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Abstract
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1. Introduction

Let A = [g;;] be an adjacency matrix of a given tr&€avith n > 3 vertices. Note
thatA is a symmetriq0, 1) matrix with alla;; = 0. Let S,, be the set ofi x n per-
mutation matrices, and I@I’jFT ={x=(1,..., x5 0<x1 < --- < x,}, ie., the
set of nonnegative vectors iR’ with entries arranged in nondecreasing order. We
study the following optimization problem.

Problem 1.1. Given an adjacency matri of a tree withn vertices, determine con-
ditions for the existence a? € S,, such that for alk € R’}H
x'P'APx > x'Q'AQx VO €S, (1)

and characterizP if it exists.

We give a complete solution to Problem 1.1, and use it to solve the following
related problem, in which we denote the maximum eigenvalue of a real symmetric
matrix B by Amax(B).

Problem 1.2. Given an adjacency matri of a tree withn vertices, determine con-
ditions for the existence @? € S,, such that for allD = diag(dy, ..., d,) with d; <
.. < dy

)hmax(PDPt +A) > )»max(QDQt +A4) VOEeS,

and characterizP if it exists.

Note that ifP exists, then it is independent of the valuegipofWe write the max-
imum value ofAmax(PD P!+ A) for P € S, as maXimax(P D Pt + A). It is some-
times convenient to change the inequality in Problem 1.2 to the equivalent form

Amax(D + P'AP) = dmax(D + Q'AQ) VQ € S,

which entails reordering the rows and columnsiadr equivalently relabelling the
vertices ofT.

Special cases of Problem 1.2 have been studied in the literature. Motivated by
results concerning nonuniform strings [7] and the Shroédinger operator [1], atten-
tion has focussed on matrices of the fofmt- D, wherel is the discrete Lapla-
cian, namelyL = 21 — A, whereA is the (tridiagonal) adjacency matrix of a path
graph. Ashbaugh and Benguria [1, (7.1)] found the permutation mRtirat gives
maximax(PDP' + L). SinceP D P! + L is similar to P(D + 2I) Pt + A via a sig-
nature (diagonal orthogonal) matrix, their problem is basically the same as Problem
1.2, whereA is the adjacency matrix of a path. Specifically, they proved [1, (7.1)]
the following result where, by the symmetry of a path, there are two solutions, with
a maximumy; placed at a center vertex of the path.
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Theorem 1.3. Let A = [q;;] be the adjacency matrix of a path graph with n verti-
cesi.e,a;j = 1if |i — j| = 1, andO otherwise. Then for alD = diagda, ..., dy)
with d1 < -+ < d,, maximax(PDP!+ A) occurs for P € S, so that PDP' =
diagldi, d3, ds, . .., ds, da, do) or diag(do, da, de, . . ., ds, d3, d1).

A careful study of the proofs in [1] reveals that the authors actually solve Problem
1.1 on maximizing a quadratic form whénis restricted to be the adjacency matrix
of a path. Specifically, we can restate [1, Lemma 2.1] as follows.

Theorem 1.4. LetA = [q¢;;] be the adjacency matrix of a path graph with n vertices
i.e,a;; = 1if|i — j| =1, and0 otherwise. Suppose P is a permutation matrix such
that

0 0 1 -
0 1 0
1
1 0
P'AP = . ,
1
1
0 1 1
1 1 0

i.e,the(i, j) entry of PLAPis1if |i — j| = 2o0ri + j = 2n — 1, and0 otherwise.
Then for allx € IR’}FT

x'P'APx > x'Q'AQx VQ € S,.

For the path graph, the problem of determining gy P DP' + A), where
D has exactly one nonzero entry that is equal to a given0 was solved in
[3]. The method used in [3] relies on results in [6] where this restricted prob-
lem was considered for generd] and was shown to be equivalent to determining
maximax(P D P! + A), whereD is any nonnegative real diagonal matrix with trace
D =t.

