A short proof of interlacing inequalities on normalized Laplacians

Chi-Kwong Li ${ }^{1}$
Department of Mathematics, College of William and Mary, Williamsburg, VA 23187-8795, USA.
E-mail: ckli@math.wm.edu

Abstract

A short proof of interlacing inequalities on normalized Laplacians is given.

2000 Mathematics Subject Classification. 15A42.
Key words and phrases. Normalized Laplacians, graphs, interlacing inequalities, eigenvalues.

1 Introduction

Let G be simple graph with adjacency matrix $A=A(G)$ and Laplacian $L=L(G)$. Then $L=D-A$ with $D=D(G)=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ such that d_{1}, \ldots, d_{n} are the degrees of the vertices of G.

The normalized Laplacian of G is defined as $\mathcal{L}(G)=T L T$, where T is the diagonal matrix $\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right)$ such that $t_{j}=1 / \sqrt{d_{j}}$ if $d_{j} \neq 0$ and $t_{j}=1$ otherwise. Normalized Laplacians have many interesting properties and are very useful in studying graphs; see [2] and its references. In this note, we give a short proof of the following interesting result obtained in [1] recently.
Theorem Suppose H is a connected graph obtained from the graph G by removing an edge. Let $\mathcal{L}(G)$ and $\mathcal{L}(H)$ have eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$ and $\mu_{1} \geq \cdots \geq \mu_{n}$, respectively. Set $\lambda_{0}=2$ and $\lambda_{n+1}=0$. Then $\lambda_{j-1} \geq \mu_{j} \geq \lambda_{j+1}$ for $j=1, \ldots, n$.

The proof in [1, Section 3] used the Courant-Fischer theorem in the context of harmonic eigenfunctions and some intricate calculation. Ours depends on the following elementary facts and some simple 2×2 (block) matrix manipulations.

1. The eigenvalues of $\mathcal{L}(G)$ lies in $[0,2]$. [To see this, observe that $\mathcal{L}(G)$ and $T^{-1} \mathcal{L}(G) T$ have the same eigenvalues, and each eigenvalue ξ of the latter matrix satisfies $|\xi-1| \leq 1$ by the Gershgorin theorem.]
2. For any symmetric matrix A and unit vector v, the value $v^{t} A v$ lies between the smallest and largest eigenvalues of A. [This is the Rayleigh principle.]

2 Proof of Theorem

We may relabel the vertices and assume that H is obtained from G by removing the edge joining vertex 1 and vertex 2. Let $L(G)=\left(\begin{array}{cc}X & Y \\ Y^{t} & Z\end{array}\right)$. Suppose $D_{1}=\operatorname{diag}\left(1 / \sqrt{d_{1}}, 1 / \sqrt{d_{2}}\right), \widetilde{D}_{1}=$ $\operatorname{diag}\left(1 / \sqrt{d_{1}-1}, 1 / \sqrt{d_{2}-1}\right)$, and $D_{2}=\operatorname{diag}\left(1 / \sqrt{d_{3}}, \ldots, 1 / \sqrt{d_{n}}\right)$. Then

$$
\mathcal{L}(G)=\left(\begin{array}{cc}
D_{1} X D_{1} & D_{1} Y D_{2} \\
D_{2} Y^{t} D_{1} & D_{2} Z D_{2}
\end{array}\right) \quad \text { and } \quad \mathcal{L}(H)=\left(\begin{array}{cc}
I_{2} & \widetilde{D}_{1} Y D_{2} \\
D_{2} Y^{t} \widetilde{D}_{1} & D_{2} Z D_{2}
\end{array}\right) .
$$

[^0]To get the desired conclusion, we show that for any $\mu \in\left(\mu_{n}, \mu_{1}\right)$ such that $D_{2} Z D_{2}-\mu I_{n-2}$ is invertible,
(a) if $\mathcal{L}(H)-\mu I_{n}$ has p positive eigenvalues then $\mathcal{L}(G)-\mu I_{n}$ has at least $p-1$ positive eigenvalues;
(b) if $\mathcal{L}(H)-\mu I_{n}$ has q negative eigenvalues then $\mathcal{L}(G)-\mu I_{n}$ has at least $q-1$ negative eigenvalues. It will then follow that $\lambda_{j-1}-\mu_{j} \geq 0$ and $\mu_{j}-\lambda_{j+1} \geq 0$ for any $j=1, \ldots, n$. To prove (a) and (b), let $\widetilde{Z}=D_{2} Z D_{2}-\mu I_{n-2}$,

$$
S=\left(\begin{array}{cc}
I_{2} & -D_{1} Y D_{2} \widetilde{Z}^{-1} \\
0 & I_{n-2}
\end{array}\right) \quad \text { and } \quad \widetilde{S}=\left(\begin{array}{cc}
I_{2} & -\widetilde{D}_{1} Y D_{2} \widetilde{Z}^{-1} \\
0 & I_{n-2}
\end{array}\right)
$$

