RAIRO Operations Research
RAIRO Oper. Res33 (1999) 509-524

EXTENSION OF STOCHASTIC DOMINANCE
THEORY TO RANDOM VARIABLES (*)

by Chi-Kwong L (*) and Wing-Keung Wne (>**)

Communicated by Jean-Yvesrdray

Abstract.— In this paper, we develop some stochastic dominance theorems for the location and
scale family and linear combinations of random variables and for risk lovers as well as risk averters
that extend results in Hadar and Russell (1971) and Tesfatsion (1976). The results are discussed
and applied to decision-making.
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1. INTRODUCTION

There are three major types of persons: risk averters, risk neutrals and risk
lovers. Their corresponding utility functions are concave, linear and convex;
all are increasing functions. Many authors have studied the selection rules
for risk averters. Markowitz (1952, 1970) and Tobin (1958, 1965) proposed
the mean-variance selection rules for risk averters. Quirk and Saposnik
(1962), Fishburn (1964, 1974), Hadar and Russell (1969, 1971), Hanoch
and Levy (1969), Whitmore (1970), Rothschild and Stiglitz (1970, 1971),
Tesfatsion (1976), Bawa (1975), and Baetal. (1985) studied the stochastic
dominance rules for risk averters. Meyer (1977) developed some results of
second degree stochastic dominance with respect to a function. He discussed
the stochastic dominance for risk lovers as well as risk averters. Wong and Li
(1999) extended Fishburn’s convex stochastic dominance theorem to include
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any distribution function and extended the results for risk lovers as well
as risk averters.

In this paper we develop some stochastic dominance theorems for the
location and scale family of random variables and linear combinations of
random variables and for risk lovers as well as risk averters that extend
results in Hadar and Russell (1971) and Tesfatsion (1976). We call stochastic
dominance for risk lovers descending stochastic dominance (DSD). To avoid
confusion, we call stochastic dominance for risk averters ascending stochastic
dominance (ASD). We note that stochastic dominance for risk neutrals is
a special case in the theory of stochastic dominance for risk averters or
risk lovers. We also remark that Stoyan (1983) developed some results in
ascending and descending stochastic dominances although he did not interpret
the results in selecting rules for risk averters and risk lovers. Instead of using
the terms ascending and descending stochastic dominances, he used concave
and convex ordings.

We begin by introducing notation and definitions in Section 2. Section 3
discusses some basic properties for the stochastic dominance theory. Section 4
concerns the study of location and scale family of distributions and the
properties of non-negative combinations of random variables for ASD and
DSD. In Section 5, the stochastic dominance theories for risk lovers and risk
averters are compared and applied to decision-making.

2. DEFINITIONS AND NOTATIONS

Denote byR the set of real numbers and Btbe the set of extended real
numbers. Suppose th&t = [a,b] is a subset oR in which « andb can be
finite or infinite. LetB be the Borelo-field of 2 and x be ameasureon
(92, B). The functionst” and F” of the measure: are defined as:

F(z)=pla,z] and FP(z)=plz,b] foral zeQ. (1)

The function F is called arobability distribution functiorand . is called a
probability measuref 1(2) = 1. We remark that in this paper the definition

of F' which takes care of both ascending and descending stochastic dominance
is different from the “traditional” definition off’. By the basic probability
theory, for any random variabl& and for probability measuré’, there
exists a unique induced probability measpren (2, B) and the probability
distribution functionF' such thatF' satisfies (1) and

w(B)=P(X~Y(B)=P(XeB) forany BeB.
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An integral written in the form of [, f(¢t)du(t) or [, f(t)dF(t) is a
Lebesgue integral for any integrable functigiit). If the integral has the
same value for any set which is equal to(c, d], [¢,d) or [¢,d], then we
use the notatiorjf(fl f(t)d u(t) instead. In addition, if. is a Borel measure
with p(c,d] = d — c for any ¢ < d, then we write the integral aﬁcd f(t)dt.

