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Abstract.– In this paper, we develop some stochastic dominance theorems for the location and
scale family and linear combinations of random variables and for risk lovers as well as risk averters
that extend results in Hadar and Russell (1971) and Tesfatsion (1976). The results are discussed
and applied to decision-making.

Keywords: Ascending stochastic dominance, descending stochastic dominance, risk lovers,
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1. INTRODUCTION

There are three major types of persons: risk averters, risk neutrals and risk
lovers. Their corresponding utility functions are concave, linear and convex;
all are increasing functions. Many authors have studied the selection rules
for risk averters. Markowitz (1952, 1970) and Tobin (1958, 1965) proposed
the mean-variance selection rules for risk averters. Quirk and Saposnik
(1962), Fishburn (1964, 1974), Hadar and Russell (1969, 1971), Hanoch
and Levy (1969), Whitmore (1970), Rothschild and Stiglitz (1970, 1971),
Tesfatsion (1976), Bawa (1975), and Bawaet al. (1985) studied the stochastic
dominance rules for risk averters. Meyer (1977) developed some results of
second degree stochastic dominance with respect to a function. He discussed
the stochastic dominance for risk lovers as well as risk averters. Wong and Li
(1999) extended Fishburn’s convex stochastic dominance theorem to include
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any distribution function and extended the results for risk lovers as well
as risk averters.

In this paper we develop some stochastic dominance theorems for the
location and scale family of random variables and linear combinations of
random variables and for risk lovers as well as risk averters that extend
results in Hadar and Russell (1971) and Tesfatsion (1976). We call stochastic
dominance for risk lovers descending stochastic dominance (DSD). To avoid
confusion, we call stochastic dominance for risk averters ascending stochastic
dominance (ASD). We note that stochastic dominance for risk neutrals is
a special case in the theory of stochastic dominance for risk averters or
risk lovers. We also remark that Stoyan (1983) developed some results in
ascending and descending stochastic dominances although he did not interpret
the results in selecting rules for risk averters and risk lovers. Instead of using
the terms ascending and descending stochastic dominances, he used concave
and convex ordings.

We begin by introducing notation and definitions in Section 2. Section 3
discusses some basic properties for the stochastic dominance theory. Section 4
concerns the study of location and scale family of distributions and the
properties of non-negative combinations of random variables for ASD and
DSD. In Section 5, the stochastic dominance theories for risk lovers and risk
averters are compared and applied to decision-making.

2. DEFINITIONS AND NOTATIONS

Denote by the set of real numbers and letR be the set of extended real
numbers. Suppose that is a subset ofR in which and can be
finite or infinite. Let B be the Borel -field of and be a measureon

B . The functions and D of the measure are defined as:

and D for all

The function F is called aprobability distribution functionand is called a
probability measureif . We remark that in this paper the definition
of which takes care of both ascending and descending stochastic dominance
is different from the “traditional” definition of . By the basic probability
theory, for any random variable and for probability measure , there
exists a unique induced probability measureon B and the probability
distribution function such that satisfies (1) and

�1 for any B
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An integral written in the form of
A

or
A

is a
Lebesgue integral for any integrable function . If the integral has the
same value for any set which is equal to , or , then we
use the notation d

c
instead. In addition, if is a Borel measure

with for any , then we write the integral asd
c

The Lebesgue integral d
c

is equal to the Riemann integral if is
bounded and continuous almost everywhere on ; see Theorem 1.7.1 in
Ash (1972).

We consider random variables, denoted by defined on . The
probability distribution functions of and are and respectively. The
following notation will be used throughout this paper:

F X

b

a

G Y

b

a

A
1

A
1

A
1

A
1

A
1

D
1

D D
1

D D
1

D
1

D
1

A
n

x

a

A
n�1

D
n

b

x

D
n�1

and or

Throughout this paper, all functions are assumed to be measureable, all
random variables are assumed to satisfy:

A
1 and D

1

Condition (3) will hold for any random variable except a random variable
with positive probability at the points negative infinity or positive infinity.

We next define the first, second and third order ascending stochastic
dominances which are applied to risk averters; and then define the first,
second and third order descending stochastic dominances which are applied
to risk lovers.

DEFINITION 1: Given two random variables and with and as their
respective probability distribution functions, is at least as large as and
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is at least as large as in the sense of:

a) FASD, denoted by 1 or 1 if and only if A
1

A
1

for each in ;

b) SASD, denoted by 2 or 2 if and only if A
2

A
2

for each in ;

c) TASD, denoted by 3 or 3 if and only if A
3

A
3

for each in and F G

where FASD, SASD and TASD stand for first, second and third order
ascending stochastic dominance respectively.

