A Note on Eigenvalues of Perturbed Hermitian Matrices

Chi-Kwong Li* Ren-Cang Li ${ }^{\dagger}$

July 2004

$$
\begin{gathered}
\text { Abstract } \\
\text { Let } \quad A=\left(\begin{array}{cc}
H_{1} & E^{*} \\
E & H_{2}
\end{array}\right) \quad \text { and } \quad \widetilde{A}=\left(\begin{array}{cc}
H_{1} & O \\
O & H_{2}
\end{array}\right)
\end{gathered}
$$

be Hermitian matrices with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{k}$ and $\widetilde{\lambda}_{1} \geq \cdots \geq \widetilde{\lambda}_{k}$, respectively. Denote by $\|E\|$ the spectral norm of the matrix E, and η the spectral gap between the spectra of H_{1} and H_{2}. It is shown that

$$
\left|\lambda_{i}-\widetilde{\lambda}_{i}\right| \leq \frac{2\|E\|^{2}}{\eta+\sqrt{\eta^{2}+4\|E\|^{2}}},
$$

which improves all the existing results. Similar bounds are obtained for singular values of matrices under block perturbations.

AMS Classifications: 15A42, 15A18, 65F15.
Keywords: Hermitian matrix, eigenvalue, singular value.

1 Introduction

Consider a partitioned Hermitian matrix

$$
A={ }_{n}^{m}\left(\begin{array}{cc}
m & n \tag{1.1}\\
H_{1} & E^{*} \\
E & H_{2}
\end{array}\right),
$$

where E^{*} is E 's complex conjugate transpose. At various situations (typically when E is small), one is interested in knowing the impact of removing E and E^{*} on the eigenvalues

[^0]of A. More specifically, one would like to obtain bounds for the differences between that eigenvalues of A and those of its perturbed matrix
\[

\widetilde{A}={ }^{m}{ }_{n}\left($$
\begin{array}{cc}
m & n \tag{1.2}\\
H_{1} & O \\
O & H_{2}
\end{array}
$$\right) .
\]

Let $\lambda(X)$ be the spectrum of the square matrix X, and let $\|Y\|$ be the spectral norm of a matrix Y, i.e., the largest singular value of Y. There are two kinds of bounds for the eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{m+n}$ and $\widetilde{\lambda}_{1} \geq \cdots \geq \widetilde{\lambda}_{m+n}$ of A and \widetilde{A}, respectively:

1. $[1,7,8]$

$$
\begin{equation*}
\left|\lambda_{i}-\widetilde{\lambda}_{i}\right| \leq\|E\| \tag{1.3}
\end{equation*}
$$

2. $[1,2,3,5,7,8]$ If the spectra of H_{1} and H_{2} are disjoint, then

$$
\begin{equation*}
\left|\lambda_{i}-\widetilde{\lambda}_{i}\right| \leq\|E\|^{2} / \eta \tag{1.4}
\end{equation*}
$$

where

$$
\eta \stackrel{\text { def }}{=} \min _{\mu_{1} \in \lambda\left(H_{1}\right), \mu_{2} \in \lambda\left(H_{2}\right)}\left|\mu_{1}-\mu_{2}\right|,
$$

and $\lambda\left(H_{i}\right)$ is the spectrum of H_{i}.
The bounds of the first kind do not use information of the spectral distribution of the H_{1} and H_{2}, which will give (much) weaker bounds when η is not so small; while the bounds of the second kind may blow up whenever H_{1} and H_{2} have a common eigenvalue. Thus both kinds have their own drawbacks, and it would be advantageous to have bounds that are always no bigger than $\|E\|$, of $\mathcal{O}(\|E\|)$ as $\eta \rightarrow 0$, and at the same time behave like $\mathcal{O}\left(\|E\|^{2} / \eta\right)$ for not so small η. To further motivate our study, let us look at the following 2×2 example.

