A short proof of interlacing inequalities on normalized Laplacians

CHI-KWONG LI¹ Department of Mathematics, College of William and Mary, Williamsburg, VA 23187-8795, USA. E-mail: ckli@math.wm.edu

Abstract

A short proof of interlacing inequalities on normalized Laplacians is given.

2000 Mathematics Subject Classification. 15A42. Key words and phrases. Normalized Laplacians, graphs, interlacing inequalities, eigenvalues.

1 Introduction

Let G be simple graph with adjacency matrix A = A(G) and Laplacian L = L(G). Then L = D - Awith $D = D(G) = \text{diag}(d_1, \ldots, d_n)$ such that d_1, \ldots, d_n are the degrees of the vertices of G.

The normalized Laplacian of G is defined as $\mathcal{L}(G) = TLT$, where T is the diagonal matrix diag (t_1, \ldots, t_n) such that $t_j = 1/\sqrt{d_j}$ if $d_j \neq 0$ and $t_j = 1$ otherwise. Normalized Laplacians have many interesting properties and are very useful in studying graphs; see [2] and its references. In this note, we give a short proof of the following interesting result obtained in [1] recently.

Theorem Suppose H is a connected graph obtained from the graph G by removing an edge. Let $\mathcal{L}(G)$ and $\mathcal{L}(H)$ have eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$ and $\mu_1 \geq \cdots \geq \mu_n$, respectively. Set $\lambda_0 = 2$ and $\lambda_{n+1} = 0$. Then $\lambda_{j-1} \geq \mu_j \geq \lambda_{j+1}$ for $j = 1, \ldots, n$.

The proof in [1, Section 3] used the Courant-Fischer theorem in the context of harmonic eigenfunctions and some intricate calculation. Ours depends on the following elementary facts and some simple 2×2 (block) matrix manipulations.

- 1. The eigenvalues of $\mathcal{L}(G)$ lies in [0, 2]. [To see this, observe that $\mathcal{L}(G)$ and $T^{-1}\mathcal{L}(G)T$ have the same eigenvalues, and each eigenvalue ξ of the latter matrix satisfies $|\xi 1| \leq 1$ by the Gershgorin theorem.]
- 2. For any symmetric matrix A and unit vector v, the value $v^t A v$ lies between the smallest and largest eigenvalues of A. [This is the Rayleigh principle.]

2 Proof of Theorem

We may relabel the vertices and assume that H is obtained from G by removing the edge joining vertex 1 and vertex 2. Let $L(G) = \begin{pmatrix} X & Y \\ Y^t & Z \end{pmatrix}$. Suppose $D_1 = \text{diag}(1/\sqrt{d_1}, 1/\sqrt{d_2}), \widetilde{D}_1 = \text{diag}(1/\sqrt{d_1-1}, 1/\sqrt{d_2-1}), \text{ and } D_2 = \text{diag}(1/\sqrt{d_3}, \dots, 1/\sqrt{d_n})$. Then

$$\mathcal{L}(G) = \begin{pmatrix} D_1 X D_1 & D_1 Y D_2 \\ D_2 Y^t D_1 & D_2 Z D_2 \end{pmatrix} \quad \text{and} \quad \mathcal{L}(H) = \begin{pmatrix} I_2 & \widetilde{D}_1 Y D_2 \\ D_2 Y^t \widetilde{D}_1 & D_2 Z D_2 \end{pmatrix}.$$

¹Li is an honorary professor of the Heilongjiang University, and also an honorary professor of the University of Hong Kong. This research was partially supported by a USA NSF grant and a HK RCG grant.

To get the desired conclusion, we show that for any $\mu \in (\mu_n, \mu_1)$ such that $D_2ZD_2 - \mu I_{n-2}$ is invertible,

- (a) if $\mathcal{L}(H) \mu I_n$ has p positive eigenvalues then $\mathcal{L}(G) \mu I_n$ has at least p-1 positive eigenvalues;
- (b) if $\mathcal{L}(H) \mu I_n$ has q negative eigenvalues then $\mathcal{L}(G) \mu I_n$ has at least q-1 negative eigenvalues.