If in addition there exists in such that A
i

A
i for

and 3, we say that is larger than and is larger than in the sense
of SFASD, SSASD and STASD, denoted by1 or 1 , 2 or

2 , and 3 or 3 respectively, where SFASD, SSASD, and
STASD stand for strictly first, second and third order ascending stochastic
dominance respectively.

DEFINITION 2: Given two random variables and with and as their
respective probability distribution functions, is at least as large as and

is at least as large as in the sense of:

a) FDSD, denoted by 1 or 1 if and only if D
1

D
1

for each in ;

b) SDSD, denoted by 2 or 2 if and only if D
2

D
2

for each in ;

c) TDSD, denoted by 3 or 3 if and only if D
3

D
3

for each in and F G where FDSD, SDSD, and TDSD
stand for first, second and third order descending stochastic dominance
respectively.

If in addition there exists in such that D
i

D
i for

and 3, we say that is larger than and is larger than in the sense of
SFDSD, SSDSD, and STDSD, denoted by 1 or 1 2 or

2 , and 3 or 3 respectively, where SFDSD, SSDSD, and
STDSD stand for strictly first, second and third order descending stochastic
dominance respectively.

We remark that if i or i , then A
j is a distribution

function for any and there exists a unique measuresuch that
A
j for any Similarly, if i or i , then

D
j is distribution function for any . D

j and A
j are defined in (2).
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DEFINITION 3:

a) For A
n

SA
n

D
n and SD

n are sets of utility functions
such that:

A
n

SA
n

i+1 (i)

D
n

SD
n

(i)

where (i) is the th derivative of the utility function .

b) The extended sets of utility functions are defined as follows:

EA
1

ESA
1 is (strictly) increasing

EA
2

ESA
2 is increasing and (strictly) concave

ED
2

ESD
2 is increasing and (strictly) convex

EA
3

ESA
3

EA
2

0 is (strictly) convex
ED
3

ESD
3

ED
2

0 is (strictly) convex

Note that in Definition 3 “increasing” means “nondecreasing” and
“decreasing” means “nonincreasing”. We also remark that in Definition 3,
A
1

D
1 and SA

1
SD
1 . We will use two notation ED

1 and ESD
1 in

this paper such that ED1
EA
1 and ESD

1
ESA
1 . It is known (e.g.

see Th. 11C in Roberts and Varberg 1973) thatin EA
2 , ESA

2 , ED
2 , or

ESD
2 , and 0 in EA

3 , ESA
3 , ED

3 or ESD
3 are differentiable almost

everywhere and their derivatives are continuous almost everywhere.

An individual chooses betweenand in accordance with a consistent set
of preferences satisfying the Von Neumann-Morgenstern (1967) consistency
properties. Accordingly, is (strictly) preferred to , or equivalently,
is (strictly) preferred to if

where b

a
and b

a
.

3. BASIC PROPERTIES

In this section we present some lemmas which are useful for the extension
of stochastic dominance theory to include any random variable with any
distribution function defined on a finite or infinite interval. The lemmas also
enable the stochastic dominance results to be applicable to utility functions
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without the differentiability constraints. We also state a basic theorem of
stochastic dominance theory in this section.

LEMMA 1: Let be -finite measure defined on B where B is
a -field of . Suppose and D for all

We consider and with . If D are finite,
and if is increasing and continuous on , then there exists a measure

with such that

(c;d] (c;d]

(c;d)

D D

(c;d)

D

The proof of Lemma 1 is in the appendix. We remark that ifis continuous
on , then the continuity requirement of can be dropped and we will
obtain results similar to (5) and (6). Whereis decreasing or differentiable,
results similar to (5) and (6) are also obtained. Applying Theorem 3.2.3 in
Rohatgi (1975) and Lemma 1, one can prove the following lemma:

LEMMA 2: If and be random variables defined onwith finite means

X and Y respectively, then

X Y

 


D
1

D
1

Note that is finite if and only if both fX>0g and fX<0g

are finite in Lebesgue measure. We remark that the constraint of finite
means in Lemma 2 can be further relaxed. The following theorem identifies
conditions under which ascending stochastic dominance and descending
stochastic dominance can be considered as dual problems of each other:

LEMMA 3: For any random variables and , we have the following:

a) i i if and only if i i for

b) 1 1 if and only if 1 1 .

c) If and have the same mean which is finite, then

2 2 if and only if 2 2
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For most existing stochastic dominance results, it is not difficult to modify
the proofs for the cases of continuous random variables to obtain the proofs
for any general distribution function by using basic probability theory and
Lemma 1. In addition, if the stochastic dominance results for continuous
density functions are available, the following lemmas may be applied to
extend the results to include any general probability distribution functions:

LEMMA 4: For any random variable , there exists a sequence of random
variables n with finite supports and continuous density functions such
that n converges to in distribution. In addition if is of finite mean,
then n can be uniformly integrable.