The Lebesgue integra],fcd f(t)dt is equal to the Riemann integral ff is
bounded and continuous almost everywherg@n]; see Theorem 1.7.1 in
Ash (1972).

We consider random variables, denoted XyY, - - -, defined onf). The
probability distribution functions o andY are F' andG respectively. The
following notation will be used throughout this paper:

b
pr = px = E(X) :/ xdF(x),

a

b
je = py = BE(Y) = / 2 dG(z);

Fi'(z) = F(x), Gi(z)=G(x), H{(z)=Ff(z) - G{ (a); (2)
FP(2) = FP(2); GP(2) = GP(x); HP(2) = F(2) — GF (w);

(:l?) / n— 1(J d’ya Mn €T / n—1 ']/ d1
n=223; andM = F,G, or H.

Throughout this paper, all functions are assumed to be measureable, all
random variables are assumed to satisfy:

Fi{(a)=0 and FP(b) =0. (3)

Condition (3) will hold for any random variable except a random variable
with positive probability at the points negative infinity or positive infinity.

We next define the first, second and third order ascending stochastic
dominances which are applied to risk averters; and then define the first,
second and third order descending stochastic dominances which are applied
to risk lovers.

Derinimion 1: Given two random variableX andY with F and G as their
respective probability distribution functions is at least as large a¥” and

vol. 33, 1f 4, 1999



512 C.-K. LI and W.-K. WONG

I is at least as large a7 in the sense of:
a) FASD, denoted by =1 Y or F =1 G, ifand only if F{* (z) < G5'(x)
for eachx in [a,b];
b) SASD, denoted hy >; Y or F =3 G, ifand only if /' (z) < G3'(x)
for eachx in [a,b];
c) TASD, denoted by =3 Y or F' =3 G, ifand only if F5*(x) < G3'(x)
for eachz in [a,b] and ur > ug,
where FASD, SASD and TASD stand for first, second and third order
ascending stochastic dominance respectively.
If in addition there exists: in [a, b] such thatFi*(z) < Gi(x) fori = 1,2
and 3, we say thaK is larger thanY and F' is larger thanG in the sense
of SFASD, SSASD and STASD, denotedhy; Y or F =1 G, X =2 Y or
F =5 G,and X =3 Y or F =3 G respectively, where SFASD, SSASD, and
STASD stand for strictly first, second and third order ascending stochastic
dominance respectively.

Deriniion 2: Given two random variableX” andY with F' and G as their
respective probability distribution functionX’ is at least as large a¥” and
F is at least as large a7 in the sense of:
a) FDSD, denoted by’ =! Y or F =! G, ifand only if 7P (z) > GP ()
for eachz in [a,b];
b) SDSD, denoted b¥ >2 Y or F =2 G, ifand only if 7 (z) > G (x)
for eachz in [a,b];
c) TDSD, denoted by =3 Y or F =3 G, ifand only if P (z) > G2 ()
for eachz in [a,b] and ur > pg, where FDSD, SDSD, and TDSD
stand for first, second and third order descending stochastic dominance
respectively.
If in addition there existg in [a, b] such thatF” (z) > GP(z) fori = 1,2
and 3, we say thak is larger thanY and F' is larger thanG in the sense of
SFDSD, SSDSD, and STDSD, denotedtby-! Y or F =' G, X =2 Y or
F>?@G,andX =3 Y or F =3 @ respectively, where SFDSD, SSDSD, and
STDSD stand for strictly first, second and third order descending stochastic
dominance respectively.

We remark that ifF =; G or F =; G, then —H;‘ is a distribution
function for anyj > 4, and there exists a unique measuyresuch that
pla, ] = —H:*(x) for anyz € [a,b]. Similarly, if F =' G or F ' G, then
HP is distribution function for anyj > i. HP and H:* are defined in (2).
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DEeriNITION 3:

a) Forn = 1,2,3, U2, U4, UP and USP are sets of utility functions
u such that.

