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Abstract. Alignment algorithm is an effective method recently proposed for nonlinear mani-
fold learning (or dimensionality reduction). By first computing local coordinates of a data set, it
constructs an alignment matrix from which a global coordinate is obtained from its null space. In
practice, the local coordinates can only be constructed approximately and so is the alignment matrix.
This together with roundoff errors requires that we compute the the eigenspace associated with a
few smallest eigenvalues of an approximate alignment matrix. For this purpose, it is important to
know the first nonzero eigenvalue of the alignment matrix or a lower bound in order to computa-
tionally separate the null space. This paper bounds the smallest nonzero eigenvalue, which serves
as an indicator of how difficult it is to correctly compute the desired null space of the approximate
alignment matrix.
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1. Introduction
Given an N×` matrix Z and s submatrices Zj ∈Ckj×` (for 1≤ j≤s) consisting

of certain rows of Z, let PZj be the orthogonal projector in Ckj onto the column space
of Zj , and P⊥Zj

= I−PZj . Embed P⊥Zj
into CN×N according to the position of the rows

of Zj in Z and denote the resulting N×N matrix by Φj (see (2.3) in Section 2 for
details). The matrix

P ≡
s∑

j=1

Φj . (1.1)

is called an alignment matrix . This definition is abstracted from and slightly more
general than the one in [9], where Z’s first column is all ones. Nonetheless most
analysis and the results there regarding the null space of P can be carried over in a
straightforward way. For example, it is proved under a condition called fully overlap
among {Zj} that the null space of P is the span of Z [9]. With this property of the
alignment matrix, we can reconstruct the rows of Z, up to a linear transformation,
from the local projectors PZj . This forms a theoretical basis for the LTSA (Local
Tangent Space Alignment) algorithm of [11] recently developed for the problem of
nonlinear manifold learning.

In nonlinear manifold learning [5, 8], one is concerned with determining a suitable
parametrization for a set of given high-dimensional data points lying in a nonlinear
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2 ALIGNMENT MATRIX IN NONLINEAR MANIFOLD LEARNING

manifold, which is also known as (nonlinear) dimensionality reduction. Several meth-
ods have been proposed recently for this problem [1, 3, 5, 7, 11]. The alignment matrix
was first introduced in the LTSA method [11] in which a local coordinate system is
first constructed for a small neighborhood (i.e., a patch) around each sample points
and all local coordinates are then aligned together to arrive at a global coordinate.
The process of aligning the local coordinates together is achieved through the align-
ment matrix. We note, however, that the alignment matrix can be used in a more
general setting to align coordinates for subsets of data points that are not necessarily
local [9]. In this context, the rows of Z are the unknown global coordinates of the
high-dimensional data points and the rows of Zj correspond to the coordinates of
the data points in a subset (e.g., a local patch). Then the rows of Z, up to a linear
transformation, is constructed from the projectors PZj

by computing the null space
of the alignment matrix.

In practice, only an approximation of the alignment matrix is available. This
together with roundoff and/or data errors require that we compute the eigenspace
associated with a few smallest eigenvalues that are considered the perturbations of
the zero eigenvalues. However, if the perturbations cause the zero eigenvalues to
become as large in magnitude as the smallest nonzero eigenvalue of the alignment
matrix, it is not possible to determine how many smallest eigenvalues and which of
them should be considered zeros. For this purpose, it is important to investigate
the first nonzero eigenvalue of the alignment matrix or a lower bound in order to
computationally separate the null space.

This paper presents a lower bound on the smallest nonzero eigenvalue, which
serves as an indicator of how difficult it is to correctly compute the desired null space
of the alignment matrix. An implication of our bound is that the smallest nonzero
eigenvalue depends on the “amount” of overlap among Zj and hence it is necessary
to maintain sufficient overlap among Zj in practice. Our study is based on an ideal
situation, namely P is uncontaminated, while contaminated P in practice likely has
no nonzero eigenvalues. Thus such simplification becomes somewhat necessary. Nev-
ertheless our effort here represents a step forward to acquire better understanding
towards instructively how much overlaps among Zj for robust recovery of Z, which,
translated into the language of nonlinear manifold learning [9, 11], how much overlaps
among local patches for robust recovery of global coordinates.

Our investigation into the null space and eigenvalues of this so-called alignment
matrix P , abstracted from and slightly more general than its counterpart in nonlinear
manifold learning, may be of interest in its own right from matrix theoretical point
of view.

The rest of this paper is organized as follows. In Section 2, we set up our frame-
work to study the alignment matrix. We then derive the lower bound at stages, first
for the case s=2 in Section 3 and then for the general case in Section 4. We shall
also discuss when the fully overlap condition is a necessary condition in Section 4.

Notation. As we have done already, denote by Cm×n the set of all m×n com-
plex matrices, Cn =Cn×1, and C=C1. Denote by In the n×n identity matrix, and
sometimes simply I when its size is clear from the context. Let ‖X‖2 be the spectral
norm of a matrix X, i.e., its largest singular value, and eig(X) be the set of the eigen-
values of a square X. X∗ and XT denote the conjugate transpose, the transpose of a
matrix or vector X, respectively. X¹Y for two Hermitian matrices X and Y means
that Y −X is positive semi-definite, and accordingly XºY means Y ¹X.

For 1≤ i≤ j≤n, i : j is the set of integers from i to j inclusive and i : i={i}. For



CHI-KWONG LI, REN-CANG LI, and QIANG YE 3

vector u and matrix X, u(j) is u’s jth entry, X(i,j) is the (i,j)th entry of X. Moreover,
subvector u(I) consists of all entries i∈I; submatrices X(I,J), X(I,:), and X(:,J) consist
of intersections of all rows i∈I and all columns j∈J , all rows i∈I and all columns,
and all rows and all columns j∈J , respectively.