Example 1 Consider the 2×2 Hermitian matrix

$$
A=\left(\begin{array}{cc}
\alpha & \epsilon \tag{1.5}\\
\epsilon & \beta
\end{array}\right)
$$

Interesting cases are when ϵ is small, and thus α and β are approximate eigenvalues of A. We shall analyze by how much the eigenvalues of A differ from α and β. Without loss of generality, assume

$$
\alpha>\beta
$$

The eigenvalues of A, denoted by $\lambda_{ \pm}$, satisfy $\lambda^{2}-(\alpha+\beta) \lambda+\alpha \beta-\epsilon^{2}=0$; and thus

$$
\lambda_{ \pm}=\frac{\alpha+\beta \pm \sqrt{(\alpha+\beta)^{2}-4\left(\alpha \beta-\epsilon^{2}\right)}}{2}=\frac{\alpha+\beta \pm \sqrt{(\alpha-\beta)^{2}+4 \epsilon^{2}}}{2}
$$

Now

$$
\begin{align*}
0<\left\{\begin{array}{c}
\lambda_{+}-\alpha \\
\beta-\lambda_{-}
\end{array}\right\} & =\frac{-(\alpha-\beta)+\sqrt{(\alpha-\beta)^{2}+4 \epsilon^{2}}}{2} \\
& =\frac{2 \epsilon^{2}}{(\alpha-\beta)+\sqrt{(\alpha-\beta)^{2}+4 \epsilon^{2}}} \tag{1.6}
\end{align*}
$$

which provides a difference that enjoys the following properties:

$$
\frac{2 \epsilon^{2}}{(\alpha-\beta)+\sqrt{(\alpha-\beta)^{2}+4 \epsilon^{2}}}\left\{\begin{array}{l}
\leq \epsilon \quad \text { always } \\
\rightarrow \epsilon \quad \text { as } \alpha \rightarrow \beta^{+} \\
\leq \epsilon^{2} /(\alpha-\beta)
\end{array}\right.
$$

The purpose of this note is to extend this 2×2 example and obtain bounds which improve both (1.3) and (1.4). Such results are not only of theoretical interest but also important in the computations of eigenvalues of Hermitian matrices [4, 6, 9].

As an application, similar bounds are presented for the singular value problem.

2 Main Result

Theorem 2 Let

$$
A=\begin{gathered}
m \\
m
\end{gathered}\left(\begin{array}{cc}
m \\
H_{1} & E^{*} \\
E & H_{2}
\end{array}\right) \quad \text { and } \quad \widetilde{A}=\begin{gathered}
\\
m \\
n
\end{gathered}\left(\begin{array}{cc}
H_{1} & O \\
O & H_{2}
\end{array}\right)
$$

be Hermitian matrices with eigenvalues

$$
\begin{equation*}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{m+n} \quad \text { and } \quad \widetilde{\lambda}_{1} \geq \widetilde{\lambda}_{2} \geq \cdots \geq \widetilde{\lambda}_{m+n} \tag{2.1}
\end{equation*}
$$

respectively. Define

$$
\begin{align*}
& \eta_{i} \stackrel{\text { def }}{=}\left\{\begin{array}{l}
\min _{\mu_{2} \in \lambda\left(H_{2}\right)}\left|\widetilde{\lambda}_{i}-\mu_{2}\right|, \quad \text { if } \widetilde{\lambda}_{i} \in \lambda\left(H_{1}\right), \\
\min _{\mu_{1} \in \lambda\left(H_{1}\right)}\left|\widetilde{\lambda}_{i}-\mu_{1}\right|, \quad \text { if } \widetilde{\lambda}_{i} \in \lambda\left(H_{2}\right),
\end{array}\right. \tag{2.2}\\
& \eta \stackrel{\text { def }}{=} \min _{1 \leq i \leq m+n} \eta_{i}=\min _{\mu_{1} \in \lambda\left(H_{1}\right), \mu_{2} \in \lambda\left(H_{2}\right)}\left|\mu_{1}-\mu_{2}\right| . \tag{2.3}
\end{align*}
$$

Then for $i=1,2, \cdots, m+n$, we have

$$
\begin{align*}
\left|\lambda_{i}-\widetilde{\lambda}_{i}\right| & \leq \frac{2\|E\|^{2}}{\eta_{i}+\sqrt{\eta_{i}^{2}+4\|E\|^{2}}} \tag{2.4}\\
& \leq \frac{2\|E\|^{2}}{\eta+\sqrt{\eta^{2}+4\|E\|^{2}}} \tag{2.5}
\end{align*}
$$

Proof. Suppose $U^{*} H_{1} U$ and $V^{*} H_{2} V$ are in diagonal form with diagonal entries arranged in descending order. We may assume that $U=I_{m}$ and $V=I_{n}$. Otherwise, replace A by

$$
(U \oplus V)^{*} A(U \oplus V)
$$

We may perturb the diagonal of A so that all entries are distinct, and apply continuity argument for the general case.