A relation between our two problems is given by the following proposition, from
which it follows that if P is a solution to Problem 1.1, théhis a solution to Problem
1.2. The proposition is proved for any nonnegative symmetric matrix, and thus holds
in particular for an adjacency matri

Proposition 1.5. Let B be an irreducible nonnegative symmetric matrix. Suppose

P € S, is such that for allx IR’J’FT

x'P'BPx > x'Q'BOx VO € S,.
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Then for allD = diag(ds, . ..,d,) withds < --- < d,

Amax(PDP' + B) > Amax(Q'DQ + B) Y0 € S,.
Proof. The matrixQ'DQ + B is essentially nonnegative. Thus, for agye S,,
by Perron Frobenius and Rayleigh Ritz (see, e.g., [5, Theorems 8.4.4 and 4.2.2])
there is a positive unit eigenvector= (x1, . .., x,)! such thakmax(Q'DQ + B) =
x'(Q'DQ + B)x. LetX be obtained fronx by rearranging its entries in nondecreas-
ing order. Then
x'0'DQx + #' P'BPx
i'Di + #'P'BPF
Amax(PDP' + B).

xt(QtDQ + B)x <
<
<

The first inequality is from the definition d®, the second from the ordering of the
diagonal elements @, and the third from Rayleigh Ritz.[]

In this paper, we give a complete solution for Problem 1.1, which leads (by Prop-
osition 1.5) to a corresponding solution for Problem 1.2. We do not know whether a
solution to Problem 1.2 always guarantees a solution to Problem 1.1.

Our paper is organized as follows. In Section 2, we present and prove our main
theorem using several lemmas that are of independent interest. In Section 3, we give
a characterization of the trees for which there exists a solution to Problem 1.1, and
illustrate this with three families of such trees witlvertices. These examples show
that every tree with at most five vertices has a solution to both problems, and that
for exactly one tree with six vertices there is no solution. Some related results are
given in Section 4; these include a duality statement so that our results can be used
to solve the dual problem of minimizing the smallest eigenvalue of matrices of the
form PDP! + A. Some graph theoretic terms are used in our discussion, and the
reader is referred to [2,4] for standard terminology.

2. Optimal permutation matrix

In this section, we prove the following extension of Theorem 1.4, which yields
the solution of Problem 1.1. IA is the adjacency matrix of a given tr8e then
so is P'AP for all P € S,. Therefore, without loss of generality, we can assume
that P = I. In the following theorem, we solve Problem 1.1 by characterizing the
adjacency matrice& such that for allk € IR%{’FT

x'Ax > x'0'A0x VO € S,.

Theorem 2.1. Let A be the adjacency matrix of a tree T with verti¢és. .., n}
labelled according to the row indices of A. Then forale IR%{’FT
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x'Ax > x'0'A0x VO € S,, (2)
if and only if the following conditions hoid
() The row sums of Avhich are the degrees, ..., d, of the vertices of [Tsatisfy

dy < - < dy.
(I) If A =L + L%, where L is in(strictly) lower triangular form then
[dry1—-1  dryo—-1 dy—1-1 dy ]
—— —— ==
0---0 0---0 0---0 0---0 O
~1
0---0 0---0 0---0 0---0 O
L=]1-1 Ol «r+1
1..-1 O o
0 1...1
<~—n
1...1 0

with all zero rows preceding all nonzero rowmgherer > 2 is the number of
leavesin the tree T.

Note that in general it is possible to have more than one permutatsorch that
(1) holds for allx € RiT. Nevertheless, by Theorem 2.1, the adjacency matrices
giving the maximum in (1) are always in the form satisfying conditions (I) and (11),
and thus are all equal.

We first prove the necessity part of Theorem 2.1. The proof depends on the follow-
ing lemma, wherei (1) denotes the submatrix éfwith row and column 1 deleted.

Lemma 2.2. Given any reah x n matrix A suppose that for alt € R’}H

x'Ax = max{x'Q'AQx: Q € S,}.
-1
Thenforally R'er
y'AD)y = max{y'R'"A(DRy: R € S,_1}.

n—1

o it follows that

Proof. Foranyy € R

0
(y) € R,
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Hence, foranyR € S,_1

= (0) 1)
yA(l)y—(y)A )

t
> (S) (IL1® RYA(L & R) (S)

=yRUADRy. O

Proof of the necessity part of Theorem 2.1Assuming that for alk € Ri?
x'Ax > x'Q'AQx VQ €S,

we first prove condition (1), i.e., ik1 < k2 are two vertices of the tre€, then
degky) < degkp). Fori = 1, 2, define

i = |{u # k1, k2; u < k1, u is adjacent td; }

I

vi = |{u # k1. k2; u > k1, uis adjacent td; }|.