We remark that n in Lemma 4 can be constructed to be defined onR
or on infinite intervals which are bounded from above or below.

LEMMA 5: Let be a random variable, if n is a sequence of random
variables such than n converges to in distribution, then

A
n;1

A
1 and D

n;1
D
1 almost everywhere as

in addition if is of finite mean, then

A
n;2

A
2 and D

n;2
D
2 almost everywhere as

where A
i and D

i are defined as in (2) for the probability distribution
function of and A

n;i and D
n;i are similarly defined for the probability

distribution function n of n for and 2.

LEMMA 6: Suppose n n and are random variables such thatn
converges to in distribution and n converges to in distribution. If n

and n are independent, then n n converges to in distribution.

The proofs of Lemmas 3 to 6 are straightforward and we omit the
proofs. The following theorem describes some basic relation between utility
functions and distribution functions:

THEOREM 7: Let and be random variables with probability distribution
functions and respectively. Supposeis a utility function. For
and 3; we have the following:

a) m m if and only if for any in such
that A

m
EA
m

SA
m

ESA
m .
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b) m m if and only if for any in such
that D

m
ED
m

SD
m

ESD
m .

There are many papers containing results similar to the above theorem.
For example, Hadar and Russell (1971) and Bawa (1975) proved the
ascending stochastic dominance results for continuous density functions
and continuously differentiable utility functions. Hanach and Levy (1969)
and Tesfatsion (1976) proved the first and second order ascending stochastic
dominance for general distribution functions. Rothschild and Stiglitz (1970,
1971) studied the special case of distributions with equal means and have
proposed a condition that is equivalent to the second order ascending
stochastic dominance results. Meyer (1977) discussed second order stochastic
dominance for risk lovers and risk averters. Stoyan (1983) proved the first
and second order stochastic dominance results for risk lovers as well as risk
averters. One can modify Stoyan’s proof to obtain the order the third order
results in Theorem 7.

It is known that if F G, 2 2 and if their variances
exist, then 2

F
2

G
2

F
2

G
. If F G, 2 2 and if

their variances exist, then2
F

2

G
2

F
2

G
. These reflect the fact that

risk averters prefer to invest in prospects or portfolios with smaller variances
while risk lovers prefer larger variances.

4. STOCHASTIC DOMINANCE FOR RANDOM VARIABLES

In this section, we study the stochastic dominance for random variables,
and non-negative combinations, or equivalently convex combinations, of
random variables. Random variables can be regarded as the returns
of individual prospects and convex combinations of random variables can
be regarded as the returns of the portfolios of different prospects. Hence,
stochastic dominance for the random variables can be applied to check the
preferences of different prospects and the preferences of different portfolios.

We remark that for any pair of random variablesand , the statements
m , and m are equivalent. But for , the statements

n

i=1 i i m
n

i=1 i i and n

i=1 i i m
n

i=1 i i are different
because the distribution functions ofn

i=1 i i and n

i=1 i i are different
from those of n

i=1 i i and n

i=1 i i. Therefore, we cannot apply the
convex stochastic dominance theorems in Fishburn (1974) to the convex
combinations of random variables.
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First we study the stochastic dominance of random variablesand
which are in the same location and scale family such that . The
location parameter can be viewed as the random variable with degenerate
distribution at .

THEOREM 8: Let be a random variable with range and finite mean

X Define the random variable with mean Y .

a) If for all then 1 , equivalently 1

b) If such that X i.e., Y X then 2 .

c) if such that X i.e., X Y then 2 .

The proof of Theorem 8 is in the appendix.

Parts (a) and (b) of the above theorem have also been obtained in Hadar
and Russel (1971, Th. 4) and Tesfatsion (1976, Th. 10) under stronger
assumptions. In proving (a), both papers imposed the constraints that

and is nonnegative. In proving (b), Hadar and Russel
(1971, Th. 4) imposed the constraints that and is
nonnegative, and Tesfatsion (1976, Th. 10) later relaxed the constraint on
and weakened the conditions onto . In our case, we further
removed the nonnegativity assumption on. Moreover, we include the
situation for descending stochastic dominance.