2. Alignment Matrix
Material in this section is essentially taken from [9], but stated in a slightly more

general term, namely in [9] Z’s first column is all ones, which is not required here.
Also to allow a bit more generality, we assume all involved numbers are complex,
unless otherwise explicitly stated. In the context of nonlinear manifold learning [9],
most likely they are real.

Let Z ∈CN×`, and N >`. Suppose Zj ∈Ckj×` for 1≤ j≤s are submatrices of
Z and each consists of certain rows and all columns. Let Ij ={j1,j2,.. .,jkj

} be the
index set for the rows of Zj as the rows of Z, i.e.,

Zj =Z(Ij ,:) =(IN )(Ij ,:)×Z ∈Ckj×`. (2.1)

Assume throughout this paper

s⋃

j=1

Ij ={1,2,.. .,N}, (2.2)

i.e., each row of Z appears in at least one of the Zj .
Let PZj be the orthogonal projector in Ckj onto the column space span(Zj) of

Zj , and P⊥Zj
= I−PZj is the orthogonal projector also in Ckj but onto the orthogonal

complement of span(Zj). It is known that PZj =ZjZ
†
j , where Z†j is the Moore-Penrose

inverse [6] of Zj . In particular

PZj =Zj(Z∗j Zj)−1Z∗j if Zj has full column rank.

Let Φj be the embedding of P⊥Zj
into CN , i.e.

Φj =
[
(IN )(Ij ,:)

]T×P⊥Zj
×(IN )(Ij ,:)∈CN×N . (2.3)

Finally an N×N matrix P is constructed as

P =
s∑

j=1

Φj . (2.4)

It can be verified that PZ =0, i.e, span(Z)⊂null(P ), the null space of P .
Definition 2.1. This definition is recursive.

1. Zi always fully overlaps itself regardless of its rank;
2. Zi and Zj for i 6= j are fully overlapped, if Z(Ii

T
Ij ,:) has full column rank;

3. The collection Z ={Zj ,1≤ j≤s} for s≥3 is fully overlapped, if it can be
partitioned into two nonempty disjoint subsets Z1 and Z2 each of which is
a fully overlapped collection and that Z(eI1,:) and Z(eI2,:) are fully overlapped,
where

Ĩi =
⋃

Zj∈Zi

Ij . (2.5)
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This definition is rather general. For example it encompasses the following case:
the partitioning graph of Z is connected. By the partitioning graph of Z we mean a
graph whose vortices are submatrices Zj and there is an edge connecting two vortices
Zi and Zj if and only if Zi and Zj for i 6= j are fully overlapped.
Theorem 2.2. Assume (2.2) holds. If {Zj ,1≤ j≤s} is fully overlapped, then
null(P )= span(Z).

In nonlinear manifold learning, Zj is not known but an approximations to P⊥Zj

can be computed; so is an approximation to P whose eigenspace associated with a
few smallest eigenvalues will then give an approximation to the column space of Z.
This theorem says if P⊥Zj

is exactly known, the column space of Z can be recovered
exactly as null(P ). Theorem 2.2 is an extension of the main result in [9] and can be
proved by a minor modification to the argument in [9]. Later our method for deriving
the eigenvalue bound will lead to another proof of the result.
Corollary 2.3. Under the conditions of Theorem 2.2,

λ+
min(P )P⊥Z ¹P ¹λmax(P )P⊥Z ,

where λ+
min(P ) is the smallest nonzero eigenvalue of P , and λmax(P ) is the largest

eigenvalue of P .
Proof. Since P is Hermitian, it has eigen-decomposition P =UΛU∗, where U is

unitary and Λ is diagonal with the last ` diagonal entries being zero. Thus

λ+
min(P )×

( N−` `

N−` I
` 0

)
¹Λ¹λmax(P )×

( N−` `

N−` I
` 0

)
,

which implies

λ+
min(P )U(:,1:N−`)[U(:,1:N−`)]∗¹P ¹λmax(P )U(:,1:N−`)[U(:,1:N−`)]∗.

Notice null(P )= span(Z)=null(P⊥Z ) by Theorem 2.2 to conclude that
span(U(:,1:N−`))= span(P⊥Z ) and thus P⊥Z =U(:,1:N−`)[U(:,1:N−`)]∗.

By construction, it is clear λmax(P )=‖P‖2≤s. However, there is not much we
can say about λ+

min(P ) at this point. The main contribution of this paper is to present
a lower bound of it.

3. The case of two submatrices Without loss of generality, upon permuting
rows of Z we may take

Z1 =
( `

m11 Z11

m12 Z12

)
, Z2 =

( `

m21 Z21

m22 Z22

)
, (3.1)

where Z12 =Z21 is the common part in Z1 and Z2, m12 =m21. Then

P =
( m11+m12 m22

m11+m12 P⊥Z1
0

m22 0 0

)
+

( m11 m12+m22

m11 0 0
m12+m22 0 P⊥Z2

)
. (3.2)

Theorem 2.2 says if Z12 has full column rank (i.e., Z1 and Z2 are fully overlapped),
then dimnull(P )= ` and in fact null(P )= span(Z) which implies P has exactly ` zero
eigenvalues. We would like to know more about its nonzero eigenvalues, too. We shall
start by looking into the eigen-structure of P without assuming Z1 and Z2 are fully
overlapped and then specialize the results to the fully overlapped case.
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3.1. Z1 and Z2 not necessarily fully overlapped
The case when m12 =0, i.e., there is no overlap at all between Z1 and Z2 is not

interesting, because then

P =
(

P⊥Z1

P⊥Z2

)

a direct sum of two orthogonal projectors whose eigenvalues are either 1 or 0; the case
when either m11 =0 or m22 =0, i.e., one of Zi is part of the other, is not particularly
interesting, either, because, say, if m11 =0, then P⊥Z2