UAUSYY = {u: (-1)T D > (>)0,i=1,---,n},
UP(WUSPY = {u:ulD > (3)0,i=1,---,n}

where (") is the " derivative of the utility functionu.
b) The extended sets of utility functions are defined as follows:

UEAUES*) = {u : u is (strictly) increasing},

UEAWUES4) = {u is increasing and (strictly) concavig

UED(UESD

= {u € Uy : o is (strictly) convex}, and

) =
) =
U¥ ( D) ={uis mcreasmg and (strictly) conve
o =
) = {u € Uy” : 4/ is (strictly) convex}.

Note that in Definition 3 “increasing” means “nondecreasing” and
“decreasing” means “nonincreasing”. We also remark that in Definition 3,
U = UP andUP4 = UPP . We will use two notatiorU7P andU*P in

this paper such thalVED = UEA andUFSP = UES4 |1t is known E.g.
see Th. 11C in Roberts and Varberg 1973) than UF4, UFS4, UFP

UESP | andu/ in UFA, UFS4, UEP or UFSP are differentiable almost
everywhere and their derivatives are continuous almost everywhere.

An individual chooses betwedn andG in accordance with a consistent set
of preferences satisfying the Von Neumann-Morgenstern (1967) consistency
properties. Accordingly}F' is (strictly) preferred toG, or equivalently, X
is (strictly) preferred toY if

AEBu=u(F) —u(G) = uw(X)—u(Y) > 0(>0), (4)
whereu(F) = w(X) = [ u(x)dF(z) andu(G) = u(Y) = [ u(x)dG(z).
3. BASIC PROPERTIES
In this section we present some lemmas which are useful for the extension
of stochastic dominance theory to include any random variable with any

distribution function defined on a finite or infinite interval. The lemmas also
enable the stochastic dominance results to be applicable to utility functions
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without the differentiability constraints. We also state a basic theorem of
stochastic dominance theory in this section.

Lemva 1: Let p be o-finite measure defined offa,b|,B) where B is
a o-field of [a,b]. SupposeF(z) = ula,z] and FP(z) = pu[z,b] for all
x € [a,b]. We consider andd witha < ¢ < d < b. If FP(c), F(d) are finite,
and if G is increasing and continuous dn, d], then there exists a measure
v with v[e,z] = G(z) — G(c) such that

/ GummszwGw—F@G@—/ F(tydu(t) (5)
(c.d]

(cd]

/ G(z)dp(z) = FP(e)G(c) — FP(d)G(d) + / FP@ydu(t). (6)
(c,d) (c,d)

The proof of Lemma 1 is in the appendix. We remark thdf iis continuous

on [¢, d], then the continuity requirement ¢ can be dropped and we will
obtain results similar to (5) and (6). Whetgis decreasing or differentiable,
results similar to (5) and (6) are also obtained. Applying Theorem 3.2.3 in
Rohatgi (1975) and Lemma 1, one can prove the following lemma:

Lemmva 2: If X andY be random variables defined éhwith finite means
px and py respectively, then

_ B _ [ 1wDip D
px = = [ (GO~ F@lae= [ [FP(0) - GP(0) .

Note that£(X) is finite if and only if both E[X I{x ;] and E[X [{x<o}]

are finite in Lebesgue measure. We remark that the constraint of finite
means in Lemma 2 can be further relaxed. The following theorem identifies
conditions under which ascending stochastic dominance and descending
stochastic dominance can be considered as dual problems of each other:

Lemva 3: For any random variables andY’, we have the following:
a) X =; (=Y ifandonlyif —Y >/ (=) —X fori=1,2o0r3.
b) X =1 (=1)Y ifandonlyif X =! (=1)Y.

c) If X andY have the same mean which is finite, then

X =5 (»2)Y ifandonlyif v =% (~?)X.
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For most existing stochastic dominance results, it is not difficult to modify
the proofs for the cases of continuous random variables to obtain the proofs
for any general distribution function by using basic probability theory and
Lemma 1. In addition, if the stochastic dominance results for continuous
density functions are available, the following lemmas may be applied to
extend the results to include any general probability distribution functions:

Lemma 4: For any random variableX, there exists a sequence of random
variables { X, } with finite supports and continuous density functions such
that X,, converges taX in distribution. In addition if X is of finite mean,
then {X,,} can be uniformly integrable.

