A Note on Eigenvalues of Perturbed Hermitian Matrices

Chi-Kwong Li^{*} Ren-Cang Li[†]

July 2004

Abstract

Let

$$A = \left(\begin{array}{cc} H_1 & E^* \\ E & H_2 \end{array} \right) \quad \text{ and } \quad \widetilde{A} = \left(\begin{array}{cc} H_1 & O \\ O & H_2 \end{array} \right)$$

be Hermitian matrices with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_k$ and $\tilde{\lambda}_1 \geq \cdots \geq \tilde{\lambda}_k$, respectively. Denote by ||E|| the spectral norm of the matrix E, and η the spectral gap between the spectra of H_1 and H_2 . It is shown that

$$|\lambda_i - \widetilde{\lambda}_i| \le \frac{2\|E\|^2}{\eta + \sqrt{\eta^2 + 4\|E\|^2}},$$

which improves all the existing results. Similar bounds are obtained for singular values of matrices under block perturbations.

AMS Classifications: 15A42, 15A18, 65F15. **Keywords:** Hermitian matrix, eigenvalue, singular value.

1 Introduction

Consider a partitioned Hermitian matrix

$$A = {}^{m}_{n} \begin{pmatrix} H_{1} & E^{*} \\ E & H_{2} \end{pmatrix},$$
(1.1)

where E^* is E's complex conjugate transpose. At various situations (typically when E is *small*), one is interested in knowing the impact of removing E and E^* on the eigenvalues

^{*}Department of Mathematics, The College of William and Mary, Williamsburg, Virginia 23185 (ckli@math.wm.edu.) Research supported in part by the NSF grant DMS 0071994.

[†]Department of Mathematics, University of Kentucky, Lexington, KY 40506 (rcli@ms.uky.edu.) This work was supported in part by the National Science Foundation CAREER award under Grant No. CCR-9875201.

of A. More specifically, one would like to obtain bounds for the differences between that eigenvalues of A and those of its perturbed matrix

$$\widetilde{A} = {}^{m}_{n} \begin{pmatrix} H_{1} & O \\ O & H_{2} \end{pmatrix}.$$
(1.2)

Let $\lambda(X)$ be the spectrum of the square matrix X, and let ||Y|| be the spectral norm of a matrix Y, i.e., the largest singular value of Y. There are two kinds of bounds for the eigenvalues $\lambda_1 \geq \cdots \geq \lambda_{m+n}$ and $\widetilde{\lambda}_1 \geq \cdots \geq \widetilde{\lambda}_{m+n}$ of A and \widetilde{A} , respectively:

1. [1, 7, 8]

$$|\lambda_i - \lambda_i| \le ||E||. \tag{1.3}$$

2. [1, 2, 3, 5, 7, 8] If the spectra of H_1 and H_2 are disjoint, then

$$|\lambda_i - \widetilde{\lambda}_i| \le ||E||^2 / \eta, \tag{1.4}$$

where

$$\eta \stackrel{\text{def}}{=} \min_{\mu_1 \in \lambda(H_1), \, \mu_2 \in \lambda(H_2)} |\mu_1 - \mu_2|,$$

and $\lambda(H_i)$ is the spectrum of H_i .

The bounds of the first kind do not use information of the spectral distribution of the H_1 and H_2 , which will give (much) weaker bounds when η is not so small; while the bounds of the second kind may blow up whenever H_1 and H_2 have a common eigenvalue. Thus both kinds have their own drawbacks, and it would be advantageous to have bounds that are always no bigger than ||E||, of $\mathcal{O}(||E||)$ as $\eta \to 0$, and at the same time behave like $\mathcal{O}(||E||^2/\eta)$ for not so small η . To further motivate our study, let us look at the following 2×2 example.

Example 1 Consider the 2×2 Hermitian matrix

$$A = \begin{pmatrix} \alpha & \epsilon \\ \epsilon & \beta \end{pmatrix}. \tag{1.5}$$

Interesting cases are when ϵ is *small*, and thus α and β are *approximate* eigenvalues of A. We shall analyze by how much the eigenvalues of A differ from α and β . Without loss of generality, assume

$$\alpha > \beta$$

The eigenvalues of A, denoted by λ_{\pm} , satisfy $\lambda^2 - (\alpha + \beta)\lambda + \alpha\beta - \epsilon^2 = 0$; and thus

$$\lambda_{\pm} = \frac{\alpha + \beta \pm \sqrt{(\alpha + \beta)^2 - 4(\alpha\beta - \epsilon^2)}}{2} = \frac{\alpha + \beta \pm \sqrt{(\alpha - \beta)^2 + 4\epsilon^2}}{2}$$

