A lower bound on the C-numerical radius of nilpotent matrices appearing in coherent spectroscopy

Chi-Kwong Li and Hugo J. Woerdeman *

April 13, 2005

Department of Mathematics
The College of William and Mary
Williamsburg, VA 23185-8795
ckli@math.wm.edu and
Department of Mathematics
Drexel University
3141 Chestnut Street
Philadelphia, PA 19104
hugo@math.drexel.edu

Keywords: C-numerical radius, NMR spectroscopy, Nilpotent matrices
MSC: 15A60, 81V99

Abstract

We provide a lower bound for the efficiency of polarization or coherence transfer between quantized states under unitary transformations. Mathematically the problem is the determination of the C-numerical radius of A for certain nilpotent matrices C and A. The presented lower bound is conjectured to be exact as it coincides with numerical data provided in [U. Helmke et al., J. Global Opt. 23 (2002), 283-308].

1 Introduction

In the study of the efficiency of polarization or coherence transfer between quantized states under unitary transformations (see $[1,2,3,5,6]$), one is interested in determining or estimating the quantity

$$
\begin{equation*}
b\left(A_{n}, C_{n}\right):=\max _{U U^{*}=\mathbb{I}}\left|\operatorname{tr}\left(C_{n}^{*} U A_{n} U^{*}\right)\right|, \tag{1.1}
\end{equation*}
$$

[^0]where U^{*} denotes the Hermitian transpose of U, and A_{n} and C_{n} are given matrices derived from a spin system, defined as follows:
\[

A_{n}=\left($$
\begin{array}{cc}
N_{n} & 0 \tag{1.2}\\
0 & N_{n}
\end{array}
$$\right), \quad C_{n}=\left($$
\begin{array}{cc}
0 & 0 \\
\mathbb{I}_{2^{n}} & 0
\end{array}
$$\right)
\]

with \mathbb{I}_{m} the $m \times m$ identity matrix and N_{n} given inductively by

$$
N_{0}=(0), \quad N_{n}=\left(\begin{array}{cc}
N_{n-1} & 0 \\
\mathbb{I}_{2^{n-1}} & N_{n-1}
\end{array}\right)
$$

Note that the matrices A_{n} and C_{n} are of size $2^{n+1} \times 2^{n+1}$. In matrix analysis literature, the quantity $b\left(A_{n}, C_{n}\right)$ is called the C_{n}^{*}-numerical radius of A_{n}. In [3] the authors proved that $b\left(A_{1}, C_{1}\right)=2$ and $b\left(A_{2}, C_{2}\right)=4$. By numerical methods, they have the following conjectured values:

$$
\begin{array}{ccccc}
n & 3 & 4 & 5 & 6 \\
b\left(A_{n}, C_{n}\right) & 4(1+\sqrt{3}) & 8(1+\sqrt{3}) & 16(1+\sqrt{3})+4 \sqrt{5} & 32(1+\sqrt{3})+8 \sqrt{5}
\end{array}
$$

In this note, we show that there is a systematic way to extrapolate these values for general n, and construct unitary matrices U_{n} such that $\operatorname{tr}\left(C_{n}^{*} U_{n} A_{n} U_{n}^{*}\right)$ attains these values. The key idea in our proof is a reduction of A_{n} to a weighted Jordan form \tilde{A}_{n} using unitary similarity transforms. One can then get our proposed bounds using the off-diagonal entries of \tilde{A}_{n}.

In the next section we present our main result, and in the last section we discuss some open problems.