We prove the result by induction on $m+n$. If $m+n=2$, the result is clear (from our Example). Assume that $m+n>2$, and the result is true for Hermitian matrices of size $m+n-1$.

First, refining an argument of Mathias [5], we show that (2.4) holds for $i=1$. Assume that the $(1,1)$ entry of H_{1} equals $\widetilde{\lambda}_{1}$. By the min-max principle $[1,7,8]$, we have

$$
\lambda_{1} \geq e_{1}^{*} A e_{1}=\tilde{\lambda}_{1}
$$

where e_{1} is the first column of the identity matrix. Let

$$
X=\left(\begin{array}{cc}
I_{m} & 0 \\
-\left(H_{2}-\mu_{1} I_{n}\right)^{-1} E & I_{n}
\end{array}\right)
$$

Then

$$
X^{*}\left(A-\lambda_{1} I\right) X=\left(\begin{array}{cc}
H_{1}\left(\lambda_{1}\right) & 0 \\
0 & H_{2}-\lambda_{1} I_{n}
\end{array}\right)
$$

where

$$
H_{1}\left(\lambda_{1}\right)=H_{1}-\lambda_{1} I_{m}-E^{*}\left(H_{2}-\lambda_{1} I_{n}\right)^{-1} E .
$$

Since A and $X^{*} A X$ have the same inertia, we see that $H_{1}\left(\lambda_{1}\right)$ has zero as the largest eigenvalue. Notice that the largest eigenvalue of $H_{1}-\lambda_{1} I$ is $\widetilde{\lambda}_{1}-\lambda_{1} \leq 0$. Thus, for $\delta_{1}=\left|\lambda_{1}-\widetilde{\lambda}_{1}\right|=\lambda-\widetilde{\lambda}_{1}$, we have (see $\left.[7,(10.9)]\right)$

$$
\lambda_{1} \leq \tilde{\lambda}_{1}+\|E\|_{2}^{2} /\left(\delta_{1}+\eta_{1}\right)
$$

and hence

$$
\delta_{1} \leq\|E\|^{2} /\left(\delta_{1}+\eta_{1}\right)
$$

Consequently,

$$
\delta_{1} \leq \frac{2\|E\|}{\eta_{1}+\sqrt{\eta_{1}^{2}+4\|E\|^{2}}}
$$

as asserted. Similarly, we can prove the result if the $(1,1)$ entry of H_{2} equals $\widetilde{\lambda}_{1}$. In this case, we will apply the inertia arguments to A and $Y A Y^{*}$ with

$$
Y=\left(\begin{array}{cc}
I_{m} & 0 \\
-E\left(H_{1}-\lambda_{1} I_{m}\right)^{-1} & I_{n}
\end{array}\right)
$$

Applying the result of the last paragraph to $-A$, we see that (2.2) holds for $i=m+n$.

Now, suppose $1<i<m+n$. The result trivially holds if $\lambda_{i}=\widetilde{\lambda}_{i}$. Suppose $\lambda_{i} \neq \widetilde{\lambda}_{i}$. We may assume that $\widetilde{\lambda}_{i}>\lambda_{i}$. Otherwise, replace (A, \widetilde{A}, i) by $(-A,-\widetilde{A}, m+n-i+1)$. Delete the row and column of A that contain the diagonal entry $\widetilde{\lambda}_{n}$. Suppose the resulting matrix \widehat{A} has eigenvalues $\nu_{1} \geq \cdots \geq \nu_{m+n-1}$. By the interlacing inequalities [7, Section 10.1], we have

$$
\begin{equation*}
\lambda_{i} \geq \nu_{i} \quad \text { and hence } \quad \tilde{\lambda}_{i}-\lambda_{i} \leq \widetilde{\lambda}_{i}-\nu i . \tag{2.6}
\end{equation*}
$$

