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Abstract

Let

A =
(

H1 E∗

E H2

)
and Ã =

(
H1 O
O H2

)
be Hermitian matrices with eigenvalues λ1 ≥ · · · ≥ λk and λ̃1 ≥ · · · ≥ λ̃k, respectively.
Denote by ‖E‖ the spectral norm of the matrix E, and η the spectral gap between
the spectra of H1 and H2. It is shown that

|λi − λ̃i| ≤
2‖E‖2

η +
√

η2 + 4‖E‖2
,

which improves all the existing results. Similar bounds are obtained for singular values
of matrices under block perturbations.

AMS Classifications: 15A42, 15A18, 65F15.
Keywords: Hermitian matrix, eigenvalue, singular value.

1 Introduction

Consider a partitioned Hermitian matrix

A =
( m n

m H1 E∗

n E H2

)
, (1.1)

where E∗ is E’s complex conjugate transpose. At various situations (typically when E is
small), one is interested in knowing the impact of removing E and E∗ on the eigenvalues
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of A. More specifically, one would like to obtain bounds for the differences between that
eigenvalues of A and those of its perturbed matrix

Ã =
( m n

m H1 O
n O H2

)
. (1.2)

Let λ(X) be the spectrum of the square matrix X, and let ‖Y ‖ be the spectral norm of
a matrix Y , i.e., the largest singular value of Y . There are two kinds of bounds for the
eigenvalues λ1 ≥ · · · ≥ λm+n and λ̃1 ≥ · · · ≥ λ̃m+n of A and Ã, respectively:

1. [1, 7, 8]
|λi − λ̃i| ≤ ‖E‖. (1.3)

2. [1, 2, 3, 5, 7, 8] If the spectra of H1 and H2 are disjoint, then

|λi − λ̃i| ≤ ‖E‖2/η, (1.4)

where
η

def= min
µ1∈λ(H1), µ2∈λ(H2)

|µ1 − µ2|,

and λ(Hi) is the spectrum of Hi.

The bounds of the first kind do not use information of the spectral distribution of the H1

and H2, which will give (much) weaker bounds when η is not so small; while the bounds
of the second kind may blow up whenever H1 and H2 have a common eigenvalue. Thus
both kinds have their own drawbacks, and it would be advantageous to have bounds that
are always no bigger than ‖E‖, of O(‖E‖) as η → 0, and at the same time behave like
O(‖E‖2/η) for not so small η. To further motivate our study, let us look at the following
2× 2 example.

Example 1 Consider the 2× 2 Hermitian matrix

A =
(

α ε
ε β

)
. (1.5)

Interesting cases are when ε is small, and thus α and β are approximate eigenvalues of A.
We shall analyze by how much the eigenvalues of A differ from α and β. Without loss of
generality, assume

α > β.

The eigenvalues of A, denoted by λ±, satisfy λ2 − (α + β)λ + αβ − ε2 = 0; and thus

λ± =
α + β ±

√
(α + β)2 − 4(αβ − ε2)

2
=

α + β ±
√

(α− β)2 + 4ε2

2
.
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Now

0 <

{
λ+ − α
β − λ−

}
=

−(α− β) +
√

(α− β)2 + 4ε2

2

=
2ε2

(α− β) +
√

(α− β)2 + 4ε2
(1.6)

which provides a difference that enjoys the following properties:

2ε2

(α− β) +
√

(α− β)2 + 4ε2


≤ ε always,
→ ε as α → β+,
≤ ε2/(α− β).

The purpose of this note is to extend this 2×2 example and obtain bounds which improve
both (1.3) and (1.4). Such results are not only of theoretical interest but also important
in the computations of eigenvalues of Hermitian matrices [4, 6, 9].

As an application, similar bounds are presented for the singular value problem.

2 Main Result

Theorem 2 Let

A =
( m n

m H1 E∗

n E H2

)
and Ã =

( m n

m H1 O
n O H2

)
be Hermitian matrices with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λm+n and λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃m+n, (2.1)

respectively. Define

ηi
def=


min

µ2∈λ(H2)
|λ̃i − µ2|, if λ̃i ∈ λ(H1),

min
µ1∈λ(H1)

|λ̃i − µ1|, if λ̃i ∈ λ(H2),
(2.2)

η
def= min

1≤i≤m+n
ηi = min

µ1∈λ(H1), µ2∈λ(H2)
|µ1 − µ2|. (2.3)

Then for i = 1, 2, · · · ,m + n, we have

|λi − λ̃i| ≤ 2‖E‖2

ηi +
√

η2
i + 4‖E‖2

(2.4)

≤ 2‖E‖2

η +
√

η2 + 4‖E‖2
. (2.5)
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Proof. Suppose U∗H1U and V ∗H2V are in diagonal form with diagonal entries arranged
in descending order. We may assume that U = Im and V = In. Otherwise, replace A by

(U ⊕ V )∗A(U ⊕ V ).

We may perturb the diagonal of A so that all entries are distinct, and apply continuity
argument for the general case.

We prove the result by induction on m + n. If m + n = 2, the result is clear (from our
Example). Assume that m + n > 2, and the result is true for Hermitian matrices of size
m + n− 1.

First, refining an argument of Mathias [5], we show that (2.4) holds for i = 1. Assume
that the (1, 1) entry of H1 equals λ̃1. By the min-max principle [1, 7, 8], we have

λ1 ≥ e∗1Ae1 = λ̃1,

where e1 is the first column of the identity matrix. Let

X =
(

Im 0
−(H2 − µ1In)−1E In

)
.

Then

X∗(A− λ1I)X =
(

H1(λ1) 0
0 H2 − λ1In

)
,

where
H1(λ1) = H1 − λ1Im − E∗(H2 − λ1In)−1E.