2 Main result

Recall that two matrices A and \widetilde{A} are unitarily similar (notation: $A \sim \widetilde{A}$) if there is a unitary matrix U so that $A=U^{*} \widetilde{A} U$. Clearly, when $A \sim \widetilde{A}$ and $C \sim \widetilde{C}$, then $b(A, C)=b(\widetilde{A}, \widetilde{C})$. If we let \widetilde{C}_{n} be the direct sum of 2^{n} copies of $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$, then $C_{n} \sim \widetilde{C}_{n}$. Thus, to compute $b\left(A_{n}, C_{n}\right)=b\left(A_{n}, \widetilde{C}_{n}\right)$, we need to find a unitary U_{n} to maximize the quantity

$$
\begin{equation*}
\left|\operatorname{tr}\left(\tilde{C}_{n}^{*} U_{n}^{*} A_{n} U_{n}\right)\right|=\left|\sum_{j=1}^{2^{n}} a_{2 j, 2 j-1}\right|, \quad \text { where } \quad U_{n}^{*} A_{n} U_{n}=\left(a_{i j}\right) \tag{2.1}
\end{equation*}
$$

Therefore, we need to focus on those unitary matrices U such that $U^{*} A_{n} U$ has large positive values on the subdiagonal. Proposition 2.1 will give the right tools. We need some notation to describe the result.

Consider the $(j+1) \times(j+1)$ matrices B_{j}, S_{j}, J_{j}, and the $(j+1) \times j$ matrix Z_{j} :

$$
\begin{gathered}
\left.B_{j}=\left(\begin{array}{ccccc}
0 & 0 & 0 & \ldots & 0 \\
\sqrt{j} \sqrt{1} & 0 & 0 & \ldots & 0 \\
0 & \sqrt{j-1} \sqrt{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & \sqrt{1} \sqrt{j} & 0
\end{array}\right), \quad \begin{array}{l}
\\
S_{j}=\left(\begin{array}{cccc}
\sqrt{0} & & & \bigcirc \\
& \sqrt{1} & & \\
& & \ddots & \\
\bigcirc & & & \sqrt{j}
\end{array}\right), \quad J_{j}=\left(\begin{array}{ccc}
\bigcirc & & 1 \\
& & 1 \\
& & \\
1 & &
\end{array}\right), \quad Z_{j}=\left(\begin{array}{ccc}
0 & \cdots & 0 \\
1 & & \bigcirc \\
\bigcirc & \ddots & \\
& & 1
\end{array}\right) .
\end{array} . . \begin{array}{lll}
& & \\
& &
\end{array}\right) .
\end{gathered}
$$

Note that $B_{0}=(0)$.
Proposition 2.1 The $(2 j+2) \times(2 j+2)$ matrix

$$
U_{j}=\frac{1}{\sqrt{j+1}}\left(\begin{array}{cc}
-S_{j} Z_{j} & J_{j} Z_{j+1}^{*} S_{j+1} J_{j+1} \tag{2.2}\\
J_{j} S_{j} Z_{j} J_{j-1} & Z_{j+1}^{*} S_{j+1}
\end{array}\right)
$$

is unitary and the following equality holds:

$$
\left(\begin{array}{cc}
B_{j} & 0 \tag{2.3}\\
\mathbb{I} & B_{j}
\end{array}\right)=U_{j}\left(\begin{array}{cc}
B_{j-1} & 0 \\
0 & B_{j+1}
\end{array}\right) U_{j}^{*} .
$$

Note that U_{j} is a real matrix with a simple structure. For instance,

$$
U_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
0 & \sqrt{2} & 0 & 0 \\
-1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & \sqrt{2}
\end{array}\right), \quad U_{2}=\frac{1}{\sqrt{3}}\left(\begin{array}{cccccc}
0 & 0 & \sqrt{3} & 0 & 0 & 0 \\
-1 & 0 & 0 & \sqrt{2} & 0 & 0 \\
0 & -\sqrt{2} & 0 & 0 & 1 & 0 \\
\sqrt{2} & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & \sqrt{2} & 0 \\
0 & 0 & 0 & 0 & 0 & \sqrt{3}
\end{array}\right) .
$$

Proof of Proposition 2.1. Note that each column of U_{j} has at most two nonzero entries. It is straightforward to check the columns of U_{j} form an orthoromal family. Also, it is straightforward to check that

$$
\left(\begin{array}{cc}
B_{j} & 0 \\
\mathbb{I} & B_{j}
\end{array}\right) U_{j}=U_{j}\left(\begin{array}{cc}
B_{j-1} & 0 \\
0 & B_{j+1}
\end{array}\right) .
$$