Thenfori =1, 2
o i+, (k1, k2) is not an edge,
degk;) = { ui +v; +1, (k1 k2) is an edge.
Consider
k1

t

X = (m,l—i—s,...,l—i-e) ,
wheree > 0. Let Q € S, correspond to the transposition interchangingndka.
Then

xtAx = 2(xk1(u1 + (14 e)vy) + xp, (w2 + (1 + E)vz)) + 4
and

x'Q'AQx = 2(xk2(u1 + A+ e)vy) + xpq (w2 + A+ 8)1)2)) + 4,
where4 contains all terms not involving exactly onexgf, andxy,. Hence,

0 < x'Ax — x'Q'AQx = 2(xk, — xky) (2 — u1) + (L + &) (v2 — v1)),
which implies

(u2 —u1) + (A +¢)(v2—v1) =2 0.

Lettinge — 0 gives degk,) — degki) > 0, thus condition (I) holds and (since ev-
ery tree has at least two leaves) vertices one and twioené leaves.

Next we prove condition (1) by induction om The statement is clear if = 3.
Assume that the statement is true for 1, and letA ben x n, wheren > 4. As
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vertex 1 is a leaf, it follows thati (1) is the adjacency matrix of the tr@&\{1}. By
Lemma 2.2, we can apply the induction assumptiomagh) to conclude that (1)
satisfies condition (1), and heneg(1) = L1 + L, where

<« 2

0...0 0.--0 ... 0.--0 0---0 O
0...0 0..-0 --. 0...0 0.--.0 0| °
L= 1...1 0 <—."2

1...1 0O o

0 1.1 0

i 1...1 ol
<~—n

with (2, 2) being the position of the unique nonzero entry in the first column. Note
that the rows and columns d@f(1) are indexed by 23, .. ., n.

Now

0 0..-010--.-07 0 0...010--.07
0 0

Lo _lo
1 A1) 1 Li+L}
0 0
Lo 1 Lo _

Hence A can be written a€ + Lt, where

0 0..-0---07
0

_lo

L= 1 L1
0
) i

with (r1, 1) being the position of the unique nonzero entry in the first column. We
claim thatr; = rp or r — 1 and consequenthy satisfies condition (ll). First, let
Q € S, correspond to the transposition that interchangesdr,. Then

xtAx = 2(x1x, + x2x,,) + 4
and

xtQtA Ox = 2(x1xr2 + x2x,) + 4,
where4 contains all terms not involving exactly onexaf andx;.
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Hence, lettinge = (1, ..., n)!,
0 < x'Ax —x'Q'AQx = 2(x;, — xp,)(¥2 — x1) = 202 — r1)(2— 1),

and thusry < ro. If r1 < rp — 2, note that fromL1 we have deg\{l}(s) =1 for
2 < s < rp — 1. Therefore,

degr(r1) = degr\y(r1) +1=2> 1= deg (1,(r2 — 1) = deg; (r2 — 1),

which contradicts condition (I). As aresuty, =, orrp — 1. O

The proof of the sufficiency part of Theorem 2.1 is more intricate. In particular,
we need to replace conditions (1) and (Il) by some other conditions that are more
convenient to use. First of all, it is not difficult to verify that conditions (I) and (11)
are equivalent to condition (I) and th following conditidi’).

(II") If (r1, s1) and(r2, s2) are two positions of nonzero entries in A such that s1
andry > sp, thenry > r1 implies thatsy > s1.

We are going to describe another set of conditions equivalent to conditions (I) and
(1), and the description requires the following definition.

Let[k1, k2, . .., ky] denote a path in a tréleconnecting the verticeg, ko, . . ., k;.
A maximalpath inT is a path that cannot be extended to a longer path. A path in
is thus maximal if and only if the two end vertices are leaves.iht will be shown
in Lemma 2.4 that conditions (1) and (Il) are equivalent to condition (l) and the
following condition(l1”) in terms of the maximal paths in the tré&gcf. Theorem
1.3).