We remark thaf X,,} in Lemma 4 can be constructed to be defined?on
or on infinite intervals which are bounded from above or below.

Lemma 5: Let X be a random variable, if X,,} is a sequence of random
variables such thanX,, converges taX in distribution, then

F — F* and FP, — FP almost everywhere  asn — oo,

in addition if X is of finite mean, then
F, — F3* and FP, - FP almosteverywhere — asn — oo,

where Ff" and FP are defined as in (2) for the probability distribution
function F' of X and F;ﬁj and FP. are similarly defined for the probability

7,1

distribution functionF,, of X,, for i = 1 and 2.

LEmMmA 6: SupposeX,,, Y,, X andY are random variables such thaf,,
converges taX in distribution andY;, converges td” in distribution. If X,,
andY, are independent, theX,, + Y;, converges toX + Y in distribution.

The proofs of Lemmas 3 to 6 are straightforward and we omit the
proofs. The following theorem describes some basic relation between utility
functions and distribution functions:

THEOREM 7: Let X andY be random variables with probability distribution
functionsF and G respectively. Supposeis a utility function. Form = 1,2
and 3; we have the following:

a) F =, (>m)G if and only ifu(F) > (>)u(G) for any v in U such
that Uzt C U C UEA (USA C U C UES4),

m m m
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b) F =™ (-=")@G if and only ifu(F) > (>)u(G) for anyw in U such
that UD c U c UEP (USP c U C UESD).

m m

There are many papers containing results similar to the above theorem.
For example, Hadar and Russell (1971) and Bawa (1975) proved the
ascending stochastic dominance results for continuous density functions
and continuously differentiable utility functions. Hanach and Levy (1969)
and Tesfatsion (1976) proved the first and second order ascending stochastic
dominance for general distribution functions. Rothschild and Stiglitz (1970,
1971) studied the special case of distributions with equal means and have
proposed a condition that is equivalent to the second order ascending
stochastic dominance results. Meyer (1977) discussed second order stochastic
dominance for risk lovers and risk averters. Stoyan (1983) proved the first
and second order stochastic dominance results for risk lovers as well as risk
averters. One can modify Stoyan’s proof to obtain the order the third order
results in Theorem 7.

It is known that if ur = pg, F =2 G (F =2 G) and if their variances
exist, theno? < o (0% < 0%). If up = pg, F =* G (F = G) and if
their variances exist, them. > oZ (0% > o%). These reflect the fact that
risk averters prefer to invest in prospects or portfolios with smaller variances
while risk lovers prefer larger variances.

4. STOCHASTIC DOMINANCE FOR RANDOM VARIABLES

In this section, we study the stochastic dominance for random variables,
and non-negative combinations, or equivalently convex combinations, of
random variables. Random variabl&sY, - - - can be regarded as the returns
of individual prospects and convex combinations of random variables can
be regarded as the returns of the portfolios of different prospects. Hence,
stochastic dominance for the random variables can be applied to check the
preferences of different prospects and the preferences of different portfolios.

We remark that for any pair of random variabl&sandY’, the statements
X =, Y,and F' =,, G are equivalent. But fom > 1, the statements
Yo aiXi m YooY and Yo i Fr = > oGy are different
because the distribution functions ®I;"_; «; X; and}_;"_ «;Y; are different
from those ofy.;" , ;F; and ) ;" ; a;G;. Therefore, we cannot apply the
convex stochastic dominance theorems in Fishburn (1974) to the convex
combinations of random variables.
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First we study the stochastic dominance of random varialleand Y
which are in the same location and scale family such Yhat p + ¢X. The
location parametep can be viewed as the random variable with degenerate
distribution at p.