As $B_{1}=N_{1}$, equation (2.3) yields that

$$
N_{2}=\left(\begin{array}{cc}
N_{1} & 0 \\
\mathbb{I} & N_{1}
\end{array}\right) \sim B_{0} \oplus B_{2} .
$$

Here $A \oplus B$ stands for the direct sum of A and B, i.e., $A \oplus B=\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$. Clearly, $A \oplus B \sim B \oplus A$, but in general $A \oplus B \neq B \oplus A$. Next, again using (2.3), we have
$N_{3}=\left(\begin{array}{cc}N_{2} & 0 \\ \mathbb{I} & N_{2}\end{array}\right) \sim\left(\begin{array}{cc}B_{0} \oplus B_{2} & 0 \\ \mathbb{I} & B_{0} \oplus B_{2}\end{array}\right) \sim\left(\begin{array}{cc}B_{0} & 0 \\ \mathbb{I} & B_{0}\end{array}\right) \oplus\left(\begin{array}{cc}B_{2} & 0 \\ \mathbb{I} & B_{2}\end{array}\right) \sim B_{1} \oplus\left(B_{1} \oplus B_{3}\right)$.
We shall abbreviate $B_{1} \oplus B_{1} \oplus B_{3}$ as $2 B_{1} \oplus B_{3}$. In other words,

$$
n B_{j}:=B_{j} \oplus \cdots \oplus B_{j},
$$

where B_{j} appears n times in the right hand side. Continuing this way, we get

$$
\begin{aligned}
& N_{4} \sim 2\left(\begin{array}{cc}
B_{1} & 0 \\
\mathbb{I} & B_{1}
\end{array}\right) \oplus\left(\begin{array}{cc}
B_{3} & 0 \\
\mathbb{I} & B_{3}
\end{array}\right) \sim 2\left(B_{0} \oplus B_{2}\right) \oplus\left(B_{2} \oplus B_{4}\right) \sim 2 B_{0} \oplus 3 B_{2} \oplus B_{4}, \\
& N_{5} \sim 2\left(\begin{array}{cc}
B_{0} & 0 \\
\mathbb{I} & B_{0}
\end{array}\right) \oplus 3\left(\begin{array}{cc}
B_{2} & 0 \\
\mathbb{I} & B_{2}
\end{array}\right) \oplus\left(\begin{array}{cc}
B_{4} & 0 \\
\mathbb{I} & B_{4}
\end{array}\right) \sim \\
& \sim 2 B_{1} \oplus 3\left(B_{1} \oplus B_{3}\right) \oplus\left(B_{3} \oplus B_{5}\right) \sim 5 B_{1} \oplus 4 B_{3} \oplus B_{5},
\end{aligned}
$$

etc. In general, we have

$$
\begin{equation*}
N_{2 m+1} \sim a_{1}^{(2 m+1)} B_{1} \oplus a_{3}^{(2 m+1)} B_{3} \oplus \cdots \oplus a_{2 m+1}^{(2 m+1)} B_{2 m+1} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{2 m} \sim a_{0}^{(2 m)} B_{0} \oplus a_{2}^{(2 m)} B_{2} \oplus \cdots \oplus a_{2 m}^{(2 m)} B_{2 m} \tag{2.5}
\end{equation*}
$$

where for $j \geq i \geq 0$ the numbers $a_{i}^{(j)}$ are integers satisfying

$$
\begin{gather*}
a_{j}^{(j)}=1, \quad a_{i}^{(j)}=a_{i-1}^{(j-1)}+a_{i+1}^{(j-1)}, \quad \text { if } i+j \text { is even. } \tag{2.6}\\
a_{i}^{(j)}=0 \quad \text { if } i+j \text { is odd. }
\end{gather*}
$$

The numbers $a_{i}^{(j)}$ are uniquely determined by the above conditions. We can tablilize the values as follows.