(") If [k1, k2, . .., kg] is @ maximal path in T labelled according to the row indices
of the adjacency matrix Ahen either

k1 <ky <k <ks_1<--- OF ky<ki<ks_1<ky<---

Note that either of the chains of inequalities (ih”) holds if and only if the
submatrix of A lying in rows and columns with indicess, k;, k2, ks—1,... Or
kg, k1, kg1, k2, ..., respectively, is in the form displayed in Theorem 1.4.

The following technical lemma is needed to prove that conditions (I) and (Il) are
equivalent to conditions (1) andl”).

Lemma 2.3. Let A be the adjacency matrix of a tree T with verti¢és. .., n}
labelled according to the row indices of A. If A satisfies condifiby then the fol-
lowing are true

(@) If [k1, ..., kg] is a subpath of Tthen foranyl < r < s, eitherky <kp < --- <
k. ork, > k.41 > --- > ks and in particular, eitherky < k, or k, > k.

(b) If i < j are vertices in T and,K are adjacent to ij, respectivelysuch that k and
[ do not lie on the unique path in T connecting i anthienk < [.
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Proof. Note thatif{k1, k2, k3] is a subpath of, then tha k1, k2) and(kz, k2) entries
of Aare 1. Since no column @& has two 1's below the diagonal, then eitler< k2
or k3 < k. Now supposéky, ..., ks] is a subpath of and 1< r < s. Applying the
previous argument tek, _1, k-, k1] givesk,_1 < k, or ky11 < k. If ky—1 < k.,
then considefk, 2, k,—1, k1, [kr—3, kr—2, kr—11, . . ., [k1, k2, k3] giving k1 < k2 <

- < ky;if kev1 < ky, then considelk,, ki1, kr12], [kr+1, krt2, krg3l,s - [ks—2,
ks—1, k] giving k, > k.41 > --- > ks. Hence, condition (a) is proved.

Given i, j, k,I as in condition (b), applying condition (a) to the subpath
k,i,...,j,1lwithk, = jgivesk <i < j.Ifl > j, then condition (b) is proved, so
supposé < j. Then(i, k) and(j, /) are two nonzero entries éfbelow the diagonal
with i < j, hencek < [, and condition (b) is proved.[]

Lemma 2.4. Let A be the adjacency matrix of a tree T with verti¢és. .., n}
labelled according to the row indices of A. Then conditi@hand(ll) are equivalent
to conditiong(l) and (11”).

Proof. Suppose condition (I) holds.

(I = I”): Consider a maximal patlfks, ..., k] in T. If k1 < kg, then
relabel the path %1, vs, ..., v, v2]; if k1 > ks, thenrelabel the path &, va, .. .,
v3, v1]. We claim thatv; < v < - -+ < vy and thus(ll”) follows. By construction,
v1 < v2. As vy is a leaf butvs is not, vo < v3 because the row sums &f are
nondecreasing. L&k be the largest integer such that< vy < -+ < v If k =5,
then the claim is proved. Otherwise, assuine s. Note that{vi_1, vk+1, - .., V]
is a subpath and hence eithgr 1 > v; or vi11 > vr—1 by Lemma 2.3(a). In the
latter case,(vi41, vk—1) and (v, vp_2) are nonzero entries in the strictly lower
triangular part oA andvy_1 > vr_2, SO we havey1 > v by condition (I1). Hence,
v < --- < Vg < Ugt1, contradicting the definition ofk. Thus, our claim
is proved.

(I1I"y = (II): Suppose thatri, s1) and(r2, s2) are positions of nonzero entries of
A with rp > r1 > 51 andry > s». Considering a maximal path containing(ry, s1)
and(r, s2), and the submatrix oA corresponding tg- as in condition(ll”), gives
s2 > s1. Thus, condition(Il") is true. Since conditions (l) and (Il) are equivalent to
conditions (1) andll’) as already stated, the result followd.]