Hadar and Russell (1971, Th. 5) studied the invariance property of the
stochastic dominance and obtained the following theorem for continuous
distributed random variables.

THEOREM 9: Let and denote two random variables with distribution
functions and respectively, and assume that random variable is
independent of both and . Let the distribution functions of the random
variables and be denoted by and , respectively,
where , and . Then the following statements are true:

a) if is larger than in the sense of FASD, then is larger than
in the sense of FASD.

b) If is larger than in the sense of SASD, thenis larger than
in the sense of SASD.

Tesfatsion (1976, Th. 20) extended the results to include random variables
with any distribution functions and release the nonnegative contraint imposed
on . However, this still requires that is independent of both and .
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We relax this constraint and compare two sets of independent variables and
include the situation for descending stochastic dominance in the following
theorem:

THEOREM 10: Let 1 m and 1 m be two sets of
independent variables. For and 3; we have:

a) i n n i for if and only if m

i=1 i i n

n
m

i=1 i i for any i ; and

b) i
n n

i for if and only if m

i=1 i i
n

n m

i=1 i i for any i .

The proof of Theorem 10 is in the appendix. The following corollary is
obtained by applying Theorem 10:

COROLLARY 11: Let be random variables and R (the set of real
number). For and 3,

a) if n n then n n ; and

b) if n n then n n .

In Theorems 8 and 9 of Hadar and Russell (1971), it was proved that if1

and 2 are two independent and identically distributed non-negative random
variables with continuous distributed functions, then

1 2 2 1 1 2 2 2 1 for any 1 2 2

Tesfatsion (1976) improved the results by dropping the non-negative
constraint on the random variables and the continuity requirement on the
distribution functions. We remark that an alternative proof of this extension is
simply to apply Lemmas 4 to 6 and Corollary 11 in this paper to Theorems 8
and 9 in Hadar and Russell (1971). Then the results follow immediately. In
addition, one can easily extend the results torandom variables as shown
in the following theorem:

THEOREM 12: Let . If 1 n are independent and identically
distributed, then

a)
n

i=1

i 2

n

i=1

i i 2 i for any 1 n n and

b) i
2

n

i=1

i i
2

n

i=1

i for any 1 n n
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where n 1 n i for and n

i=1 i .

The proof of Theorem 12 is in the appendix.

5. PREFERENCES OF RISK AVERTERS AND RISK LOVERS

In this section, we study the preferences of risk averters and risk lovers in
an investment or gamble. We also study their preferences in a portfolio or
any non-negative combination of investments or gambles. We call a person a
second order ascending stochastic dominance (SASD) risk averter if his/her
utility function belongs to EA

2
, and a second order descending stochastic

dominance (SDSD) risk lover if his/her utility function belongs toED
2

.

Tesfatsion (1976, Th. 10) extended the results in Hadar and Russel (1971,
Th. 4). From his theorem, Tesfatsion claimed that the decision maker is
confronted with the choice of transforming his current portfolio containing
a random prospect into a diversified portfolio containing a sure prospect
and a specified amount of the original random prospect. He also claimed
that part (ii) of his theorem gives a necessary and sufficient condition for
the second degree stochastic dominance of one portfolio over the other,
assuming the diversified portfolio contains a positive “percentage” of the
random respect. By Theorem 8 in our paper, we further include the following
information for risk averters or risk lovers in a single investment or gamble:

PROPERTY 13:

a) Let and be the returns of two investments or gambles. Ifhas
the same distribution form as but has a higher mean, then all risk
averters and risk lovers will prefer .

b) For an investment or gamble with the mean of return less than or
equal to zero, the highest preference of SASD risk averters is not to
invest or gamble.

c) For an investment or gamble with the mean of return which is greater
than or equal to zero, SDSD risk lovers will prefer to invest or gamble
as much as possible.

d) Let be the return of an investment or gamble with zero return, and
with , then SASD risk averters will prefer while

SDSD risk lovers will prefer .

Hadar and Russell (1971) have pointed out that a diversified portfolio can be
larger in the sense of SASD than a specialized portfolio only if its constituent
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prospects have equal means. They also derived several useful results in the
portfolio diversification for risk averters in the case that all prospects are
of the same mean. Applying Theorem 12, we can extend Theorem 9 in
Hadar and Russell (1971) for the portfolio ofindependent and identically
distributed prospects to the following property:

PROPERTY14: For the portfolio of independent and identically distributed
prospects with SASD risk averters will prefer the equal weight portfolio
whereas SDSD risk lovers will prefer a single prospect.