Since A and X∗AX have the same inertia, we see that H1(λ1) has zero as the largest
eigenvalue. Notice that the largest eigenvalue of H1 − λ1I is λ̃1 − λ1 ≤ 0. Thus, for
δ1 = |λ1 − λ̃1| = λ− λ̃1, we have (see [7, (10.9)])

λ1 ≤ λ̃1 + ‖E‖2
2/(δ1 + η1),

and hence
δ1 ≤ ‖E‖2/(δ1 + η1).

Consequently,

δ1 ≤
2‖E‖

η1 +
√

η2
1 + 4‖E‖2

as asserted. Similarly, we can prove the result if the (1, 1) entry of H2 equals λ̃1. In this
case, we will apply the inertia arguments to A and Y AY ∗ with

Y =
(

Im 0
−E(H1 − λ1Im)−1 In

)
.

Applying the result of the last paragraph to −A, we see that (2.2) holds for i = m+n.
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Now, suppose 1 < i < m + n. The result trivially holds if λi = λ̃i. Suppose λi 6= λ̃i.
We may assume that λ̃i > λi. Otherwise, replace (A, Ã, i) by (−A,−Ã,m + n − i + 1).
Delete the row and column of A that contain the diagonal entry λ̃n. Suppose the resulting
matrix Â has eigenvalues ν1 ≥ · · · ≥ νm+n−1. By the interlacing inequalities [7, Section
10.1], we have

λi ≥ νi and hence λ̃i − λi ≤ λ̃i − νi. (2.6)

Note that λ̃i is the ith largest diagonal entries in Â. Let η̂i be the minimum distance
between λ̃i and the diagonal entries in the diagonal block Ĥj in Â not containing λ̃i; here
j ∈ {1, 2}. Then

η̂i ≥ ηi

because Ĥj may have one fewer diagonal entries than Hj . Let Ê be the off-diagonal block
of Â. Then ‖Ê‖ ≤ ‖E‖. Thus,

|λi − λ̃i| = λ̃i − λi because λ̃i > λi

≤ λ̃i − νi by (2.6)

≤ 2‖Ê‖2

η̂i +
√

η̂2
i + 4‖Ê‖2

by induction assumption

≤ 2‖Ê‖2

ηi +
√

η2
i + 4‖Ê‖2

because η̂i ≥ ηi

=
1
2

√
η2

i + 4‖Ê‖2 − ηi

≤ 1
2

√
η2

i + 4‖E‖2 − ηi because ‖Ê‖ ≤ ‖E‖

=
2‖E‖2

ηi +
√

η2
i + 4‖E‖2

as asserted.

3 Application to Singular Value Problem

In this section, we apply the result in Section 2 to study singular values of matrices. For
notational convenience in connection to our discussion, we define the sequence of singular
values of a complex p× q matrix X by

σ(X) = (σ1(X), . . . , σk(X)),

where k = max{p, q} and σ1(X) ≥ · · · ≥ σk(X) are the nonnegative square roots of
the eigenvalues of the matrix XX∗ or X∗X depending on which one has a larger size.
Note that the nonzero eigenvalues of XX∗ and X∗X are the same, and they give rise to
the nonzero singular values of X which are of importance. We have the following result
concerning the nonzero singular values of perturbed matrices.
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Theorem 3 Let

B =
( k `

m G1 E1

n E2 G2

)
and B̃ =

( k `

m G1 O
n O G2

)
be complex matrices with singular values

σ1 ≥ σ2 ≥ · · · ≥ σmax{m+n,k+`} and σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃max{m+n,k+`}, (3.1)

respectively, so that G1 and G2 are non-trivial. Define ε = max{‖E1‖, ‖E2‖}, and

ηi
def=


min

µ2∈σ(G2)
|σ̃i − µ2|, if σ̃i ∈ σ(G1),

min
µ1∈σ(G1)

|σ̃i − µ1|, if σ̃i ∈ σ(G2),
(3.2)

η
def= min

1≤i≤m+n
ηi = min

µ1∈σ(G1), µ2∈σ(G2)
|µ1 − µ2|. (3.3)

Then for i = 1, 2, · · · ,min{m + n, k + `}, we have

|σi − σ̃i| ≤ 2ε2

ηi +
√

η2
i + 4ε2

(3.4)

≤ 2ε2

η +
√

η2 + 4ε2
, (3.5)

and σi = σ̃i = 0 for i > min{m + n, k + `}.

Proof: By Jordan-Wielandt Theorem [8, Theorem I.4.2], the eigenvalues of(
O B
B∗ O

)
are ±σi and possibly some zeros adding up to m+n+k+` eigenvalues. A similar statement
holds for B̃. Permuting the rows and columns appropriately, we see that

(
O B
B∗ O

)
is similar to


O G1 O E1

G∗
1 O E∗

2 O

O E2 O G2

E∗
1 O G∗

2 O

 ,

and (
O B̃

B̃∗ O

)
is similar to


O G1

G∗
1 O

O G2

G∗
2 O

 .
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Applying Theorem 2 with

Hi =
(

O Gi

G∗
i O

)
and E =

(
O E2

E∗
1 O

)
,

we get the result.

One can also apply the above proof to the degenerate cases when G1 or G2 in the
matrix B is trivial, i.e., one of the parameters m,n, k, ` is zero. These cases are useful in
applications. We state one of them, and one can easily extend it to other cases.

Theorem 4 Suppose B = (G E ) and B̃ = (G O ) are p×q matrices with singular values

σ1 ≥ · · · ≥ σmax{p,q} and σ̃1 ≥ . . . ≥ σ̃max{p,q},

respectively. Then for i = 1, . . . ,min{p, q},

|σi − σ̃i| ≤
2‖E‖

2σ̃i +
√

σ̃2
i + 4‖E‖2

.
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