To utilize condition(ll”) in the proof of the sufficiency part of Theorem 2.1, we
need to understand the relation between a quadraticfoAm and a givermaximal
pathy in T. This motivates the following partition of the matéxaccording toy and
some lemmas associated with it. lkdbe a vertex iril, and letd (k, y) be the length
of the path joiningk to a vertex iny. Set?; = {k: d(k,y) = j}for j =0,...,m,
wherem = maxi<k<n d(k,y). Then{Zo, ..., #,} forms a partition of the vertex
set{l,...,n}. Let A[Z}; Z;] be the submatrix oA lying in rows and columns
indexed by elements i#?; andZy, respectively.
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For example, the adjacency matégiven by

o 1 1 | 1 1 | 0
1. 0 0 | 0 O | O
1. 0 0 | 0 O | O
1. 0 0 | 0 O | O
1.0 0 | 0 0 | 1

0 0 0 | 0 1 | O]

illustrates the partition?g = {1, 2, 3}, 21 = {4, 5} and 2, = {6} with respect to
y = [2, 1, 3], and the properties (a)—(f) in the following lemma.

Lemma 2.5. For the partitionZy, ..., 2,, defined abovghe following are true
(@) If j > 1, thenA[2;; ;1 = 0.
(b) If |j — k| > 1, thenA[2; 2] = 0.

() Forj=0,...,m—1, every columnim[Z;; 2 ;1] has exactly on4.
dForj=1...,m—1, eachrowsumofA[Z;; Z;.1] is one less than the corre-
J 2+

sponding row sum of A.
(e) The two rows inA[#g; #1] corresponding to the two leaves jnare 0. Every
other row sum ofA[Zp; 21] is two less than the corresponding row sum of A.
(f) If A has nondecreasing row sumnthen so doesA[Z?;; #;,1] for j =0,...,
m — 1.

Proof. (a) For;j > 1, no two vertices in??; are adjacent, otherwise there is a cycle
inT.

(b) If there exists a vertex € Z; adjacent to a vertew € #;, then by the con-
struction of the partition, eithare 2,1 0orv e 2;_1.

(c) No two vertices inZ?; can be adjacent to the same vertexAn, 1, otherwise
a cycle exists irT; and each vertex i1 is adjacent to one vertex i#t;.

(d) For 1< j < m — 1, each vertekin #; is adjacent to de@) — 1 vertices in
2 ;11. Note that each vertex is adjacent to one verte®in ;.

(e) Each vertek in 2q, except the two leaves, is adjacent to @eg- 2 vertices
in 21. Note that each vertex, except the two leaves, is adjacent to two other vertices
in 2¢.

(f) Suppose ands are inZ;. If the row sum ofA corresponding te@ is greater
than or equal to that correspondingsiahen by property (d) iff # O or by property
(e)if j =0, the row sumimMA[Z;; ;1] corresponding to is greater than or equal
to that correspondingte [
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Lemma 2.6. Given positive integerg < g and0 < mq < --- < m, suchthainy +
.-+ +m, = q, consider thep x g matrix

M mg mp mp—1 mp ]
—— ——
1...1 0... 0.0 0---0

Then for anyx € RiT andy e R’_]H
x'By > x'P'BQy VPeS, andVQ € S,.

Proof. Write Px = (f1,..., fp)tandQy = (g}, ..., g},)t, whereg; is a vector of
lengthm; fori =1,..., p.Let1<i < j < p. Then

m mi
AP0y = (T )es ¢+ (T )

+...+fj<11...1)gj—i—...—i—fp(ll...l)gp

is maximal only if for alli < j, f; < f; and the sum of the entries gf is not
larger than the sum of the entriesgf The latter is true ify e IR?H, hence the result
follows. O

We are now ready to present:

Proof of the sufficiency part of Theorem 2.1 Supposé satisfies conditions (I) and
S]I), ortequivalently by Lemma 2.4, conditions (I) add”). Letx € IR’er. Consider
e se

S(x) ={P e S, x'P'APx > x'0'A0x YO € S, }.
If 1 € S(x) for everyx € R ,, then the result holds. So suppose that there exists
X € RiT such that ¢ S(x). For notational simplicity, we |65 = S(x). Define, for
eachP € S,

b(P)=min{r: Pe; # e},

whgreel, ..., epare tAhe standard orthonormal basis vectof®’ofLet P € S sqtisfy
b(P) > b(P) forall P € S. We will show that there existR € S withb = b(P) <
b(R), which gives the desired contradiction, and tlius S for all x € R’er.
Choose a maximal patp in T containingb andc, where Pe;, = ¢.. Note that
b < c¢. With y, construct the partitio®?y, . .., Z,, as above Lemma 2.5. (b1, w1)
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and (v2, wz) are two nonzero entries of[2;; ;1] with vy < v, then by the
construction of the partition and the fact tihesatisfies condition (Il), Lemma 2.3(b)
implies thatw; < w». Using Lemma 2.5(c), it follows thad[Z2;; 2;,1] is in row
echelon form. By condition (I) and Lemma 2.5(R[2;; #,,1] is in row echelon
form with nondecreasing row sums.