≤P ≤2P⊥Z2
. So we shall assume

m12≥1, m11≥1, and m22≥1 in the rest of this section. The key idea of our analysis
below is to find an N×N unitary matrix Q so that Q∗PQ has simple structure to
allow us to determine the null space and the eigenvalues of P .
Theorem 3.1. Assume m12≥1, m11≥1, and m22≥1. Z11, Z12 =Z21 and Z22 admit
the following decompositions

Z11 =U2×
( r1 r2 `−r1−r2

r2 M̃1 Σ2 0
m11−r2 M1 0 0

)
×

( r1 `−r1

I 0
0 V ∗

2

)
V ∗

1 , (3.3)

Z12 =Z21 =U1×
( r1 `−r1

r1 Σ1 0
m12−r1 0 0

)
V ∗

1 , (3.4)

Z22 =U3×
( r1 r3 `−r1−r3

r3 M̃2 Σ3 0
m22−r3 M2 0 0

)
×

( r1 `−r1

I 0
0 V ∗

3

)
V ∗

1 , (3.5)

where U1(m12×m12), U2(m11×m11), U3(m22×m22), V1 (`×`), and V2 and V3 (both
(`−r1)×(`−r1)) are unitary, Σ1 and Σ2 are diagonal with positive diagonal entries.
In particular

r1 = rank(Z12), r2 = rank((Z11V1)(:,r1+1:`)), r3 = rank((Z22V1)(:,r1+1:`)). (3.6)

Proof. Equation (3.4) is the singular value decomposition (SVD) of Z12. Consider
the submatrix of the last `−r1 columns of Z11V1 and let its SVD be

(Z11V1)(:,r1+1:`) =U2×
( r2 `−r1−r2

r2 Σ2 0
m11−r2 0 0

)
V ∗

2 . (3.7)

Now notice U∗
2 Z11V1 =(U∗

2 (Z11V1)(:,1:r1) U∗
2 (Z11V1)(:,r1+1:`)), together with (3.7), to

arrive at (3.3) with M̃1 and M1 being the top r2 rows and the bottom m11−r2 rows
of U∗

2 (Z11V1)(:,1:r1), respectively. Similarly let the SVD of the submatrix consisting
of the last `−r1 columns of Z22V1 be

(Z22V1)(:,r1+1:`) =U3×
( r3 `−r1−r3

r3 Σ3 0
m22−r2 0 0

)
V ∗

3 (3.8)

to lead to (3.5) with M̃2 and M2 being the top r3 rows and the bottom m22−r3 rows
of U∗

3 (Z22V1)(:,1:r1), respectively.
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In what follows, we shall use X
cols⇔ Y to mean span(X)= span(Y ) for convenience.

Note from (3.4) that

Z12 =Z21 =U1×
( r1 `−r1

r1 Σ1 0
m12−r1 0 0

)
×

( r1 `−r1

I 0
0 V ∗

)
V ∗

1

for any (`−r1)×(`−r1) matrix V . In particular set V =V2 and V3 to get

(
U∗

2

U∗
1

)(
Z11

Z12

)
cols⇔




r1 r2

r2 M̃1 Σ2

m11−r2 M1 0
r1 Σ1 0
m12−r1 0 0




cols⇔




r1 r2

r2 W̃1 I
m11−r2 W1 0
r1 I 0
m12−r1 0 0




cols⇔ Z̃1
def=




r1 r2

r2 0 I
m11−r2 W1 0
r1 I 0
m12−r1 0 0




(
R1

I

)
, (3.9)

where

W1 =M1Σ−1
1 , R1 =(I +W ∗

1 W1)−1/2. (3.10)

Set

Z̃⊥1 =




m11−r2 m12−r1

r2 0 0
m11−r2 I 0
r1 −W ∗

1 0
m12−r1 0 I




(
D1

I

)
with D1 =(I +W1W

∗
1 )−1/2.

Then (Z̃1 Z̃⊥1 ) is unitary. Thus, the column space of Z̃⊥1 is a basis for the orthogonal
complement of span(Z̃1) in Ck1 . Similarly,

(
U∗

1

U∗
3

)(
Z21

Z22

)
cols⇔




r1 r3

r1 Σ1 0
m12−r1 0 0
r3 M̃2 Σ3

m22−r3 M2 0




cols⇔ Z̃2 =




r1 r3

r1 I 0
m12−r1 0 0
r3 0 I
m22−r3 W2 0




(
R2

I

)
,

(3.11)
where

W2 =M2Σ−1
1 , R2 =(I +W ∗

2 W2)−1/2, (3.12)

and

Z̃⊥2 =




m22−r3 m12−r1

r1 −W ∗
2 0

m12−r1 0 I
r3 0 0
m22−r3 I 0




(
D2

I

)
with D2 =(1+W2W

∗
2 )−1/2
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has orthonormal columns spanning the orthogonal complement of span(Z̃2) in Ck2 .
Let

G1 =
(

m11+m12 Z̃⊥1
m22 0

)
, G2 =

(
m11 0
m12+m22 Z̃⊥2

)
,

and

G=(G1 G2)=




m11−r2 m12−r1 m22−r3 m12−r1

r2 0 0 0 0
m11−r2 D1 0 0 0
r1 −W ∗

1 D1 0 −W ∗
2 D2 0

m12−r1 0 I 0 I
r3 0 0 0 0
m22−r3 0 0 D2 0




.