Furthermore, set

$$
C=Y D_{2} \widetilde{Z}^{-1} D_{2} Y^{t}, \quad B=D_{1} X D_{1}-\mu I_{2}-D_{1} C D_{1} \quad \text { and } \quad \widetilde{B}=I_{2}-\mu I_{2}-\widetilde{D}_{1} C \widetilde{D}_{1}
$$

Then

$$
S\left(\mathcal{L}(G)-\mu I_{n}\right) S^{t}=B \oplus \widetilde{Z} \quad \text { and } \quad \widetilde{S}\left(\mathcal{L}(H)-\mu I_{n}\right) \widetilde{S}^{t}=\widetilde{B} \oplus \widetilde{Z}
$$

Evidently, condition (a) fails if and only if \widetilde{B} has two positive eigenvalues but B has none; condition (b) fails if and only if \widetilde{B} has two negative eigenvalues but B has none. To show that these undesirable conditions cannot happen, observe that

$$
\widetilde{D}_{1}^{-1} \widetilde{B} \widetilde{D}_{1}^{-1}=(1-\mu) \operatorname{diag}\left(d_{1}-1, d_{2}-1\right)-C
$$

and

$$
D_{1}^{-1} B D_{1}^{-1}=\widetilde{D}_{1}^{-1} \widetilde{B} \widetilde{D}_{1}^{-1}+\left(\begin{array}{cc}
1-\mu & -1 \\
-1 & 1-\mu
\end{array}\right)
$$

By fact (1), we see that $\mu \in\left(\mu_{2}, \mu_{1}\right) \subseteq(0,2)$, and thus $\left(\begin{array}{cc}1-\mu & -1 \\ -1 & 1-\mu\end{array}\right)$ has eigenvalues $\eta_{1}>0>\eta_{2}$, say with unit eigenvectors v_{1} and v_{2}, respectively.

Now, if \widetilde{B} has two positive eigenvalues, then so has $\tilde{D}_{1}^{-1} \widetilde{B} \tilde{D}_{1}^{-1}$. Using (\dagger) and fact (2) on $\widetilde{D}_{1}^{-1} \widetilde{B} \widetilde{D}_{1}^{-1}$, we have

$$
v_{1}^{t} D_{1}^{-1} B D_{1}^{-1} v_{1}=v_{1}^{t} \widetilde{D}_{1}^{-1} \widetilde{B} \widetilde{D}_{1}^{-1} v_{1}+\eta_{1}>0
$$

By (2) again, we see that $D_{1}^{-1} B D_{1}^{-1}$ has at least one positive eigenvalue, and so has B.
If \widetilde{B} has two negative eigenvalues, then so has $\tilde{D}_{1}^{-1} \widetilde{B} \tilde{D}_{1}^{-1}$. Using (\dagger) and fact (2) on $\widetilde{D}_{1}^{-1} \widetilde{B} \widetilde{D}_{1}^{-1}$, we have

$$
v_{2}^{t} D_{1}^{-1} B D_{1}^{-1} v_{2}=v_{2}^{t} \widetilde{D}_{1}^{-1} \widetilde{B} \widetilde{D}_{1}^{-1} v_{2}+\eta_{2}<0
$$

By (2), $D_{1}^{-1} B D_{1}^{-1}$ has at least one negative eigenvalue, and so has B.

References

[1] G. Chen, G. Davis, F. Hall, Z. Li, K. Patel, and M. Stewart, An interlacing result on normalized Laplacians, SIAM J. on Discrete Math. 18 (2004), 353-361.
[2] F.R.K. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, 92, Amer. Math. Soc., Providence, 1997.

[^0]: ${ }^{1} \mathrm{Li}$ is an honorary professor of the Heilongjiang University, and also an honorary professor of the University of Hong Kong. This research was partially supported by a USA NSF grant and a HK RCG grant.