Giveny € R", let y», be the vector obtained from by retaining in order the
entries correspondlng to the indices4fy. We define a vector as follows. For

Jj=0,...,m,letQ; be a permutation matrix such that
Qj (Px)gj =27,
is in nondecreasing order. L& € S, bqsuqh thakRx = z = (z4, ..., zn).
To proveRr € S, i.e.,x'R'ARx = x'P'A Px, note that by Lemma 2.5(a) and (b),
m—1
X'R'ARx = 7'Az = 2, A[20; Poling +2 ) 2, Al2); Pj41129,s-
j=0

Sincey is a maximal path, byll”) and Theorem 1.4,
o Al20; Polasy > (Px),, Al20; Z0)(Px) .

Also sinceA[Z;; 2 ;11] is in row echelon form with nondecreasing row sums, by
Lemma 2.6,

z,tyjA[g’j; Piviler; 2 (Px) Al2}; 2j41](Px),

It follows that

Zjt’

x'R'ARx > (ﬁ')c)t A[Zo; 90](1635)_%

+22 Px 2, AL2): 2 411(Px),

Zj+1

= x'P'APx.

SinceP € S, we haver'R'ARx = x'P'APx.
To proveb(R) > b = b(P), write Px = (y1, ..., yn)!. By the definition ofb,
yi < y2 < -+ < w1 <y < yj Wwheneverj >b
l l l l
X1 < x2 < o0 < Xp-1 S Xp
Supposs < b, s € 2; forsome 0< j < m, and?; hasindices; < --- < s, with
sy =s. Thenforsy > s, =
Vs £ < Vs S Vg
So the choice ofgaj implieszs, = y5, = x5, for s; < s, = s < b. It follows that we

may takeRe; = e; for s < b. If s = b, then sincé andc are in%g, a similar argu-
ment gives
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Ys1 <0< Ysu_1 < Ve € Yy
for sy > s, = b. Our choice ok, implies thatz, = z;, = y. = x;. It follows that
we may takeRe, = ¢, and thus(R) > b contradicting the maximality df(P). O

3. Optimal labelling of trees

An adjacency matripA of a treeT is said to be amptimaladjacency matrix if it
satisfies conditions (1) and (I). A is an optimal adjacency matrix, then the tiee
labelled according to the row indices Afis said to have aoptimal labelling The
following result characterizes those trélethat have an optimal labelling.

Theorem 3.1. A tree T has an optimal labelling if and only if it is isomorphic to a
rooted tree depicted with the root at the top level and leaves at the bottom level such
that there are no crossing edges and the following properties are satisfied

(P1) In each levelthe degrees of vertices are nonincreasing from left to right.

(P2) Each vertex in a higher level has degree greater than or equal to that of each
vertex in a lower level.

Proof. (=): Supposel has vertex setl, ..., n} labelled according to the row in-
dices of an optimal adjacency matéx Let vertexn, a vertex with maximal degree,
be the root vertex and put it in the top level. Once a certain level of vertices has been
determined, arrange the vertices in the next level as follows. For each vertex in the
current level starting from the left end, collect the vertices that are adjacent to it and
arrange them in the next level so that their indices are nonincreasing from left to
right. We claim that the resulting tree satisfies properties (P1) and (P2). To this end,
we first prove the following result.
(P3) Any vertexy < n is either on the right ob 4+ 1 or in a level lower thar + 1.