Note that $\widetilde{\lambda}_{i}$ is the i th largest diagonal entries in \widehat{A}. Let $\widehat{\eta}_{i}$ be the minimum distance between $\widetilde{\lambda}_{i}$ and the diagonal entries in the diagonal block \widehat{H}_{j} in \widehat{A} not containing $\widetilde{\lambda}_{i}$; here $j \in\{1,2\}$. Then

$$
\widehat{\eta}_{i} \geq \eta_{i}
$$

because \widehat{H}_{j} may have one fewer diagonal entries than H_{j}. Let \widehat{E} be the off-diagonal block of \widehat{A}. Then $\|\widehat{E}\| \leq\|E\|$. Thus,

$$
\begin{array}{rlrl}
\left|\lambda_{i}-\widetilde{\lambda}_{i}\right| & =\widetilde{\lambda}_{i}-\lambda_{i} & & \text { because } \widetilde{\lambda}_{i}>\lambda_{i} \\
& \leq \widetilde{\lambda}_{i}-\nu_{i} & & \text { by }(2.6) \\
& \leq \frac{2\|\widehat{E}\|^{2}}{\widehat{\eta}_{i}+\sqrt{\widehat{\eta}_{i}^{2}+4\|\widehat{E}\|^{2}}} & & \text { by induction assumption } \\
& \leq \frac{2\|\widehat{E}\|^{2}}{\eta_{i}+\sqrt{\eta_{i}^{2}+4\|\widehat{E}\|^{2}}} & & \text { because } \widehat{\eta}_{i} \geq \eta_{i} \\
& =\frac{1}{2} \sqrt{\eta_{i}^{2}+4\|\widehat{E}\|^{2}}-\eta_{i} & \\
& \leq \frac{1}{2} \sqrt{\eta_{i}^{2}+4\|E\|^{2}}-\eta_{i} & & \text { because }\|\widehat{E}\| \leq\|E\| \\
& =\frac{2\|E\|^{2}}{\eta_{i}+\sqrt{\eta_{i}^{2}+4\|E\|^{2}}} &
\end{array}
$$

as asserted.

3 Application to Singular Value Problem

In this section, we apply the result in Section 2 to study singular values of matrices. For notational convenience in connection to our discussion, we define the sequence of singular values of a complex $p \times q$ matrix X by

$$
\sigma(X)=\left(\sigma_{1}(X), \ldots, \sigma_{k}(X)\right)
$$

where $k=\max \{p, q\}$ and $\sigma_{1}(X) \geq \cdots \geq \sigma_{k}(X)$ are the nonnegative square roots of the eigenvalues of the matrix $X X^{*}$ or $X^{*} X$ depending on which one has a larger size. Note that the nonzero eigenvalues of $X X^{*}$ and $X^{*} X$ are the same, and they give rise to the nonzero singular values of X which are of importance. We have the following result concerning the nonzero singular values of perturbed matrices.

Theorem 3 Let

$$
\left.B={ }_{{ }_{n}}^{{ }_{n}} \begin{array}{cc}
k & \ell \\
G_{1} & E_{1} \\
E_{2} & G_{2}
\end{array}\right) \quad \text { and } \quad \widetilde{B}={ }_{n}^{m}\left(\begin{array}{cc}
k & \ell \\
G_{1} & O \\
O & G_{2}
\end{array}\right)
$$

be complex matrices with singular values

$$
\begin{equation*}
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\max \{m+n, k+\ell\}} \quad \text { and } \quad \tilde{\sigma}_{1} \geq \tilde{\sigma}_{2} \geq \cdots \geq \widetilde{\sigma}_{\max \{m+n, k+\ell\}} \tag{3.1}
\end{equation*}
$$

respectively, so that G_{1} and G_{2} are non-trivial. Define $\epsilon=\max \left\{\left\|E_{1}\right\|,\left\|E_{2}\right\|\right\}$, and

$$
\begin{align*}
& \eta_{i} \stackrel{\text { def }}{=}\left\{\begin{array}{c}
\min _{\mu_{2} \in \sigma\left(G_{2}\right)}\left|\widetilde{\sigma}_{i}-\mu_{2}\right|, \quad \text { if } \widetilde{\sigma}_{i} \in \sigma\left(G_{1}\right), \\
\min _{\mu_{1} \in \sigma\left(G_{1}\right)}\left|\widetilde{\sigma}_{i}-\mu_{1}\right|, \quad \text { if } \widetilde{\sigma}_{i} \in \sigma\left(G_{2}\right),
\end{array}\right. \tag{3.2}\\
& \eta \stackrel{\text { def }}{=} \min _{1 \leq i \leq m+n} \eta_{i}=\min _{\mu_{1} \in \sigma\left(G_{1}\right), \mu_{2} \in \sigma\left(G_{2}\right)}\left|\mu_{1}-\mu_{2}\right| . \tag{3.3}
\end{align*}
$$