Now

$$0 < \left\{ \begin{array}{l} \lambda_{+} - \alpha \\ \beta - \lambda_{-} \end{array} \right\} = \frac{-(\alpha - \beta) + \sqrt{(\alpha - \beta)^{2} + 4\epsilon^{2}}}{2} \\ = \frac{2\epsilon^{2}}{(\alpha - \beta) + \sqrt{(\alpha - \beta)^{2} + 4\epsilon^{2}}} \tag{1.6}$$

which provides a difference that enjoys the following properties:

$$\frac{2\epsilon^2}{(\alpha-\beta)+\sqrt{(\alpha-\beta)^2+4\epsilon^2}} \begin{cases} \leq \epsilon & \text{always,} \\ \rightarrow \epsilon & \text{as } \alpha \rightarrow \beta^+, \\ \leq \epsilon^2/(\alpha-\beta). \end{cases}$$

The purpose of this note is to extend this 2×2 example and obtain bounds which improve both (1.3) and (1.4). Such results are not only of theoretical interest but also important in the computations of eigenvalues of Hermitian matrices [4, 6, 9].

As an application, similar bounds are presented for the singular value problem.

2 Main Result

Theorem 2 Let

$$A = {}^{m}_{n} \begin{pmatrix} H_{1} & E^{*} \\ E & H_{2} \end{pmatrix} \quad and \quad \widetilde{A} = {}^{m}_{n} \begin{pmatrix} H_{1} & O \\ O & H_{2} \end{pmatrix}$$

be Hermitian matrices with eigenvalues

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_{m+n} \quad and \quad \widetilde{\lambda}_1 \ge \widetilde{\lambda}_2 \ge \dots \ge \widetilde{\lambda}_{m+n},$$
 (2.1)

 $respectively. \ Define$

$$\eta_{i} \stackrel{\text{def}}{=} \begin{cases} \min_{\mu_{2} \in \lambda(H_{2})} |\widetilde{\lambda}_{i} - \mu_{2}|, & \text{if } \widetilde{\lambda}_{i} \in \lambda(H_{1}), \\ \\ \min_{\mu_{1} \in \lambda(H_{1})} |\widetilde{\lambda}_{i} - \mu_{1}|, & \text{if } \widetilde{\lambda}_{i} \in \lambda(H_{2}), \end{cases}$$
(2.2)

$$\eta \stackrel{\text{def}}{=} \min_{1 \le i \le m+n} \eta_i = \min_{\mu_1 \in \lambda(H_1), \, \mu_2 \in \lambda(H_2)} |\mu_1 - \mu_2|.$$
(2.3)

Then for $i = 1, 2, \cdots, m + n$, we have

$$|\lambda_i - \widetilde{\lambda}_i| \leq \frac{2\|E\|^2}{\eta_i + \sqrt{\eta_i^2 + 4\|E\|^2}}$$

$$(2.4)$$

$$\leq \frac{2\|E\|^2}{\eta + \sqrt{\eta^2 + 4\|E\|^2}}.$$
(2.5)

Proof. Suppose U^*H_1U and V^*H_2V are in diagonal form with diagonal entries arranged in descending order. We may assume that $U = I_m$ and $V = I_n$. Otherwise, replace A by

$$(U \oplus V)^* A (U \oplus V).$$

We may perturb the diagonal of A so that all entries are distinct, and apply continuity argument for the general case.

We prove the result by induction on m + n. If m + n = 2, the result is clear (from our Example). Assume that m + n > 2, and the result is true for Hermitian matrices of size m + n - 1.

First, refining an argument of Mathias [5], we show that (2.4) holds for i = 1. Assume that the (1, 1) entry of H_1 equals $\tilde{\lambda}_1$. By the min-max principle [1, 7, 8], we have

$$\lambda_1 \ge e_1^* A e_1 = \lambda_1,$$

where e_1 is the first column of the identity matrix. Let

$$X = \begin{pmatrix} I_m & 0\\ -(H_2 - \mu_1 I_n)^{-1} E & I_n \end{pmatrix}.$$

Then

$$X^*(A - \lambda_1 I)X = \begin{pmatrix} H_1(\lambda_1) & 0\\ 0 & H_2 - \lambda_1 I_n \end{pmatrix},$$

where

$$H_1(\lambda_1) = H_1 - \lambda_1 I_m - E^* (H_2 - \lambda_1 I_n)^{-1} E$$

Since A and X^*AX have the same inertia, we see that $H_1(\lambda_1)$ has zero as the largest eigenvalue. Notice that the largest eigenvalue of $H_1 - \lambda_1 I$ is $\tilde{\lambda}_1 - \lambda_1 \leq 0$. Thus, for $\delta_1 = |\lambda_1 - \tilde{\lambda}_1| = \lambda - \tilde{\lambda}_1$, we have (see [7, (10.9)])

$$\lambda_1 \le \lambda_1 + ||E||_2^2 / (\delta_1 + \eta_1),$$

and hence

$$\delta_1 \le ||E||^2 / (\delta_1 + \eta_1).$$

Consequently,

$$\delta_1 \le \frac{2\|E\|}{\eta_1 + \sqrt{\eta_1^2 + 4\|E\|^2}}$$

as asserted. Similarly, we can prove the result if the (1,1) entry of H_2 equals λ_1 . In this case, we will apply the inertia arguments to A and YAY^* with

$$Y = \begin{pmatrix} I_m & 0\\ -E(H_1 - \lambda_1 I_m)^{-1} & I_n \end{pmatrix}.$$

Applying the result of the last paragraph to -A, we see that (2.2) holds for i = m + n.