Set

Q
def=




m11 m12 m22

m11 U2

m12 U1

m22 U3


. (3.13)

Then Q is a unitary matrix, and

P̃
def= Q∗PQ=Q∗Φ1Q+Q∗Φ2Q=G1G

∗
1 +G2G

∗
2 =GG∗.

Note also that the null space of P̃ is the same as the null space of G∗, which is the
same as the orthogonal complement of the column space of G. Let

G3 =




r2 r1 r3

r2 I 0 0
m11−r2 0 W1 0
r1 0 I 0
m12−r1 0 0 0
r3 0 0 I
m22−r3 0 W2 0




.

Note that in G, the 4th block column is the same as the 2nd one, and the first 3 block
columns are linear independent. Therefore rank(G)=m11 +m12 +m22−(r1 +r2 +r3)
which implies dimnull(G∗)= r1 +r2 +r3. Evidently, rank(G3)= r1 +r2 +r3. Therefore
null(P̃ )=null(G∗)= span(G3) because G∗G3 =0.
Theorem 3.2. Let all symbols keep their assignments so far in this section. Then

1. dimnull(P )=dimnull(P̃ )= r1 +r2 +r3;
2. null(P̃ ) is the column space of G3 and null(P )=Qnull(P̃ ).
3. Suppose Z1 and Z2 have full column rank. Then null(P )= span(Z) if and only

if Z1 and Z2 are fully overlapped.
Proof. Only Item 3 needs a proof. If Z1 and Z2 are fully overlapped, then

r1 = ` and r2 = r3 =0 which imply dimnull(P )= ` by Item 1. Now dimspan(Z)= ` and
span(Z)⊂null(P ) as noted before imply null(P )= span(Z). Suppose Z1 and Z2 are
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not fully overlapped. Then r1 <`. Noticing that r1 +r2 = `= r1 +r3 because Z1 and
Z2 have full column rank, we have dimnull(P )= r1 +r2 +r3 >`+(`−r1)>`, and thus
null(P ) 6= span(Z).

Remark 3.1. The third assertion in Theorem 3.2 was also obtained by Zha and
Zhang [10] for Zj whose first column is all ones.

Now let us look at the eigenvalues of P , which are the same as those of P̃ =GG∗.
Apart from additional zeros, they are the same as those of

G∗G=




m11−r2 m12−r1 m22−r3 m12−r1

m11−r2 I 0 D1W1W
∗
2 D2 0

m12−r1 0 I 0 I
m22−r3 D2W2W

∗
1 D1 0 I 0

m12−r1 0 I 0 I




which is permutationally similar to a direct sum of
(

I I
I I

)
and

(
I D1W1W

∗
2 D2

D2W2W
∗
1 D1 I

)
.

The former matrix has nonzero eigenvalue 2 with multiplicity m12−r1; the latter
matrix has eigenvalues 1±σj for j =1,.. .,k, where σ1,.. .,σk are the nonzero singular
values of D1W1W

∗
2 D2, and the remaining eigenvalues equal to 1. Thus, we have the

following.

Theorem 3.3. Let the nonzero singular values of D2W2W
∗
1 D1 be σ1,σ2,. ..,σk. Then

eig(P ) consists of

1±σj , for 1≤ j≤k,
2, with multiplicity m12−r1,
1, with multiplicity m11 +m22−r2−r3−2k,
0, with multiplicity r1 +r2 +r3.

We shall now bound the singular values σj of D2W2W
∗
1 D1. First we have

σj≤‖D2W2W
∗
1 D1‖2

=‖D2W2‖2‖D1W1‖2, (3.14)

‖DiWi‖2 =
‖Wi‖2√
1+‖Wi‖22

. (3.15)

It follows from (3.3), (3.4), and (3.10) that

Z11Z
†
12 =Z11V1

(
Σ−1

1

0

)
U∗

1 =((Z11V1)(:,1:r1)Σ
−1
1 0)U∗

1 ,

U∗
2 (Z11V1)(:,1:r1)Σ

−1
1 =

(
M̃1

M1

)
Σ−1

1 =
(

M̃1Σ−1
1

W1

)
.

They yield

‖W1‖2≤‖U∗
2 (Z11V1)(:,1:r1)Σ

−1
1 ‖2 =‖Z11Z

†
12‖2 with equality if M̃1 =0 or r2 =0.

(3.16)
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Since the construction of W2 is similar to the construction of W1, one can give a
similar bound to W2, namely,

‖W2‖2≤‖Z22Z
†
12‖2 with equality if M̃2 =0 or r3 =0. (3.17)

Combine (3.14) – (3.17) to get

σj≤ ‖Z11Z
†
12‖2√

1+‖Z11Z
†
12‖22

‖Z22Z
†
12‖2√

1+‖Z22Z
†
12‖22

.

We have proved

Theorem 3.4. The nonzero eigenvalues of P is no smaller than 1−τ where

τ
def=

‖Z11Z
†
12‖2√

1+‖Z11Z
†
12‖22

‖Z22Z
†
12‖2√

1+‖Z22Z
†
12‖22

. (3.18)

Its largest eigenvalue is no greater than 1+τ if m12 = r1 and it is 2 if m12 >r1.

3.2. Z1 and Z2 fully overlapped
When Z1 and Z2 are fully overlapped, results in the previous subsection are still

valid, only simpler. Here is the list of a few notably changes to what in the previous
subsection:

• r1 = ` and r2 = r3 =0;
• Decompositions (3.7) and (3.8) are not needed, and consequently the decom-

positions in Theorem 3.1 are simplified to

Z11 =M1V
∗
1 , Z12 =U1Σ1V

∗
1 , Z22 =M2V

∗
1 .