Itis true forv = n — 1. Suppose it is true for any vertax> v + 1. By condition
(I if v+ 1 is adjacent to- > v + 1, then either (il is adjacent ta or (i) v is
adjacent to- — 1. If (i) holds or (ii) holds withr — 1 on the right ofr, thenv is on
the right ofv + 1 by our construction. If (i) holds and— 1 is in a level lower than
r, thenv is in a level lower tham + 1. Thus (P3) holds.

Now for any vertices1 anduz with dequ1) > degquz), by condition (Du1 > uz
and, by consideringo, u2 +1,...,u1 — 1, u3 and (P3)u2 is on the right or is in a
level lower thant. Thus, (P1) and (P2) are true, and the claim is proved.

(«): Given arooted tree with vertices and (P1) and (P2), label the root vertex as
n. Label then; vertices in the second level, the vertices in the third level, and so
on, from lefttoright,byin — 1,...,n —n1},{n —n1—1,...,n —nz}, and so on.
Let A be the corresponding adjacency matrix. The row sunfsare nondecreasing
by (P1) and (P2). To prove condition (ll), suppase, s1) and (r2, s2) are nonzero
entries inA such thaty > s1 andrz > s2. Assume that, > r1. In the labelled tree,
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either vertexr, is to the left of vertex-1 (in the same level), and thus > s1 as
there are no crossing edges; or vertexs in a level above vertex;, and again
s2 > s1. [

Note that (P1) and (P2) together imply that the root is a vertex with maximal
degree, and only the vertices in the lowest (bottom) two levels can be leaves. More-
over, an optimal labelling is a monotone ordering and a minimum degree ordering
(see [4]). Let de@) denote the degree of vertexin T. The following corollary
follows from properties (1) andll”’) of an optimal adjacency matrix.

Corollary 3.2. Suppose T has an optimal labelling. Then the following are:true

(a) In any path in Tthere cannot be a vertex with lower degree lying between two
vertices with higher degree.

(b) For every maximal pathk1, k2, ..., kg]in T,
1= degky) = degk,) < degk) < degks—1) < ---
or
1= degk,) = degk1) < degk,—1) < degkz) < ---.

(c) If there exists a unique vertexwith maximal degreghen it is a center of every
maximal path passing through it.

We now use Theorem 3.1 to give optimal labellings for some families of trees.

Example 3.3. Let T be a path withn vertices. An optimal labelling is given by
taking a center vertex as the root with lalelits neighbors in the next level with
labelsn — 1, n — 2; their other neighbors in the next level with labels- 3, n — 4,
respectively; and so on. ifis odd, then both leaves are in the same bottom level; if
nis even, then the lowest leaf with label 1 is one level lower than the leaf with label
2.

Example 3.4. LetT be a star witm vertices. Then an optimal labelling is given by
taking the center vertex as the root with labhgénd giving labels 1. .., n — 1 to its
neighbors (leaves) in any order.

Example 3.5. LetT'(n; p, g, r) denote a tree with > 5 vertices obtained from a
star ong + r + 1 vertices by inserting > 1 additional vertices on each gf> 1
edges ang — 1 additional vertices on each of the remaining: 0 edges. Thus,
n=rp+1+q(1+ p), andT hasq leaves in the bottom level withleaves in one
level higher. Then an optimal labelling f@t(n; p, g, r) is given by taking the cen-
ter vertex of the star as the root with labelgiving labelsn — 1,...,n — g to its
neighbors on the edges wighvertices inserted, labels— ¢ —1,...,n — g — r to
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its neighbors on the edges with— 1 vertices inserted, and continuing to label their
neighbors in the same orders1£> 1, the leaves are in the two lowest levels.

Examples 3.3-3.5 can be used to give an optimal labelling for all trees with at
most five vertices, and for four of the six trees with six vertices. For a list of trees
with at most 10 vertices see [2, Appendix, Table 2]. The only tree with three vertices
is a path; there are two trees with four vertices, a path and a star; there are three
trees with five vertices, a path, a star ane; 1, 1, 2). Five of the six trees with six
vertices have an optimal labelling: a path, a sta®; 1, 1, 4), T(6; 1, 2, 1), and the
tree (not covered by the examples) given in Fig. 1.