Now, suppose 1 < i < m + n. The result trivially holds if $\lambda_i = \tilde{\lambda}_i$. Suppose $\lambda_i \neq \tilde{\lambda}_i$. We may assume that $\tilde{\lambda}_i > \lambda_i$. Otherwise, replace (A, \tilde{A}, i) by $(-A, -\tilde{A}, m + n - i + 1)$. Delete the row and column of A that contain the diagonal entry $\tilde{\lambda}_n$. Suppose the resulting matrix \hat{A} has eigenvalues $\nu_1 \geq \cdots \geq \nu_{m+n-1}$. By the interlacing inequalities [7, Section 10.1], we have

$$\lambda_i \ge \nu_i$$
 and hence $\widetilde{\lambda}_i - \lambda_i \le \widetilde{\lambda}_i - \nu i.$ (2.6)

Note that λ_i is the *i*th largest diagonal entries in \hat{A} . Let $\hat{\eta}_i$ be the minimum distance between λ_i and the diagonal entries in the diagonal block \hat{H}_j in \hat{A} not containing λ_i ; here $j \in \{1, 2\}$. Then

$$\widehat{\eta}_i \ge \eta_i$$

because \widehat{H}_j may have one fewer diagonal entries than H_j . Let \widehat{E} be the off-diagonal block of \widehat{A} . Then $\|\widehat{E}\| \leq \|E\|$. Thus,

$$\begin{aligned} |\lambda_i - \widetilde{\lambda}_i| &= \widetilde{\lambda}_i - \lambda_i & \text{because } \widetilde{\lambda}_i > \lambda_i \\ &\leq \widetilde{\lambda}_i - \nu_i & \text{by } (2.6) \\ &\leq \frac{2\|\widehat{E}\|^2}{\widehat{\eta}_i + \sqrt{\widehat{\eta}_i^2 + 4\|\widehat{E}\|^2}} & \text{by induction assumption} \\ &\leq \frac{2\|\widehat{E}\|^2}{\eta_i + \sqrt{\eta_i^2 + 4\|\widehat{E}\|^2}} & \text{because } \widehat{\eta}_i \ge \eta_i \\ &= \frac{1}{2}\sqrt{\eta_i^2 + 4\|\widehat{E}\|^2} - \eta_i \\ &\leq \frac{1}{2}\sqrt{\eta_i^2 + 4\|\widehat{E}\|^2} - \eta_i & \text{because } \|\widehat{E}\| \le \|E\| \\ &= \frac{2\|E\|^2}{\eta_i + \sqrt{\eta_i^2 + 4\|E\|^2}} \end{aligned}$$

as asserted. \blacksquare

3 Application to Singular Value Problem

In this section, we apply the result in Section 2 to study singular values of matrices. For notational convenience in connection to our discussion, we define the sequence of singular values of a complex $p \times q$ matrix X by

$$\sigma(X) = (\sigma_1(X), \dots, \sigma_k(X)),$$

where $k = \max\{p,q\}$ and $\sigma_1(X) \ge \cdots \ge \sigma_k(X)$ are the nonnegative square roots of the eigenvalues of the matrix XX^* or X^*X depending on which one has a larger size. Note that the nonzero eigenvalues of XX^* and X^*X are the same, and they give rise to the nonzero singular values of X which are of importance. We have the following result concerning the nonzero singular values of perturbed matrices. Theorem 3 Let

$$B = {}^{k}_{n} \begin{pmatrix} B \\ E_{2} \\ E_{2} \end{pmatrix} and \widetilde{B} = {}^{m}_{n} \begin{pmatrix} B \\ G_{1} \\ O \\ O \\ G_{2} \end{pmatrix}$$

be complex matrices with singular values

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_{\max\{m+n,k+\ell\}} \quad and \quad \widetilde{\sigma}_1 \ge \widetilde{\sigma}_2 \ge \dots \ge \widetilde{\sigma}_{\max\{m+n,k+\ell\}}, \tag{3.1}$$

respectively, so that G_1 and G_2 are non-trivial. Define $\epsilon = \max\{||E_1||, ||E_2||\}$, and

