Z21 Z22

]
,

and the property (which follows from (4.6)) that

r(A1 + µE11) = r(Z1 + µE11), ∀ µ > 0.

For the proof that aij = zij, i 6= j, and assume for simplicity (i, j) = (1, 2), proceed in

the same way as in Step 5 of the proof of Theorem 3.1; here, we use the partitions

A1 =

[
A11 A12

A21 A22

]
, Z1 =

[
Z11 Z12

Z21 Z22

]
, A11, Z11 ∈ S+

2 ,

and the property that

r(A1 + ν(E12 + E21)) = r(Z1 + ν(E12 + E21)), ∀ ν > 0.

2

Now, define g : M+
n → Kn by g(A) = 2f(A)−P (A + Atr )P tr . In view of Assertion

4.3 we see that f has the desired form (4.2). 2

Theorem 4.4 Let f : M+
n → M+

n . Then

W (A + B) = W (f(A) + f(B)), ∀ A, B ∈ M+
n (4.7)
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if and only if there is a permutation matrix Q such that either

f(A) = Q−1AQ, ∀ A ∈ M+
n ,

or
f(A) = Q−1AtrQ, ∀ A ∈ M+

n .

In the proof the following well known facts will be used. See, for example, Theorem

1.3.6 and Theorem 1.5.2 in [9].

Lemma 4.5 (a) For n × n complex matrices X and Y , the equality W (X) = W (Y )

holds if and only if the largest eigenvalues of the two matrices eitX +e−itX∗ and eitY +

e−itY ∗ are always the same for every t ∈ [0, 2π).

(b) For a complex 2 × 2 matrix X, W (X) is an elliptical disk with foci at the

eigenvalues of X.

Proof of Theorem 4.4. The implication “if” is clear. (Note that W (X) = W (Xtr )

for any n× n complex matrix X.) We focus on the converse. Thus, suppose f satisfies

(4.7). Note that W (f(A) + f(A)) = W (A + A) implies that W (f(A)) = W (A) for all

A ∈ M+
n .

Clearly, since (4.7) holds, then (4.1) holds as well. By Theorem 4.1, f(A) has

symmetric part P (A + Atr )P tr /2 for each A ∈ M+
n . For simplicity, we may assume

that P = In. If A ∈ S+
n , then W (f(A)) = W (A) ⊆ R and hence f(A) = f(A)tr ∈ S+

n .

It follows that
f(A) = A, ∀ A ∈ S+

n . (4.8)

We divide the rest of the proof into two steps.

Step 1. One of the following holds:

(a) f(µEij) = µEij for all i 6= j and µ > 0, or

(b) f(µEij) = µEji for all i 6= j and µ > 0.

Proof of Step 1. Let f(E12) = X + Y with (X, Y ) ∈ S+
n × Kn. Then X =

(E12 + E21)/2 and X + Y ∈ M+
n , only the (1, 2) and (2, 1) entries of Y can be nonzero.

Since W (E12) = W (X + Y ), by Lemma 4.5(b) we see that X + Y is nilpotent. Thus,

Y = (E12−E21)/2 or (E21−E12)/2. Hence f(E12) = E12 or E21. We may assume that

the former case holds. Otherwise, replace f by the map X 7→ f(X)tr .

Now, we will show that (a) holds. First, we can use the argument in the preceding

paragraph to show that for µ > 0, either f(µE21) = µE21 or f(µE21) = µE12 holds.

Since
W (µE21 + E12) = W (f(µE21) + f(E12)) = W (f(µE21) + E12),
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Lemma 4.5(b) yields f(µE21) = µE21. Now, change the roles of E12 and E21 in the

above argument. We see that f(µE12) = µE12 for any µ > 0. We are done if n = 2.

Suppose n ≥ 3. We can show (as in the preceding paragraph) that for µ > 0 and

j > 2, either f(µE1j) = µE1j or f(µE1j) = µEj1. For simplicity, assume that j = 3.