Finally, we remark that all other theorems in this paper can be applied to
make inferences about the preferences of the risk averters and risk lovers.
For example in the sufficient part of Theorem 10, we can infer that if a
risk averter prefers prospect i to prospect i for each , then he will
prefer a portfolio formed by the convex combination ofi rather than the
corresponding portfolio of i.

6. CONCLUDING REMARKS

In this paper we establish some stochastic dominance theorems for risk
lovers as well as risk averters, and apply the results to investment decision-
making. We first proved basic properties which are helpful in generalizing
existing stochastic dominance results, and then illustrated the techniques if
generalization by proving some theorems.

Our development excluded only random variables with positive probability
at the points of negative infinity or positive infinity. While it would not have
been difficult to include such random variables in the theory, they seem to
be of little practical interest.

APPENDIX

Proof of Lemma 1:For the proof of (5) in the case in which is
increasing, we let

Since is continuous and increasing on , there exists a measure
such that

(c;d]
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By Fubini’s theorem and Corollary 2.6.5 in Ash (1972), we have

(c;d] (c;d] (c;d] (c;d]

(c;d] (t;d]

(c;d]

Hence,

(c;d] (c;d] (c;d]

(c;d]

The proof for (6) can be obtained similarly.

Proof of Theorem 8:For part (a),

Hence, 1 . Apply Lemma 3b, we have 1 Refer to Tesfatsion
(1976) for the proof of part (b). For part (c), we let0 , 0 ,
and 0 , apply Lemma 3(a) and part (b) of this theorem, then delete
all the 0, we get the result.

Proof of Theorem 10:The proofs for the necessary parts of the theorem are
obvious. For the sufficient part in part (a), it suffices to prove the following
two lemmas:

LEMMA A: and are random variables. For and 3, and for

n n implies n n

LEMMA B: Suppose 1 2 1 and 2 are random variables such that1
and 2 are independent, and1 and 2 are independent. For or
if i n n i for and 2, then 1 2 n n 1 2

The proof of Lemma A is obvious. For Lemma B, we only prove the case
for the second order ascending stochastic dominance. The proofs for other
cases can be obtained similarly. We suppose without loss of generality that
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1, 2, 1 and 2 are defined on [a,b]. Let 1 2 and 1 2

Let the probability distribution functions of , 1, 2, , 1 and 2 be ,
1, 2, , 1 and 2 respectively. We define A

i;n, A
i;n, and A

i;n in terms
of i and i for and for in the same manner of (2).

Since 1 and 2 are independent and1 and 2 are independent, by
Theorem 6.1.1 in Chung (1975), we have

A
1

R

a

A
1;1

A
2;1

and A
1

R

a

A
1;1

A
2;1

Hence,
A
2

y

2a

A
1

A
1

y

2a

R

a

A
1;1

A
2;1

y

2a

R

a

A
1;1

A
2;1

by Fubini’s Theorem and Corollary 2.6.5 in Ash (1972), we have

A
2

R

a

y

2a

A
1;1

A
2;1

R

a

y

2a

A
1;1

A
2;1

R

a

A
1;2

A
2;1

R

a

A
1;2

A
2;1

R

a

A
1;2

A
2;1

A
2;1 since 1 2 1

Applying Lemma 1 twice, we have

A
2

A
1;1

A
2;2

y�a

y�b

A
2;2

A
1;1

as A
2;2 and A

1;1 is the probability distribution function.

Hence,
1 2 2 1 2
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For the proof of part (b), the results hold by applying Lemma 3 and part (a)
of this theorem.

Proof of Theorem 12:We prove by induction on . The result is true if
. Suppose the result is true up to independent variables

with . We consider the case with variables 1 n. Let
1 n n.

For part (a), to prove the second inequality, construct the new variable
2 2 n n 1 . Then 1 1 1 2 1 ; and

also 2 i for , by induction assumption. The result follows.

To prove the first inequality, leti and j be the maximum and minimum
among k ’s. If i j, we replace both i and j by their average

i j . Then i j 2 i i j j by the 2-variable
result, and hence i j 2 i i j j. Adding the other k k ’s on
both sides will clearly preserve 2 by Theorem 10. As a result, whenever
i are not all equal, one can find a convex combination of1 n with

larger value under the ordering2. Hence the maximum value must occur
at the combination with equali i for all .

One can prove (b) by similar arguments.
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