Then for $i=1,2, \cdots, \min \{m+n, k+\ell\}$, we have

$$
\begin{align*}
\left|\sigma_{i}-\widetilde{\sigma}_{i}\right| & \leq \frac{2 \epsilon^{2}}{\eta_{i}+\sqrt{\eta_{i}^{2}+4 \epsilon^{2}}} \tag{3.4}\\
& \leq \frac{2 \epsilon^{2}}{\eta+\sqrt{\eta^{2}+4 \epsilon^{2}}} \tag{3.5}
\end{align*}
$$

and $\sigma_{i}=\tilde{\sigma}_{i}=0$ for $i>\min \{m+n, k+\ell\}$.
Proof: By Jordan-Wielandt Theorem [8, Theorem I.4.2], the eigenvalues of

$$
\left(\begin{array}{cc}
O & B \\
B^{*} & O
\end{array}\right)
$$

are $\pm \sigma_{i}$ and possibly some zeros adding up to $m+n+k+\ell$ eigenvalues. A similar statement holds for \widetilde{B}. Permuting the rows and columns appropriately, we see that

$$
\left(\begin{array}{cc}
O & B \\
B^{*} & O
\end{array}\right) \quad \text { is similar to }\left(\begin{array}{cc|cc}
O & G_{1} & O & E_{1} \\
G_{1}^{*} & O & E_{2}^{*} & O \\
\hline O & E_{2} & O & G_{2} \\
E_{1}^{*} & O & G_{2}^{*} & O
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
O & \widetilde{B} \\
\widetilde{B}^{*} & O
\end{array}\right) \quad \text { is similar to } \quad\left(\begin{array}{cc|cc}
O & G_{1} & & \\
G_{1}^{*} & O & & \\
\hline & & O & G_{2} \\
& & G_{2}^{*} & O
\end{array}\right)
$$

Applying Theorem 2 with

$$
H_{i}=\left(\begin{array}{cc}
O & G_{i} \\
G_{i}^{*} & O
\end{array}\right) \quad \text { and } \quad E=\left(\begin{array}{cc}
O & E_{2} \\
E_{1}^{*} & O
\end{array}\right)
$$

we get the result.
One can also apply the above proof to the degenerate cases when G_{1} or G_{2} in the matrix B is trivial, i.e., one of the parameters m, n, k, ℓ is zero. These cases are useful in applications. We state one of them, and one can easily extend it to other cases.

Theorem 4 Suppose $B=(G E)$ and $\tilde{B}=(G O)$ are $p \times q$ matrices with singular values

$$
\sigma_{1} \geq \cdots \geq \sigma_{\max \{p, q\}} \quad \text { and } \quad \tilde{\sigma}_{1} \geq \ldots \geq \tilde{\sigma}_{\max \{p, q\}}
$$

respectively. Then for $i=1, \ldots, \min \{p, q\}$,

$$
\left|\sigma_{i}-\widetilde{\sigma}_{i}\right| \leq \frac{2\|E\|}{2 \widetilde{\sigma}_{i}+\sqrt{\widetilde{\sigma}_{i}^{2}+4\|E\|^{2}}}
$$

Acknowledgment

This paper evolved from an early note of the second author in which Theorem 2 was proven for special cases. The authors wish to thank Editor Volker Mehrmann for making this collaboration possible.

References

[1] R. Bhatia. Matrix Analysis. Graduate Texts in Mathematics, vol. 169. Springer, New York, 1996.
[2] J. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.
[3] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, Maryland, 2nd edition, 1989.
[4] W. Kahan. When to neglect off-diagonal elements of symmetric tri-diagonal matrices. Technical Report CS42, Computer Science Department, Stanford University, 1966.
[5] R. Mathias. Quadratic residual bounds for the hermitian eigenvalue problem. SIAM Journal on Matrix Analysis and Applications, 19:541-550, 1998.
[6] C. C. Paige. Eigenvalues of perturbed Hermitian matrices. Linear Algebra and its Applications, 8:1-10, 1974.
[7] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, 1998. This SIAM edition is an unabridged, corrected reproduction of the work first published by Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1980.
[8] G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, Boston, 1990.
[9] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, England, 1965.

[^0]: *Department of Mathematics, The College of William and Mary, Williamsburg, Virginia 23185 (ckli@math.wm.edu.) Research supported in part by the NSF grant DMS 0071994.
 ${ }^{\dagger}$ Department of Mathematics, University of Kentucky, Lexington, KY 40506 (rcli@ms.uky.edu.) This work was supported in part by the National Science Foundation CAREER award under Grant No. CCR9875201.