Thus by Theorem 2.1, Problem 1.1 (and hence Problem 1.2) has a solution, and all
labellings are characterized for each of the above trees so that the adjacency matrices
satisfy conditions (1) and (I1). The one tree with six vertices that does not have an
optimal labelling is listed as 2.11 in [2, Appendix, Table 2]; we will return to this in
Section 4 (see Figs. 2 and 3). Seven of the 11 trees with seven vertices (five of which
are covered by the above examples) have an optimal labelling, and hence have a
solution to Problems 1.1 and 1.2. The remaining four trees with seven vertices that
have no optimal labelling are listed as 2.17, 2.19, 2.21 and 2.22 in [2, Appendix,
Table 2].
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4. Related results

Even if Problem 1.1 does not have a solution, but we know that
max{x'Q'AQx: Q € S,} can only occur forQ € {Py, ..., P;}, then we have a
corresponding result for Problem2l Herek is usually small compared with!.

The proof of the following proposition parallels that of Proposition 1.5.

Proposition 4.1. Let A be an adjacency matrix of a tree T with n vertices. Suppose

permutation matrice®s, ..., Px € S, are such that for allkr € R, ,
max x'P!AP;x > x'Q'AQ VQ € S,.
<<k

Then for allD = diag(ds, . ..,d,) withds < --- < d,
max Amax(D + PjAP;) > [max Amax(D + Q'AQ) YO € S,.
: A

1<j<k

As discussed at the end of Section 3, there is one tree with six vertices that does
not have an optimal labelling (see [2, Appendix, Table 2, 2.11]). Probl&nfahd
hence Problem.1) has no solution for this tree. Using Proposition 4.1, we can,
however, narrow our search to two permutati®asP; to give max< j<2 Amax(D +
P}APJ-). In fact, if D = diag(0, 0,0, 0,0, 1), then maxamax(D + P'AP) occurs
for A labelled according to the tree in Fig. 2. f = diag(0, 0,0, 1,1, 1,), then
maximax(D + P'A P) occurs forA labelled according to Fig. 3. Note that these are
not optimal labellings since property (P2) is not satisfied.

Problems corresponding tolland 12 can also be considered for symmetric non-
negative matrices or for adjacency matrices of general graphs. For example, we give
the solution to Problem.1 (and thus to Problem.2) for a class of matrices asso-
ciated with the star graph (cf. [3, Theorem 4]), and for graphs on four vertices that
contain a cycle.

Theorem 4.2. Let

_(Ou—1 u
o= (% )
whereu = (u1, ..., up—1)'with0 < ug < --- < u,—1. Thenforallx € R’} 4
x'Bx > x'0'BOx VO € S,.

Consequentlyfor all D = diag(ds, ..., d,) withdy < --- < d,
imax(D + B) = dmax(QDQ' + B) VQ € S,.

Proof. For any non_nggatiwe =(x1, ..., x5} xtQ_tB Ox = 2(2’};1 ujx,x;). This
expression is maximized (among all permutations of the entrie§ ahenx; <

-+ < x,. This gives the first assertion, and the second assertion follows easily from
Proposition 1.5. [J
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Example 4.3. There are six graphs with four vertices: two trees; two graphs (the 4-
cycle and the complete graph) for which &lle S4 solve Problems.1 and 12 due

to symmetry; and two others (a 4-cycle with a chord and a kite graph, see 1.5 and 1.6,
respectively, in [2, Appendix, Table 1]). For either of these latter two graphs, max-
imization of the quadratic form in Problemllgives an optimal labelling when the
adjacency matrix has nondecreasing row sums. Thus, the problems corresponding to
1.1 and 12 have a solution for all graphs with four vertices.

We conclude by noting that the minimum of the smallest eigenvalue of matrices
of the form P D P' + A can be obtained from the following duality result. This dual
problem for a path is the main focus of the work in [1,7].

Proposition 4.4. Let A be an adjacency matrix of a tree with n vertices. If for all
D =diag(ds, ...,d,) withdy < --- < d,

Amax(PDP'+ A) > Amax(QDQ' + A) VQ € S,
then for all D = diag(ds, ..., d,) withdy > --- > d,
Amin(PDP' + A) < Amin(QDQ' + A) VQ € S,.

Proof. Since PDP'+ A is signature similar toPDP'— A, it follows that
Amax(PDP' 4+ A) = —Amin(P(—D) P! + A), which gives the result. [
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