$$\eta_i \stackrel{\text{def}}{=} \begin{cases} \min_{\mu_2 \in \sigma(G_2)} |\widetilde{\sigma}_i - \mu_2|, & \text{if } \widetilde{\sigma}_i \in \sigma(G_1), \\ \min_{\mu_1 \in \sigma(G_1)} |\widetilde{\sigma}_i - \mu_1|, & \text{if } \widetilde{\sigma}_i \in \sigma(G_2), \end{cases}$$
(3.2)

$$\eta \stackrel{\text{def}}{=} \min_{1 \le i \le m+n} \eta_i = \min_{\mu_1 \in \sigma(G_1), \, \mu_2 \in \sigma(G_2)} |\mu_1 - \mu_2|.$$
(3.3)

Then for $i = 1, 2, \cdots, \min\{m + n, k + \ell\}$, we have

$$|\sigma_i - \widetilde{\sigma}_i| \leq \frac{2\epsilon^2}{\eta_i + \sqrt{\eta_i^2 + 4\epsilon^2}}$$
(3.4)

$$\leq \frac{2\epsilon^2}{\eta + \sqrt{\eta^2 + 4\epsilon^2}},\tag{3.5}$$

and $\sigma_i = \tilde{\sigma}_i = 0$ for $i > \min\{m + n, k + \ell\}$.

PROOF: By Jordan-Wielandt Theorem [8, Theorem I.4.2], the eigenvalues of

$$\begin{pmatrix} O & B \\ B^* & O \end{pmatrix}$$

are $\pm \sigma_i$ and possibly some zeros adding up to $m+n+k+\ell$ eigenvalues. A similar statement holds for \widetilde{B} . Permuting the rows and columns appropriately, we see that

$$\begin{pmatrix} O & B \\ B^* & O \end{pmatrix} \text{ is similar to } \begin{pmatrix} O & G_1 & O & E_1 \\ G_1^* & O & E_2^* & O \\ O & E_2 & O & G_2 \\ E_1^* & O & G_2^* & O \end{pmatrix},$$

and

$$\begin{pmatrix} O & \widetilde{B} \\ \widetilde{B}^* & O \end{pmatrix} \quad \text{is similar to} \quad \begin{pmatrix} O & G_1 & \\ G_1^* & O & \\ & & O & G_2 \\ & & & G_2^* & O \end{pmatrix}.$$

Applying Theorem 2 with

$$H_i = \begin{pmatrix} O & G_i \\ G_i^* & O \end{pmatrix}$$
 and $E = \begin{pmatrix} O & E_2 \\ E_1^* & O \end{pmatrix}$,

we get the result. \blacksquare

One can also apply the above proof to the degenerate cases when G_1 or G_2 in the matrix B is trivial, i.e., one of the parameters m, n, k, ℓ is zero. These cases are useful in applications. We state one of them, and one can easily extend it to other cases.

Theorem 4 Suppose B = (G E) and $\tilde{B} = (G O)$ are $p \times q$ matrices with singular values

$$\sigma_1 \ge \dots \ge \sigma_{\max\{p,q\}}$$
 and $\widetilde{\sigma}_1 \ge \dots \ge \widetilde{\sigma}_{\max\{p,q\}}$,

respectively. Then for $i = 1, \ldots, \min\{p, q\}$,

$$|\sigma_i - \widetilde{\sigma}_i| \le \frac{2\|E\|}{2\widetilde{\sigma}_i + \sqrt{\widetilde{\sigma}_i^2 + 4\|E\|^2}}$$

Acknowledgment

This paper evolved from an early note of the second author in which Theorem 2 was proven for special cases. The authors wish to thank Editor Volker Mehrmann for making this collaboration possible.

References

- R. Bhatia. *Matrix Analysis.* Graduate Texts in Mathematics, vol. 169. Springer, New York, 1996.
- [2] J. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.
- [3] G. H. Golub and C. F. van Loan. *Matrix Computations*. Johns Hopkins University Press, Baltimore, Maryland, 2nd edition, 1989.
- [4] W. Kahan. When to neglect off-diagonal elements of symmetric tri-diagonal matrices. Technical Report CS42, Computer Science Department, Stanford University, 1966.
- [5] R. Mathias. Quadratic residual bounds for the hermitian eigenvalue problem. SIAM Journal on Matrix Analysis and Applications, 19:541–550, 1998.
- [6] C. C. Paige. Eigenvalues of perturbed Hermitian matrices. *Linear Algebra and its Applications*, 8:1–10, 1974.
- [7] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, 1998. This SIAM edition is an unabridged, corrected reproduction of the work first published by Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1980.
- [8] G. W. Stewart and J.-G. Sun. *Matrix Perturbation Theory*. Academic Press, Boston, 1990.
- [9] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, England, 1965.