Table for $a_{i}^{(j)}$

$j \backslash i$	0	1	2	3	4	5	6	7	\cdots
1		1							
2	1		1						
3		2		1					
4	2		3		1				
5		5		4		1			
6	5		9		5		1		
7		14		14		6		1	
8	14		28		20		7		1
\vdots									

We derive the following closed formula for the numbers $a_{i}^{(j)}$ in terms of binomial coefficients $\binom{r}{s}$. As usual we let $\binom{r}{s}=0$ when $s<0$ or $s>r$, and $\binom{0}{0}=1$.

Proposition 2.2 For $j \geq i \geq 0$, the following formulas hold:

$$
\begin{equation*}
a_{i}^{(j)}=\binom{j-1}{\frac{j-i}{2}}-\binom{j-1}{\frac{j-i}{2}-2}, \quad i+j \text { is even, } \tag{2.7}
\end{equation*}
$$

and $a_{i}^{(j)}=0$, otherwise.
Proof. First observe that $a_{j}^{(j)}=1=\binom{0}{0}-\binom{0}{-2}$. Since the numbers $a_{i}^{(j)}$ are uniquely determined by the recurrence relation (2.6), it suffices to show that our proposed formula in (2.7) satisfy (2.6) if $i+j$ is even. Using the Pascal identity on binomial coefficients $\binom{k}{l-1}+\binom{k}{l}=\binom{k+1}{l}$, we have

$$
\begin{gathered}
a_{i-1}^{(j-1)}+a_{i+1}^{(j-1)}=\binom{j-2}{\frac{j-i}{2}}-\binom{j-2}{\frac{j-i}{2}-2}+\binom{j-2}{\frac{j-i}{2}-1}-\binom{j-2}{\frac{j-i}{2}-3}= \\
=\binom{j-1}{\frac{j-i}{2}}-\binom{j-1}{\frac{j-i}{2}-2}=a_{i}^{(j)} .
\end{gathered}
$$

Our main result is the following.
Theorem 2.3 Suppose n is a positive integer. We have

$$
\begin{equation*}
b\left(A_{n+1}, C_{n+1}\right) \geq 2 b\left(A_{n}, C_{n}\right) . \tag{2.8}
\end{equation*}
$$

Moreover, if $n=2 m+1$ is odd, then $b\left(A_{n}, C_{n}\right)$ is not less than

$$
\begin{equation*}
2 \sum_{k=0}^{m}\left\{\left(\binom{2 m}{k}-\binom{2 m}{k-2}\right)\left(\sum_{q=1}^{m+1-k} \sqrt{2(m+1-k-q)+1} \sqrt{2 q-1}\right)\right\} . \tag{2.9}
\end{equation*}
$$

Proof. Suppose $U=\left(\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)$ is a $2^{n+1} \times 2^{n+1}$ unitary matrix such that $U_{11}, U_{12}, U_{13}, U_{14}$ are $2^{n} \times 2^{n}$ matrices, and $b\left(A_{n}, C_{n}\right)=\left|\operatorname{tr}\left(C_{n}^{*} U A_{n} U^{*}\right)\right|$. Let

$$
\tilde{U}=\left(\begin{array}{cccc}
U_{11} & 0 & U_{12} & 0 \\
0 & U_{11} & 0 & U_{12} \\
U_{21} & 0 & U_{22} & 0 \\
0 & U_{21} & 0 & U_{22}
\end{array}\right) .
$$

Then

$$
b\left(A_{n+1}, C_{n+1}\right) \geq\left|\operatorname{tr}\left(C_{n+1} \tilde{U} A_{n+1} \tilde{U}^{*}\right)\right|=2 b\left(A_{n}, C_{n}\right) .
$$

So, (2.8) holds.
Next, consider the $2 r \times 2 r$ matrix

$$
L_{r}=\left(\begin{array}{cc}
0 & 0 \\
\mathbb{I}_{r} & 0
\end{array}\right) .
$$