• (3.9) and (3.11) remain valid with U2 = I and U3 = I;
• (3.16) and (3.17) are equalities, and in fact Wi =ZiiZ

†
12U

∗
1 for i=1,2;

• Theorems 3.3 and Theorems 3.4 are valid as they are, and furthermore The-
orem 3.4 has a stronger version – Theorem 3.5 below.

Theorem 3.5. Let τ be defined by (3.18). If Z1 and Z2 are fully overlapped, then

(1−τ)P⊥Z ¹P ¹
{

(1+τ) if m12 = `,
2 if m12 >`

}
P⊥Z . (3.19)

Furthermore,

λ+
min(P )≥ 1

2

(
σ2

min(Z12)
σ2

max(Z11)
+

σ2
min(Z12)

σ2
max(Z22)

)/(
1+

σ2
min(Z12)

σ2
max(Z11)

+
σ2

min(Z12)
σ2

max(Z22)

)
, (3.20)

where σmin and σmax denote the smallest and the largest singular value respectively.

Proof. (3.19) is a consequence of Item 3 of Theorem 3.2 and the proof of Corol-
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lary 2.3. From (3.18), we have

λ+
min(P )≥1− 1√

1+‖Z11‖−2
2 ‖Z†12‖−2

2

√
1+‖Z22‖−2

2 ‖Z†12‖−2
2

≥ (1+‖Z11‖−2
2 ‖Z†12‖−2

2 )(1+‖Z22‖−2
2 ‖Z†12‖−2

2 )−1

2(1+‖Z11‖−2
2 ‖Z†12‖−2

2 )(1+‖Z22‖−2
2 ‖Z†12‖−2

2 )

≥ ‖Z11‖−2
2 ‖Z†12‖−2

2 +‖Z22‖−2
2 ‖Z†12‖−2

2

2(1+‖Z11‖−2
2 ‖Z†12‖−2

2 +‖Z22‖−2
2 ‖Z†12‖−2

2 )

=
σ2

min(Z12)/σ2
max(Z11)+σ2

min(Z12)/σ2
max(Z22)

2[1+σ2
min(Z12)/σ2

max(Z11)+σ2
min(Z12)/σ2

max(Z22)]
,

as expected.

The theorem implies that if Z12 has full column rank but with nearly linearly
dependent columns, σmin(Z12) is small and the smallest nonzero eigenvalue λ+

min(P )
may also and can be nearly zero. In particular, λ+

min(P ) may be of order σ2
min(Z12).

Remark 3.2. Independently, Zha and Zhang [10, Theorem 5.1] obtained, in our
notation, the following result (original version was for Zj whose first column is all
ones): Let P⊥Zj

=QjQ
∗
j (j =1,2) and partition

Q1 =
(

m11 Q11

m12 Q12

)
, Q2 =

(
m21 Q21

m22 Q22

)
,

conformally to those in (3.1). If Z1 and Z2 are fully overlapped, then the smallest
nonzero eigenvalue of P is given by 1−σmax(Q∗

12Q21). This will obviously give the
same smallest nonzero eigenvalue of P as one can deduce from Theorem 3.3, but since
Qj depends on Zj in a nontrivial way, i.e., there is no explicit expression to write
down Qj in terms of Zj , it is not clear if one could establish any lower bound based
on 1−σmax(Q∗

12Q21) in terms of Zj , as we did in Theorem 3.5 based on Theorem 3.3.
Zha and Zhang also extended their result for more than two submatrices, the case we
will be dealing with in the next section.

Next we give an example to show that the bound in Theorem 3.5 can be asymp-
totically attained and hence sharp.

Example 3.1. Consider m11 =1=m22, m12 =2, and `=2:

Z1 =
(

Z11

Z12

)
≡




1 a
1 c1

1 c2


 , Z2 =

(
Z21

Z22

)
≡




1 c1

1 c2

1 b


,

assuming c1 6= c2, i.e., Z12≡Z21 is nonsingular. All numbers are real. Z as such
comes from nonlinear manifold learning [9]. Calculation by Maple1 shows that the
characteristic polynomial of P is

∆1∆2λ
2

(
λ2−2λ+

(c1−c2)2∆
∆1∆2

)
,

1http://www.maplesoft.com/.
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where

∆1 =(a−c1)2 +(a−c2)2 +(c1−c2)2,
∆2 =(b−c1)2 +(b−c2)2 +(c1−c2)2,
∆=(a−c1)2 +(a−c2)2 +(c1−c2)2 +(b−c1)2 +(b−c2)2 +(a−b)2.

So there are two zero eigenvalues and two nonzero ones, as expected. The two nonzero
eigenvalues are

1−
√

∆1∆2−(c1−c2)2∆√
∆1∆2

=
(c1−c2)2∆√

∆1∆2 +
√

∆1∆2−(c1−c2)2∆
,

1+

√
∆1∆2−(c1−c2)2∆√

∆1∆2

.

(3.21)

Calculations also show

∆1∆2−(c1−c2)2∆=[(c2−a)(c2−b)+(c1−a)(c1−b)]2 .

Now let us look at what our bounds by Theorem 3.5 say. We have

Z†12≡Z−1
12 =

1
c2−c1

(
c2 −c1

−1 1

)
,

Z11Z
−1
12 =

1
c2−c1

(c2−a a−c1), Z22Z
−1
12 =

1
c2−c1

(c2−b b−c1).

The lower and upper bounds by Theorem 3.4 are

1±
√

(a−c1)2 +(a−c2)2√
∆1

√
(b−c1)2 +(b−c2)2√

∆2

(3.22)

which can be verified to be exactly the two values in (3.21) if

|(c2−a)(c2−b)+(c1−a)(c1−b)|=
√

(a−c1)2 +(a−c2)2
√

(b−c1)2 +(b−c2)2,

i.e., when two vectors (c2−a a−c1) and (c2−b b−c1) are parallel, which happens
when c1 = c2. When c1 = c2, however, {Z1,Z2} is not fully overlapped. But by making
c1 6= c2 while as close as needed, {Z1,Z2} is fully overlapped and at the same time the
lower and upper bounds by Theorem 3.4 can be made as close to the two values in
(3.21) as wished.