Suppose f(µE13) = µE31. Let A = µ(E23 + E32) and B = µ(E12 + E13). Then

f(A) = A, f(B) + f(B)tr = B + Btr .

Since

B + Btr + f(B)− f(B)tr = f(B) + f(B)tr + f(B)− f(B)tr = 2f(B) ∈ M+
n ,

the skew-symmetric matrix f(B)−f(B)tr can have nonzero entries only in (1, 2), (1, 3),

(2, 1), (3, 1) positions, and the absolute value of these entries cannot exceed µ. On the

other hand, W (f(B)) = W (B), which is known to be the circular disk centered at zero

with radius µ/
√

2 (see [16] or [11, Theorem 4.1], for example), and therefore ±iµ
√

2 are

eigenvalues of the matrix f(B)− f(B)tr . It follows that the (1, 2), (2, 1), (1, 3), (3, 1)

entries of f(B)− f(B)tr have absolute values equal to µ, and f(B) must be one of the

following four matrices:

µ(E12 + E13), µ(E21 + E31), µ(E12 + E31), µ(E21 + E13).

Suppose the third or the fourth case holds. Then for X = A+B and Y = f(A)+f(B),

the largest eigenvalues of eiπ/3X + e−iπ/3Xtr and eiπ/3Y + e−iπ/3Y tr are 1.6861µ and

1.6007µ, respectively, by a Matlab computation. Thus, W (X) 6= W (Y ), which is a

contradiction with (4.7). Now, if f(B) = µ(E21 + E31), then for X = µE12 + B and

Y = µE12 + f(B), the largest eigenvalues of i(X − Xtr ) and i(Y − Y tr ) are µ and
√

5µ, respectively. Thus, W (µE12 + B) 6= W (µE12 + f(B)), a contradiction again.

So, we must have f(B) = µ(E12 + E13) = B. Now, consider X = µE13 + B and

Y = f(µE13) + B = µE31 + B. But then W (X) 6= W (Y ) (indeed, W (X) is a circular

disk but W (Y ) is not because Y has 3 distinct eigenvalues [11, Corollary 2.5]), a

contradiction. So f(µE13) = µE31 is impossible, and we see that f(µE13) = µE13

holds. Analogously we show that f(µE1j) = µE1j and f(µEj1) = µEj1 for all j > 2.

Now, consider i, j ≥ 2 and i 6= j. Repeat the arguments of the preceding paragraph
with E12, E21, E13, E31 replaced by Ei1, E1i, Eij, Eji, respectively, thereby proving the

equalities f(µEij) = µEij, µ > 0. 2

Step 2. Assume that condition (a) of Step 1 holds. Then f(A) = A for all A ∈ M+
n .

Proof of Step 2. Suppose f(A) = [zij]
n
i,j=1. Since f(A) + f(A)tr = A + Atr , we see

that zjj = ajj for all j = 1, . . . , n. Suppose

A− Atr = [xij]
n
i,j=1 and f(A)− f(A)tr = [yij]

n
i,j=1.
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Suppose there is xij > yij ≥ 0 for some i 6= j. (We may interchange the roles of A and

f(A) in the following if 0 ≤ xij < yij.) Say,

x12 > y12 ≥ 0. (4.9)

Then for sufficiently large µ > 0, one can use a similar argument in the proof of
Assertion 2.11 to show that

r
(
(A + µE12)− (A + µE12)

tr
)
6= r

(
f(A) + µE12)− (f(A) + µE12)

tr
)
. (4.10)

For the reader’s benefit, we provide details.

By Step 1 and (4.8) we know that f(µEij) = µEij for all pairs (i, j) and all µ > 0.