THEOREM 8: Let X be a random variable with rangfe, b] and finite mean
wx . Define the random variabl& = p + ¢X with meanuy .

a) If p+qy > yforall y € [a,b], thenY =1 X, equivalentlyy =! X.

b) If 0 < ¢ <1suchthap/(1-q) > pux,ie.,uy > pux,thenY = X.

c) if 0 < ¢ <1suchthat/(1-q) < ux,i.e.,px > py,thenX »2 Y,
The proof of Theorem 8 is in the appendix.

Parts (a) and (b) of the above theorem have also been obtained in Hadar
and Russel (1971, Th. 4) and Tesfatsion (1976, Th. uhder stronger
assumptions. In proving (a), both papers imposed the constraints that
p > 0,q > 1 and X is nonnegative. In proving (b), Hadar and Russel
(1971, Th. 4) imposed the constraints that> 0,0 < ¢ < 1 and X is
nonnegative, and Tesfatsion (1976, Th. later relaxed the constraint gn
and weakened the conditions gnto 0 < ¢ < 1. In our case, we further
removed the nonnegativity assumption éh Moreover, we include the
situation for descending stochastic dominance.

Hadar and Russell (1971, Th. 5) studied the invariance property of the
stochastic dominance and obtained the following theorem for continuous
distributed random variables.

THeEOREM 9: Let X and Y denote two random variables with distribution
functions £’ and G respectively, and assume that random variable is
independent of botlX and Y. Let the distribution functions of the random
variablesa X + bW and aY + bW be denoted by’ and G, respectively,
wherea > 0, andb > 0. Then the following statements are true:

a) if G is larger thanF in the sense of FASD, thef® is larger than £
in the sense of FASD.

b) If G is larger thanF in the sense of SASD, théhis larger than £’
in the sense of SASD.

Tesfatsion (1976, Th.’R extended the results to include random variables
with any distribution functions and release the nonnegative contraint imposed
on b. However, this still requires thdt’ is independent of bottkk andY .
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We relax this constraint and compare two sets of independent variables and
include the situation for descending stochastic dominance in the following
theorem:

THeEOREM 10: Let {Xy,---,X,,} and {Y1,---,Y;,} be two sets of
independent variables. Fat = 1,2 and 3; we have:
a) X; =p (=p)Yi for i = 1,---,m if and only if >, a; X; =,
(>n) Yo, ;Y5 for anyo; > 0,4 = 1,---,m; and
b) X; =" (>")Y; for i = 1,---,m if and only if >7", a; X; >"
(") Y, Y, foranya; > 0,i =1,---,m.
The proof of Theorem 10 is in the appendix. The following corollary is
obtained by applying Theorem 10:

CoroLLARY 11: Let X, Y be random variables anfl € R (the set of real
number). Forn = 1,2 and 3,
a)if X =, (=n)Y thenX +k >, (>,)Y + k; and
b) if X »" (~")Y thenX + k =" (>")Y + k.
In Theorems 8 and 9 of Hadar and Russell (1971), it was proved that if
and X, are two independent and identically distributed non-negative random
variables with continuous distributed functions, then

1
§(X1 + X2) =2 MXa + A Xp =2 Xy forany (A1, A2) € As.

Tesfatsion (1976) improved the results by dropping the non-negative
constraint on the random variables and the continuity requirement on the
distribution functions. We remark that an alternative proof of this extension is
simply to apply Lemmas 4 to 6 and Corollary 11 in this paper to Theorems 8
and 9 in Hadar and Russell (1971). Then the results follow immediately. In
addition, one can easily extend the resultsitoandom variables as shown

in the following theorem:

THEOREM 12: Letn > 2. If X;,---, X,, are independent and identically
distributed, then
1 n n
a) — X, > NXi =9 X for an Ay, Ap A,, and
)n; ,_2; 9 y (M, -+, An) €

n n
5 1
b) Xi tz 5 )\iXi tz - E X; for any ()‘1’"")\71,) € Ana
n
i=1 i=1
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whereA,, = {(A1, -, Ap) : Ay >0for:i=1,--- n,andd_"" | A\ = 1}.
The proof of Theorem 12 is in the appendix.
5. PREFERENCES OF RISK AVERTERS AND RISK LOVERS

In this section, we study the preferences of risk averters and risk lovers in
an investment or gamble. We also study their preferences in a portfolio or
any non-negative combination of investments or gambles. We call a person a
second order ascending stochastic dominance (SASD) risk averter if his/her
utility function belongs toUzEA, and a second order descending stochastic
dominance (SDSD) risk lover if his/her utility function belongslig® .