4. The case of more than two submatrices
In general for s≥3, our approach in the previous section appears to break down.

In what follows, we shall describe a way to recursively bound the smallest nonzero
eigenvalue λ+

min(P ) from below. To do so, we define a function τ which takes two
submatrices of Z with all columns as arguments. Given

Z̃i =Z(eIi,:)
, i=1,2,

we define

τ(Z̃1,Z̃2)
def=

t1√
1+ t21

t2√
1+ t22

, ti =
∥∥∥Z(Ji,:)Z

†
(eI1
TeI2,:)

∥∥∥
2
, (4.1)
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where J i is the complement set of Ĩ1

⋂
Ĩ2 in Ĩi.

Throughout the rest of this section, we adopt in whole the notation associated
with Z and Zj as introduced in Section 2, and we assume that Z ={Zj ,1≤ j≤s} is
fully overlapped, and (2.2) holds.

From Definition 2.1, Z can be partitioned into two nonempty disjoint subsets Z1

and Z2 each of which is a fully overlapped collection and that

Z̃1 =Z(eI1,:), Z̃2 =Z(eI2,:) (4.2)

are fully overlapped, where Ĩ1 and Ĩ2 are defined as in (2.5). By Theorem 3.5, we
have

[
1−τ(Z̃1,Z̃2)

]
P⊥Z ¹

2∑

j=1

(IN )T
(eIj ,:)

×P⊥eZj
×(IN )(eIj ,:).

Now recursively bound P⊥eZj
in exactly the same way because Zj is fully overlapped

until the right-hand side becomes P . The following procedure recursively computes
α(Z) that satisfies α(Z)P⊥Z ≤P :

α({Zi})=1, (4.3)
α({Zi,Zj})=1−τ(Zi,Zj), (4.4)

α(Z)=
[
1−τ(Z̃1,Z̃2)

]
min{α(Z1),α(Z2)}. (4.5)

The smallest nonzero eigenvalue λ+
min(P ) is then no smaller than α(Z).

Theorem 4.1. Suppose Z ={Z1,Z2,. ..,Zs} is a fully overlapped collection, where
Zj are submatrices of Z ∈CN×` as defined by (2.1) and (2.2). Let α(Z) be computed
recursively by (4.3) – (4.5). Then α(Z)P⊥Z ≤P , where alignment matrix P is defined
by (2.4).

Example 4.1. Consider s=3. Suppose Z1 and Z̃2
def= Z(I2

S
I3,:) are fully overlapped.

Let Ĩ2
def= I2

⋃
I3. Then we have by Theorem 3.5

[
1−τ(Z1,Z̃2)

]
P⊥Z ¹ (IN )T(I1,:)×P⊥Z1

×(IN )(I1,:) +(IN )T
(eI2,:)

×P⊥eZ2
×(IN )(eI2,:),

and

[1−τ(Z2,Z3)](IN )T
(eI2,:)

×P⊥eZ2
×(IN )(eI2,:)¹

3∑

j=2

(IN )T(Ij ,:)×P⊥Zj
×(IN )(Ij ,:).

Put the two inequalities together to get α(Z)P⊥Z ¹P with

α(Z)=
[
1−τ(Z1,Z̃2)

]
[1−τ(Z2,Z3)].

Example 4.2. Consider s=4. Suppose Z1 and Z2, Z3 and Z4, and Z̃1
def= Z(I1

S
I2,:)

and Z̃2
def= Z(I3

S
I4,:) are fully overlapped pairs. Let Ĩ1

def= I1

⋃
I2 and Ĩ2

def= I3

⋃
I4.

Then we have by Theorem 3.5
[
1−τ(Z̃1,Z̃2)

]
P⊥Z ¹ (IN )T

(eI1,:)
×P⊥eZ1

×(IN )(eI1,:) +(IN )T
(eI2,:)

×P⊥eZ2
×(IN )(eI2,:),
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and

[1−τ(Z1,Z2)](IN )T
(eI1,:)

×P⊥eZ1
×(IN )(eI1,:)¹

2∑

j=1

(IN )T(Ij ,:)×P⊥Zj
×(IN )(Ij ,:),

[1−τ(Z3,Z4)](IN )T
(eI2,:)

×P⊥eZ2
×(IN )(eI2,:)¹

4∑

j=3

(IN )T(Ij ,:)×P⊥Zj
×(IN )(Ij ,:).

Put the three inequalities together to get α(Z)P⊥Z ¹P with

α(Z)=
[
1−τ(Z̃1,Z̃2)

]
min{[1−τ(Z1,Z2)], [1−τ(Z3,Z4)]}.

Example 4.3. This is for the sequentially fully overlapping case, i.e., Zi and Zj are
fully overlapped if i−j =±1 and Zi and Zj have no overlap at all if |i−j|≥2. Write

Zj =




`

mj1 Zj1

mj2 Zj2

mj3 Zj3


, m11 =ms3 =0, kj =mj1 +mj2 +mj3,

where Zj1 =Zj−13 is the overlapped part between Zj−1 and Zj . Recursively, we have

α({Z1,.. .,Zs})=
[
1−τ(Z(1:p+mj−13,:),Z(p+1:s,:))

]

×min{α({Z1,. ..,Zj−1}), α({Zj ,. ..,Zs})},
where p=

∑j−1
i=1 (mi1 +mi2), and

t1 =
∥∥∥Z(1:p,:)Z

†
j−13

∥∥∥
2
, t2 =

∥∥∥Z(p+mj1+1:s,:)Z
†
j1

∥∥∥
2
,

τ(Z(1:p+mj−13,:),Z(p+1:s,:))=
t1√
1+ t21

t2√
1+ t22

.