If n = 2, inequality (4.10) is immediate. So assume n ≥ 3. Partition:

A− Atr =

[
A11 A12

A21 A22

]
and f(A)− f(A)tr =

[
Z11 Z12

Z21 Z22

]
,

with
A11 = −Atr

11 ∈ M2, Z11 = −Ztr
11 ∈ M2, A21 = −Atr

12 , (4.11)

Z21 = −Ztr
12 , A22 = −Atr

22 ∈ Mn−2, Z22 = −Ztr
22 ∈ Mn−2. (4.12)

For sufficiently large t ∈ R and for µ > 0, consider

Bt := A12(itI − A22)
−1A21 =

[
b11 b12

b21 b22

]
and Ct,µ := A11 + (µE12 − µE21) + Bt.

Note that Bt and Ct,µ are complex skew-Hermitian matrices. Then Ct,µ has eigenvalues

(note that x11 = x22 = 0)[
b11 + b22 ±

√
(b11 − b22)2 + 4(x12 + b12 + µ)(x21 + b21 − µ)

]
/2. (4.13)

(Here and in the rest of the proof, for a negative number w, we denote
√

w = i|
√
−w|.)

Also, since Trace (Bt) is obviously an analytic function of t in a neighborhood of infinity,

we have
Trace (Bt) = iq(t),

where q(t) ∈ R has a fixed sign for all sufficiently large values of t; say q(t) ≥ 0. We

note also the formula

Bt =
∞∑

k=0

(it)−1A12((it)
−1A22)

kA21. (4.14)
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Formula (4.13) shows that there is (unique) νt > 0 such that the eigenvalue of Ct,νt

with the larger absolute value equals it; here we use the inequality q(t) ≥ 0. Moreover,

for any |λ| > t, λ ∈ C, we have

det(λI − (A− Atr )− νt(E12 − E21)) 6= 0 = det(itI − (A− Atr )− νt(E12 − E21))

(this follows from a Schur complement equality analogous to (2.15)). Hence,

t = r((A− Atr ) + νt(E12 − E21))

and

−i2r(A− Atr + νt(E12 − E21))

= b11 + b22 +
√

(b11 − b22)2 + 4(x12 + b12 + νt)(x21 + b21 − νt).

Similarly, if

B̃t := Z12(itIn−2 − Z22)
−1Z21 = [̃bij]

2
i,j=1 ∈ M2 and C̃t := Z11 + νt(E12 − E21) + B̃t,

then C̃t has eigenvalues[
(̃b11 + b̃22)±

√
(̃b11 − b̃22)2 + 4(y12 + b̃12 + νt)(y21 + b̃21 − νt)

]
/2.

So, for sufficiently large t, and hence for sufficiently large νt, we have

−i2r(f(A)− f(A)tr + νt(E12 − E21))

= b̃11 + b̃22 ±
√

(̃b11 − b̃22)2 + 4(y12 + b̃12 + νt)(y21 + b̃21 − νt). (4.15)

Since x12 > y12, x21 = −x12, y21 = −y12, and since the absolute values of bij and b̃ij,

i, j = 1, 2, are small in view of (4.14) and an analogous formula for B̃t, we see that the

right hand sides of (4.15) and (4.15) are not equal for sufficiently large νt. This proves

(4.10).

Now, in view of (4.10), we have

W (A + µE12) 6= W (f(A) + µE12) = W (f(A) + f(µE12)),

where the equality follows from Step 1. This is a contradiction with (4.7). So, A−Atr =

f(A)− f(A)tr , and we conclude that f(A) = A. 2
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5 Spectral norm preservers

In this section, we consider spectral norm preservers on nonnegative matrices. In
contrast with other sections in the paper, here it is natural to prove the result in the

framework of the set M+
m,n of m× n entrywise nonnegative matrices.

Theorem 5.1 Let f : M+
m,n −→ M+

m,n. Then

‖A + B‖ = ‖f(A) + f(B)‖, ∀ A, B ∈ M+
m,n (5.1)

if and only if there exist permutation matrices P ∈ M+
m and Q ∈ M+

n such that one of

the following holds.