Tesfatsion (1976, Th.’Lextended the results in Hadar and Russel (1971,
Th. 4). From his theorem, Tesfatsion claimed that the decision maker is
confronted with the choice of transforming his current portfolio containing
a random prospect into a diversified portfolio containing a sure prospect
and a specified amount of the original random prospect. He also claimed
that part (ii) of his theorem gives a necessary and sufficient condition for
the second degree stochastic dominance of one portfolio over the other,
assuming the diversified portfolio contains a positive “percentage” of the
random respect. By Theorem 8 in our paper, we further include the following
information for risk averters or risk lovers in a single investment or gamble:

PropPerTY 13:

a) Let X andY be the returns of two investments or gamblesX Ihas
the same distribution form ag but has a higher mean, then all risk
averters and risk lovers will prefeX.

b) For an investment or gamble with the mean of return less than or
equal to zero, the highest preference of SASD risk averters is not to
invest or gamble.

¢) For an investment or gamble with the mean of return which is greater
than or equal to zero, SDSD risk lovers will prefer to invest or gamble
as much as possible.

d) Let X be the return of an investment or gamble with zero return, and
Y =¢X with0 < g < 1, then SASD risk averters will preféf while
SDSD risk lovers will preferX.

Hadar and Russell (1971) have pointed out that a diversified portfolio can be
larger in the sense of SASD than a specialized portfolio only if its constituent
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prospects have equal means. They also derived several useful results in the
portfolio diversification for risk averters in the case that all prospects are
of the same mean. Applying Theorem 12, we can extend Theorem 9 in
Hadar and Russell (1971) for the portfolio efindependent and identically
distributed prospects to the following property:

ProrerTY 14: For the portfolio ofn independent and identically distributed
prospects witlw, > 2, SASD risk averters will prefer the equal weight portfolio
whereas SDSD risk lovers will prefer a single prospect.

Finally, we remark that all other theorems in this paper can be applied to
make inferences about the preferences of the risk averters and risk lovers.
For example in the sufficient part of Theorem 10, we can infer that if a
risk averter prefers prospect; to prospectY; for eachi, then he will
prefer a portfolio formed by the convex combination Xf rather than the
corresponding portfolio ofY;.

6. CONCLUDING REMARKS

In this paper we establish some stochastic dominance theorems for risk
lovers as well as risk averters, and apply the results to investment decision-
making. We first proved basic properties which are helpful in generalizing
existing stochastic dominance results, and then illustrated the techniques if
generalization by proving some theorems.

Our development excluded only random variables with positive probability
at the points of negative infinity or positive infinity. While it would not have
been difficult to include such random variables in the theory, they seem to
be of little practical interest.

APPENDIX

Proof of Lemma 1:For the proof of (5) in the case in whicliy is
increasing, we let

(t ) 1l c<tx
XMET=0 w<t<d

Since G is continuous and increasing dn, d], there exists a measure
such that

G(z) = G(c) +v(c,x) = G(c) + /( ] x(t,z)dv(t).
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By Fubini’s theorem and Corollary 2.6.5 in Ash (1972), we have

/(c.,d] /(C‘d] x(t,x) dv(t) du(z) = ./(07([] l/(ad] X(taﬂf)d#(x)] dv(t)

- /@,d] /M du<x>] (1)

- / (F(d) — F()] du(t).
(e,d]

Hence,
/( 4 G(z)du(z) = /( C’d] [G(e) + /( " x(t, z)dv(t)]du(z)
— F(d)G(d) - F(c)G(c) - / F(t)du(t).