It will then follow that $\lambda_{j-1} - \mu_j \ge 0$ and $\mu_j - \lambda_{j+1} \ge 0$ for any $j = 1, \ldots, n$. To prove (a) and (b), let $\tilde{Z} = D_2 Z D_2 - \mu I_{n-2}$,

$$S = \begin{pmatrix} I_2 & -D_1 Y D_2 \widetilde{Z}^{-1} \\ 0 & I_{n-2} \end{pmatrix} \quad \text{and} \quad \widetilde{S} = \begin{pmatrix} I_2 & -\widetilde{D}_1 Y D_2 \widetilde{Z}^{-1} \\ 0 & I_{n-2} \end{pmatrix}$$

Furthermore, set

$$C = Y D_2 \tilde{Z}^{-1} D_2 Y^t$$
, $B = D_1 X D_1 - \mu I_2 - D_1 C D_1$ and $\tilde{B} = I_2 - \mu I_2 - \tilde{D}_1 C \tilde{D}_1$.

Then

$$S(\mathcal{L}(G) - \mu I_n)S^t = B \oplus \widetilde{Z}$$
 and $\widetilde{S}(\mathcal{L}(H) - \mu I_n)\widetilde{S}^t = \widetilde{B} \oplus \widetilde{Z}.$

Evidently, condition (a) fails if and only if \tilde{B} has two positive eigenvalues but B has none; condition (b) fails if and only if \tilde{B} has two negative eigenvalues but B has none. To show that these undesirable conditions cannot happen, observe that

$$\widetilde{D}_1^{-1}\widetilde{B}\widetilde{D}_1^{-1} = (1-\mu)\text{diag}(d_1-1, d_2-1) - C$$

and

$$D_1^{-1}BD_1^{-1} = \tilde{D}_1^{-1}\tilde{B}\tilde{D}_1^{-1} + \begin{pmatrix} 1-\mu & -1\\ -1 & 1-\mu \end{pmatrix}$$
(†).

By fact (1), we see that $\mu \in (\mu_2, \mu_1) \subseteq (0, 2)$, and thus $\begin{pmatrix} 1-\mu & -1 \\ -1 & 1-\mu \end{pmatrix}$ has eigenvalues $\eta_1 > 0 > \eta_2$, say with unit eigenvectors v_1 and v_2 , respectively.

Now, if \tilde{B} has two positive eigenvalues, then so has $\tilde{D}_1^{-1}\tilde{B}\tilde{D}_1^{-1}$. Using (†) and fact (2) on $\tilde{D}_1^{-1}\tilde{B}\tilde{D}_1^{-1}$, we have

$$v_1^t D_1^{-1} B D_1^{-1} v_1 = v_1^t \tilde{D}_1^{-1} \tilde{B} \tilde{D}_1^{-1} v_1 + \eta_1 > 0.$$

By (2) again, we see that $D_1^{-1}BD_1^{-1}$ has at least one positive eigenvalue, and so has B.

If \tilde{B} has two negative eigenvalues, then so has $\tilde{D}_1^{-1}\tilde{B}\tilde{D}_1^{-1}$. Using (†) and fact (2) on $\tilde{D}_1^{-1}\tilde{B}\tilde{D}_1^{-1}$, we have

$$v_2^t D_1^{-1} B D_1^{-1} v_2 = v_2^t \widetilde{D}_1^{-1} \widetilde{B} \widetilde{D}_1^{-1} v_2 + \eta_2 < 0.$$

By (2), $D_1^{-1}BD_1^{-1}$ has at least one negative eigenvalue, and so has B.

References

- G. Chen, G. Davis, F. Hall, Z. Li, K. Patel, and M. Stewart, An interlacing result on normalized Laplacians, SIAM J. on Discrete Math. 18 (2004), 353-361.
- [2] F.R.K. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, 92, Amer. Math. Soc., Providence, 1997.