(a) f(A) = PAQ for all A ∈ M+
m,n.

(b) m = n and f(A) = PAtrQ for all A ∈ M+
m,n.

Proof. We focus on the non-trivial “only if” part. Thus, assume (5.1) holds. We

may assume that m ≤ n and n ≥ 2 (The case m > n can treated similarly, and the

case m = n = 1 is trivial.) The following easy observation will be used repeatedly:

Observation 5.2 (a) For µ > 0, we have

1 + µ = ‖Eij + µEpq‖

if and only if (i, j) = (p, q).

(b) The equality
√

2 = ‖Eij + Epq‖ holds if and only if either i = p, j 6= q, or i 6= p,

j = q.

We divide the proof into several steps.

Step 1 For every µ > 0, there exist permutation matrices P ∈ M+
m and Q ∈ M+

n

(which a priori may depend on µ) such that

(a) Pf(µEii)Q = µEii for i = 1, . . . ,m, and

(b) for j = 1, . . . , n − m, the equalities Pf(µE1,m+j)Q = µE1,m+j hold, in case
n > m.

Proof of Step 1. Fix µ > 0, and let f(µEii) = Fii for 1 ≤ i ≤ m. The condition

(5.1) implies that ‖f(A)‖ = ‖A‖ for every A ∈ M+
m,n; in particular,

‖Fii‖ = µ. (5.2)

Since Fii is entrywise nonnegative, there exist entrywise nonnegative vectors of unit
length xi ∈ Rm such that

‖xtr
i Fii‖ = µ, i = 1, ...,m.
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For any i 6= j, since

µ2 = ‖µEii + µEjj‖2 = ‖Fii + Fjj‖2

≥ xtr
i (Fii + Fjj)(Fii + Fjj)

tr xi

≥ xtr FiiF
tr
ii xi = µ2,

we see that xtr
i (FjjF

tr
jj )xi = 0. So, xi is an eigenvector of FjjF

tr
jj corresponding to the

(smallest) eigenvalue 0. Recall that xj is the eigenvector of FjjF
tr
jj corresponding to

the (largest) eigenvalue µ2. So, xi and xj are orthogonal. As a result, {x1, . . . , xm}
is an orthonormal basis of Rm. Since x1, . . . , xm are nonnegative, we can conclude
that x1, . . . , xm is a permutation of e1, ...., em. We may replace f by a map of the

form A 7→ P (f(A)) for a suitable permutation matrix P and assume that xj = ej.

Then etr
i FjjF

tr
jj ei = 0 (i 6= j). It follows that the (i, i) entry of FjjF

tr
jj is zero for all

i 6= j. Since FjjF
tr
jj is positive semidefinite of norm µ2, we see that FjjF

tr
jj = µ2Ejj.

As a result, Fjj = µejv
tr
j for some nonnegative vector vj ∈ Rn of unit length, for

j = 1, 2, . . . ,m. Moreover, the equation ‖Fii +Fjj‖ = µ for i 6= j implies that vtr
i vj = 0

for i 6= j, i.e., the vectors v1, . . . , vm have positive entries at different positions.
If m = n, then the vectors v1, . . . , vm are a permutation of e1, . . . , em, and the

proof of Step 1 is complete. Suppose n > m. Consider F (µE1j) = F1j for j > m.