J(e,d]

The proof for (6) can be obtained similarly. O
Proof of Theorem 8For part (a),

PY<y)<PY <p+qy) =Plp+q¢X <p+qy)=P(X <y).

Hence,Y >; X . Apply Lemma 3b, we havé” >1 X. Refer to Tesfatsion
(1976) for the proof of part (b). For part (c), we B = - X, X' = -Y,
andp’ = —p, apply Lemma 3(a) and part (b) of this theorem, then delete
all the’, we get the result.

Proof of Theorem 10The proofs for the necessary parts of the theorem are
obvious. For the sufficient part in part (a), it suffices to prove the following
two lemmas:

Lemma A: X andY are random variables. Fon = 1,2 and 3, and for
a>0,X =, (=,)Y impliesaX =, (>=,)aY.

LemmA B: SupposeXi, X, Y7 andY> are random variables such thaf;
and X, are independent, antl; and Y, are independent. For = 1,2 or 3,
if X; =, (>»)Y;fori=1and 2, thenXy + X3 =, (>,)Y1 + V2.

The proof of Lemma A is obvious. For Lemma B, we only prove the case
for the second order ascending stochastic dominance. The proofs for other

cases can be obtained similarly. We suppose without loss of generality that
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X1, X9, Y7 andY; are defined on [a,b]. LeX = X7 + X andY = Y7 +Y5.
Let the probability distribution functions o, X1 X5, Y,Y; andY; be F,
Fi, Fy, G, Gy andG, respectively. We defing/},, £} andG:}, in terms

,n? ?,n?

of F; and@; for i = 1,2 and forn = 1,2 in the same manner of (2).

Since X; and X, are independent andf; and Y, are independent, by
Theorem 6.1.1 in Chung (1975), we have

R
F(x) = / FA (1) dFY (1)

R
and G‘f(x):/ Gii(z —t)dGs ().

Hence,

Hi(y) = /”Fﬁ@)@/*( ) da
/2 'Fu B dF () de

/2 Gy ( 1 t)d Gy 1(t) dz

by Fubini’'s Theorem and Corollary 2.6.5 in Ash (1972), we have
R ry ,
mio) = [ [ Fih@-ndedFh
a 2a

R ory
—/ / Giy(z —t)dv d G54 (t)
a 2a

R R
- / Fiy(z — 1) dFf (1) - / Giy(z — 1) d G4 (1)

a

R
< / Giy(y —t) d[FsY — G34](t) since Xp > V1.

Applying Lemma 1 twice, we have

y—a

Hi'(y) < Gy (y — b)Hs (b) + / iy = 4Gy (9) < 0
.

as Hj', < 0 and Gy} is the probability distribution function.
Hence,
Xi+Xe 221+ Ys.
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For the proof of part (b), the results hold by applying Lemma 3 and part (a)
of this theorem. O

Proof of Theorem 12We prove by induction om. The result is true if
n = 2. Suppose the result is true up t@ — 1) independent variables
with n > 3. We consider the case withh variables X1, ..., X,,. Let
(M, ey An) € Ay

For part (a), to prove the second inequality, construct the new variable
Y = ()\QXQ —I—...—|—)\,,,X,,,)/(l —)\1). ThenA\1 X1 + (1 —)\1)Y >9 X1,Y; and
alsoY >; X; for ¢ = 2,...,n, by induction assumption. The result follows.

To prove the first inequality, lex; and\; be the maximum and minimum
among A\;’s. If A; > X;, we replace both\; and A\; by their average
A= (N+Aj)/2. Then(X; 4+ X;)/2 =2 (\iX; +A;X;)/2) by the 2-variable
result, and hencaX; + AX; =2 A, X; + A; Xj. Adding the other\; X.'s on
both sides will clearly preserves by Theorem 10. As a result, whenever
A; are not all equal, one can find a convex combinationXef ..., X,, with
larger value under the orderirtg2. Hence the maximum value must occur
at the combination with equa\;,i.e., \; = 1/n for all i.

One can prove (b) by similar arguments.
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