The ending conditions (4.3) and (4.4) still apply. For shortest recursion, j should
be picked about s/2, e.g., the smallest integer that is no less than s/2. To see how
good our recursive bound is, we have tested on random Z and random Z with its first
column being all ones to mimic cases from nonlinear manifold learning. Figure 4.1
plots λ+

min(P ) vs. α(Z) for 2≤s≤10 and 2≤ `≤5. Our bounds for small s (about s≤4
here, especially for s=2) look pretty good; however, they very much underestimate
λ+

min(P ) for big s (about s>4 here).
Example 4.4. Consider Z ∈CN×2 with the first column Z(:,1) being all ones and
the second column Z(:,2) being 1,2,. ..,N , and Zj =Z(j:j+2,:) (1≤ j≤s=N−2). This
corresponds to the one-dimensional case in manifold learning with data points equidis-
tantly sit on a straight line. The case is so special that it allows us to estimate more
precisely our bound and λ+

min(P ) through analytical means. It can be seen that

P⊥Zj
=

1
6




1 −2 1
−2 4 −2

1 −2 1


 , P =

1
6




1 −2 1
−2 5 −4 1

1 −4 6 −4 1
. . . . . . . . . . . . . . .

1 −4 6 −4 1
1 −4 5 −2

1 −2 1




.
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Fig. 4.1. λ+
min(P ) (red ◦) vs. α(Z) (green ∆): mj1 =mj3 = ` and mj2 = `−1 (except

m11 =ms3 =0). Left 4 plots: random Z; Right 4 plots: random Z (except Z(:,1) all ones).

It can be verified that 6P =UTU , where U =
(
e1 T es

)∈Cs×N , e1 and es are the first
and last column of the identity matrix Is, and T ∈Cs×s is the famous tridiagonal
Toeplitz matrix with diagonal entries −2 and off-diagonal entries 1. Thus 6λ+

min(P )
is the smallest eigenvalues of

UUT =e1e
T
1 +T 2 +ese

T
s ºT 2.

The eigenvalue system of T is explicitly known [2, 4], and so is T 2: T =QΛQT, where
Λ=diag(λ1,.. .,λs) with

λj =−2+2cosθj , θj =
j

s+1
π, Q(i,j) =

2√
s+1

sin
(

π
ij

s+1

)

for 1≤ i, j≤s. Therefore

λ+
min(P )≥ 1

6
(2−2cosθ1)2 =

8
3

sin4 θ1

2
∼ π4

6(s+1)4
=

π4

6(N−1)4
(4.6)

for large N . We now establish an upper bound on λ+
min(P ). Note that

UUT =T (I +XXT)T ¹ (1+‖X‖22)T 2, X =(T−1e1 T−1es).

This implies

λ+
min(P )≤ 1

6
(2−2cosθ1)2(1+‖X‖22). (4.7)
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We now bound ‖X‖22. We have

‖X‖22≤‖T−1e1‖22 +‖T−1es‖22 =2‖T−1e1‖22
=

8
s+1

s∑

j=1

sin2θj

λ2
j

=
2

s+1

s∑

j=1

cot2
θj

2

≤ 2
s+1

cot2
θ1

2
+

4
π

∫ π/2

π
2(s+1)

cot2 tdt

=
2

s+1
cot2

θ1

2
+

4
π

(
−cott+

π

2
− t

)∣∣∣
π/2

π
2(s+1)

=
2

s+1
cot2

θ1

2
+

4
π

(
cot

π

2(s+1)
+

π

2(s+1)
− π

2

)

∼ 8(N−1)
π2

,

for large N . Combine this with (4.7) to get

λ+
min(P )≤ 1

6
(2−2cosθ1)2(1+‖X‖22)∼

4π2

3(N−1)3
. (4.8)

Next we estimate what we may expect from our bound α(Z). It can be seen that a
key step in our recursive procedure for α(Z) is for

Z̃1 =




1 i
...

...
1 m
1 m+1


 , Z̃2 =




1 m
1 m+1
...

...
1 j


 ,

where i<m<m+1<j with m about half way between i and j. Let Z̃12 be their
common part, Z̃11 the part in Z̃1 excluding Z̃12, and Z̃22 the part in Z̃2 excluding Z̃12

also. We have

Z̃11Z̃
†
12 =




m− i+1 −(m− i)
...

...
3 −2
2 −1


 , Z̃22Z̃

†
12 =




−1 2
−2 3
...

...
−(j−m−1) j−m


.

For large j− i and m about half way between i and j,

‖Z̃11Z̃
†
12‖2≈‖Z̃22Z̃

†
12‖2∼

1√
3

(
j− i

2

)3/2

.

Consequently for large j− i

α({Z̃1,Z̃2})∼ 1

1+ 1
3

(
j−i
2

)3 ∼3
(

2
j− i

)3

.

This implies α(Z), modulo a constant factor, is approximately

dlog2 Ne∏

k=1

3
(

2
N/2k

)3

∼3log2 N

(
2log2 N 2(log2 N)2/2

N log2 N

)3

=
1

N (log2 N)/2−3−log23
, (4.9)
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where dlog2Ne is the smallest integer that is no less than log2N . Compared to (4.7)
and (4.8), this very much underestimates λ+

min(P ) for large N , a conclusion similar to
what we have made at the end of Example 4.3.