Applying the preceding argument to F1j, F22, . . . , Fmm, we see that F1j = µe1w
tr
j for

some nonnegative unit length vector wj ∈ Rn such that wj and vk has positive entries

at different positions for any k = 2, . . . ,m. Note that (for j > m)

2µ2 = ‖µE11 + µE1j‖2 = ‖F11 + F1j‖2 = ‖e1(µvtr
1 + µwtr

j )‖2

= ‖µvtr
1 + µwtr

j ‖2 = (µv1 + µwj)
tr (µv1 + µwj) = 2µ2 + 2wtr

j v1,

hence wj and v1 also have positive entries at different positions. Applying the same

reasoning to µE1,j1 and µE1,j2 , (j1, j2 > m), we see that also wj1 and wj2 have positive

entries at different positions. Now it follows that each of the vectors

v1, . . . , vm, w1, . . . , wn−m (5.3)

has exactly one positive entry and the positions of these positive entries are different

for different vectors in the set (5.3). Thus, the set (5.3) is a permutation of e1, . . . , en,

and the results of Step 1 follows. 2

Step 2 There exist permutation matrices P ∈ M+
m and Q ∈ M+

n such that

(a) Pf(µEii)Q = µEii for i = 1, . . . ,m and all µ > 0, and
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(b) for j = 1, . . . , n−m, the equalities Pf(µE1,m+j)Q = µE1,m+j hold for all µ > 0,

in case n > m.
Proof of Step 2. By Step 1, there exist permutations P (µ) and Q(µ) such that

P (µ)f(µEii)Q(µ) = µEii, i = 1, . . . ,m,

and
P (µ)f(µE1,m+j)Q(µ) = µE1,m+j, j = 1, . . . , n−m

(if m < n).

We may assume that P (1) = Im and Q(1) = In. Otherwise, replace f by the map

of the form X 7→ P (1)−1f(X)Q(1)−1. Hence, if

S = {Ejj : 1 ≤ j ≤ n} ∪ {E1j : m < j ≤ n},

then f(X) = X for any X ∈ S. Moreover, for any µ > 0 and X ∈ S, f(µX) =

P (µ)µXQ(µ) = µEpq for some (p, q) pair. Since

1 + µ = ‖X + µX‖ = ‖f(X) + f(µX)‖ = ‖X + f(µX)‖,

we see (using Observation 5.2) that f(µX) = µX.
2

Step 3. Assume that P = I and Q = I in Step 2. Then one of the two following
possibilities holds:

(a) f(µEij) = µEij for all µ > 0 and (i, j) pairs,

(b) m = n and f(µEij) = µEji for all µ > 0 and (i, j) pairs.

Proof of Step 3. We may suppose i 6= j (the cases when i = j are taken care of in

Step 2). Here 1 ≤ i ≤ m; 1 ≤ j ≤ n.

First, we prove Step 3 for the case m = 1. By Step 2, we have f(µE11) = µE11 for

all µ > 0. If f([x1, x2, . . . , xn]) = [z1, . . . , zn], then

(µ+x1)
2+

n∑
j=2

x2
i = ‖µE11+[x1, x2, . . . , xn]‖2 = ‖µE11+[z1, . . . , zn]‖2 = (µ+z1)

2+
n∑

j=2

z2
i

for all µ > 0 which implies x1 = z1. In particular, f maps the set {[a1, . . . , an] ∈ M+
1,n :

a1 = 0} to itself, and using the induction on n, we obtain the equalities f(µE1j) = µE1j

for all µ > 0 and j = 2, 3, . . . , n. From now on in the proof of Step 3 we assume m ≥ 2.

Next, for any pair (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, we can find permutation matrices

R (of size m ×m) and S (of size n × n) such that Eij = RE11S. Then, applying the
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result of Step 2 to the map f̂(X) = f(RXS), X ∈ M+
m,n, we see that f(µEij) = µEpq

for some index pair (p, q) which is independent of µ. It remains to show that

(a) (p, q) always equals (i, j), or

(b) m = n and (p, q) always equals (j, i).

To this end, consider f(Eij) with i 6= j. By Step 1,

‖f(Eij) + Ekk‖ = ‖f(Eij) + f(Ekk)‖ = ‖Eij + Ekk‖ =
√

2

for k ∈ {i, j}, j ≤ m. By Observation 5.2 (b), we see that

f(Eij) = Eij or f(Eij) = Eji. (5.4)

Consider f(E12). If n > m, then

√
2 = ‖E12 + E1,m+1‖ = ‖f(E12) + E1,m+1‖.