4.1. Necessary Condition In the case s=2, Theorem 3.2 states that the fully
overlapped condition is also a necessary condition for null(P )= span(Z), provided that
all Zi have full column rank. It turns out it is not a necessary condition in general
when s≥3. We shall first give a counterexample to illustrate this and then give a
result on when null(P )= span(Z) does not hold.

Example 4.5. Consider the 7×4 matrix

Z =




1 0 0 1
1 1 0 0
1 1 0 1
1 0 1 0
1 0 0 0
1 0 1 1
1 1 1 0




, Z1 =Z(1:5,:), Z2 =Z(3:7,:), Z3 =Z({1,2,5:7},:).

Then all Zi have full column rank and they are pairwise not fully overlapped. More-
over, {Z1,Z2,Z3} is not fully overlapped. Computation by Maple’s nullspace(P)
gives a basis of 4 vectors, i.e., dimnull(P )=4 which implies

null(P )= span(Z),

since PZ =0 and rank(Z)=4.
While the fully overlapped condition is not a necessary condition, each Zi in

this example is fully overlapped with the union of the remaining Zj ’s. The following
theorem shows that this is indeed necessary for null(P )= span(Z).

Theorem 4.2. Assume that Zj has full column rank for 1≤ j≤s and that Z =
{Zj ,1≤ j≤s} can be partitioned into two nonempty disjoint subsets Z1 and Z2 such
that the union set of Z1 and that of Z2 are not fully overlapped, i.e.,

Z̃1 =Z(eI1,:), Z̃2 =Z(eI2,:), (4.10)

are not fully overlapped, where Ĩ1 and Ĩ2 are defined as in (2.5). Then span(Z) is a
proper subspace of null(P ).

Proof. Without loss of generality, let

Z1 ={Zj ,1≤ j≤p} and Z2 ={Zj ,p+1≤ j≤s}.

Since Ĩ1 and Ĩ2 are not fully overlapped, it follows from Theorem 3.2 that

dim null




2∑

j=1

(IN )T
(eIj ,:)

×P⊥eZj
×(IN )(eIj ,:)


>`.

Utilizing the fact that null(X +Y )=null(X)∩null(Y ) for two positive semi-definite
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X,Y º0, we also have

null




2∑

j=1

(IN )T
(eIj ,:)

×P⊥eZj
×(IN )(eIj ,:)




=null
(
(IN )T

(eI1,:)
×P⊥eZ1

×(IN )(eI1,:)

)⋂
null

(
(IN )T

(eI2,:)
×P⊥eZ2

×(IN )(eI2,:)

)

⊂null(Φ1 + ·· ·+Φp)
⋂

null(Φp+1 + ···+Φs)

=null(P ).

Thus, dimnull(P )>`=dimspan(Z) and the theorem is proved.

The following is an interesting corollary that is not obvious from Definition 2.1.

Corollary 4.3. Suppose Z ={Z1,Z2,... ,Zs} is a fully overlapped collection, where
Zj are submatrices of Z ∈CN×` as defined by (2.1) and (2.2). Then for any two
nonempty disjoint subsets Z1 and Z2 of Z,

Z̃1 =Z(eI1,:), Z̃2 =Z(eI2,:),

must be fully overlapped, where Ĩ1 and Ĩ2 are defined as in (2.5).

Remark 4.1. Zha and Zhang [10, Theorem 3.2] also established some necessary
conditions for null(P )= span(Z) in terms of full overlap as well as connected overlap
for Zj whose first column is all ones.

5. Conclusions
We have studied the eigenstructure of the alignment matrix P in a slightly more

general context than in nonlinear manifold learning. It is proved that α(Z)P⊥Z ¹
P under the condition that Z is a fully overlapped collection, where α(Z)>0 is
computed recursively. For s=2, the bound is no worse than proportional to the
square of the ratio of the smallest singular value of the matrix in the overlapped part
to the largest singular value of the matrix in the non-overlapped part and this ratio
can be considered as a measure of the “amount” of overlap.

From the computational point of view, the bigger the smallest nonzero eigenvalue
λ+

min(P ), the less difficult it is to recover null(P ) numerically. Our lower bound can
be used as an indicator on the difficulty of numerically recovering null(P ).

Another implication of our result is concerned with how to make λ+
min(P ) bigger –

increase the overlaps as one naturally expects. But we provide a quantitative measure.
Our present study contributes to the theoretical foundation of the LTSA algorithm
[11]. But further studies are necessary. We mention two unanswered issues that need
to be addressed in the future.

1. For s=2, our bound α(Z) is tight and asymptotically achievable, but for
s≥3, the recursively computed α(Z)>0 depends on how Z is partitioned as
in Definition 2.1 and could very much underestimate λ+

min(P ). How do we
improve the bound?

2. Any practical use of our result here remains to be investigated because in
practice data errors may and will complicate the analysis and must be taken
into account.

We shall leave these issues, among others, to our future studies on the subject.



18 ALIGNMENT MATRIX IN NONLINEAR MANIFOLD LEARNING

Acknowledgment. Theorem 3.1 was explicitly formulated at the suggestion
from an anonymous referee who also suggested us to add a simpler example – Ex-
ample 4.4. Previously Theorem 3.1 was immersed in the text. The authors wish to
thank his comments that improved the presentation of this paper.

REFERENCES

[1] M. Brand, Charting a manifold, in Advances in Neural Information Processing Systems 15,
S. T. S. Becker and K. Obermayer, eds., MIT Press, Cambridge, MA, 2003, pp. 961–968.

[2] J. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[3] D. Donoho and C. Grimes, Hessian eigenmaps: new tools for nonlinear dimensionality reduc-

tion, Proceedings of National Academy of Science, 100 (2003), pp. 5591–5596.
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