Thus, f(E12) = E12. Suppose m = n and f(E12) = E21. We may replace f by the map

A 7→ f(A)tr and assume that f(E12) = E12.

Assuming that f(E12) = E12, we can easily shows that f(E1j) = E1j for all j =

3, . . . ,m, because

√
2 = ‖E12 + E1j‖ = ‖f(E12) + f(E1j)‖ = ‖E12 + f(E1j)‖,

where (5.4) was used. Note that f(E1j) = E1j for j > m by Step 1. Recall that for

i = 3, . . . ,m, we have f(Ei1) = Ei1 or f(Ei1) = E1i. Since

1 = ‖E1i + Ei1‖ = ‖f(E1i) + f(Ei1)‖ = ‖E1i + f(Ei1)‖,

we see that f(Ei1) = Ei1 for i = 2, . . . ,m.

Now, for any Eij for 2 ≤ i, j ≤ m, since

√
2 = ‖E1j + Eij‖ = ‖f(E1j) + f(Eij)‖ = ‖E1j + f(Eij)‖,

and using Observation 5.2, we see that f(Eij) = Eij. For Eij with i ≥ 2 and j > m,

we have √
2 = ‖E1j + Eij‖ = ‖f(E1j) + f(Eij)‖ = ‖E1j + Epq‖,

where the pair (p, q) is such that f(Eij) = Epq, and

√
2 = ‖Eir + Eij‖ = ‖Eir + Epq‖, r = 1, 2, . . . m,
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so by Observation 5.2 we must have (p, q) = (i, j). So, for any (r, s) pair, we have

f(Ers) = Ers. 2

Step 4. Assume that (a) in Step 3 holds, and assume also P = I, Q = I. Then

f(A) = A for all A ∈ M+
m,n.

Proof of Step 4. Let A = [aij] and f(A) = [zij] in M+
m,n. We show that aij = zij for

each (i, j) pair. Arguing by contradiction, assume aij 6= zij for some pair (i, j). Say,

(i, j) = (1, 1) (for other pairs (i, j) the proof is exactly the same). Suppose a11 > z11

(if the opposite inequality holds, interchange the roles of A and f(A) in the subsequent

argument). Then for µ > 0,

(A + µE11)
∗(A + µE11) = µ2E11 + µ(A∗E11 + E11A) + A∗A.

Note that the largest eigenvalue of Ã = µ2E11 + µ(A∗E11 + E11A) equals

[µ(µ + 2a11) +
√

µ2(µ + 2a11)2 + µ2α]/2 with α = 4
n∑

j=2

a2
1j.

Similarly, we have

(f(A) + µE11)
∗(f(A) + µE11) = µ2E11 + µ(f(A)∗E11 + E11f(A)) + f(A)∗f(A)

and the largest eigenvalue of Z̃ = µ2E11 + µ(f(A)∗E11 + E11f(A)) equals

[µ(µ + 2z11) +
√

µ2(µ + 2z11)2 + µ2β]/2 with β = 4
n∑

j=2

z2
1j.

Denote by λ1(X) the largest eigenvalue of X ∈ S+
n . Since a11 > z11, there is a sufficiently

large µ > 0 such that

µ(µ + 2a11) > µ(µ + 2z11) + 2λ1(f(A)∗f(A))

and
(µ + 2a11)

2 + α ≥ (µ + 2z11)
2 + β.

Consequently,

λ1((µE11 + A)∗(µE11 + A)) ≥ λ1(Ã)

> λ1(Z̃) + λ1(f(A)∗f(A)) ≥ λ1((µE11 + f(A))∗(µE11 + f(A))).

It follows that ‖A+µE11‖ > ‖f(A)+µE11‖, which is the desired contradiction, because

by Step 3 we have f(µE11) = µE11. 2
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