Then $C_{n}=L_{2^{n}}$ is unitarily similar to $L_{r_{1}} \oplus \cdots \oplus L_{r_{k}}$ as long as $r_{1}+\ldots+r_{k}=2^{n}$. In particular, we have

$$
C_{n} \sim C_{n-1} \oplus C_{n-1}
$$

and

$$
C_{n-1} \sim a_{1}^{(2 m+1)} L_{1} \oplus a_{3}^{(2 m+1)} L_{2} \oplus \cdots \oplus a_{2 m+1}^{(2 m+1)} L_{m+1}
$$

Thus, combining this with (2.4),

$$
\begin{gather*}
b\left(A_{n}, C_{n}\right) \geq 2 b\left(N_{n}, C_{n-1}\right) \geq \\
\geq 2\left[\left(a_{1}^{(2 m+1)} b\left(B_{1}, L_{1}\right)+a_{3}^{(2 m+1)} b\left(B_{3}, L_{2}\right)+\ldots+a_{2 m+1}^{(2 m+1)} b\left(B_{2 m+1}, L_{m+1}\right)\right] .\right. \tag{2.10}
\end{gather*}
$$

Also, observe that by a permutation

$$
B_{2 m+1} \sim\left(\begin{array}{cc}
0 & S_{m} \tag{2.11}\\
T_{m} & 0
\end{array}\right)
$$

where T_{m} and S_{m} are the $(m+1) \times(m+1)$ matrices

$$
\begin{gathered}
T_{m}=\left(\begin{array}{ccccc}
\sqrt{2 m+1} \sqrt{1} & & & & \bigcirc \\
& \sqrt{2 m-1} \sqrt{3} & & \\
& & \ddots & \\
& & & \sqrt{1} \sqrt{2 m+1}
\end{array}\right), \\
S_{m}=(0) \oplus\left(\begin{array}{cccc}
\sqrt{2 m} \sqrt{2} & & & \bigcirc \\
& \sqrt{2 m-2} \sqrt{4} & & \\
& & \ddots & \\
\bigcirc & & & \\
& & \sqrt{2} \sqrt{2 m}
\end{array}\right)
\end{gathered}
$$

Thus

$$
\begin{equation*}
b\left(B_{2 m+1}, L_{m+1}\right) \geq \sum_{q=1}^{m+1} \sqrt{2(m+1-q)+1} \sqrt{2 q-1} \tag{2.12}
\end{equation*}
$$

Combining (2.10) with (2.12) yields the lower bound in (2.9).
An alternative way to compute the quantity on the right hand side of (2.9) is the following: Compute the singular values of the matrix A_{n}. These numbers are square roots of even and odd integers. When one adds up all the singular values that are square roots of odd integers, one arrives at the quantity on the right hand side of (2.9). For the unitary matrix one may take either the unitary matrix consisting of the left singular vectors of A_{n} or the unitary matrix consisting of the right singular vectors of A_{n}. As it turns out, a permutation connects the left and right singular vectors. Indeed, this follows immediately from the fact that A_{n} is unitarily similar to a direct sum decomposition of B_{j} 's (see (2.4) and (2.5)) and from the unitary similarity given in (2.11).

Keeping track of the unitary similarities to achieve the bound in (2.9) gives a way to construct the corresponding unitary U. For instance, when $n=3$, we have $N_{3}=\left(\begin{array}{cc}N_{2} & 0 \\ \mathbb{I} & N_{2}\end{array}\right)$. As

$$
N_{2}=\left(\begin{array}{cc}
B_{1} & 0 \\
\mathbb{I} & B_{1}
\end{array}\right)=U_{1}\left(B_{0} \oplus B_{2}\right) U_{1}^{*}
$$

we get that

$$
\begin{aligned}
& N_{3}=\left(U_{1} \oplus U_{1}\right)\left(\begin{array}{cccc}
B_{0} & 0 & 0 & 0 \\
0 & B_{2} & 0 & 0 \\
\mathbb{I} & 0 & B_{0} & 0 \\
0 & \mathbb{I} & 0 & B_{2}
\end{array}\right)\left(U_{1}^{*} \oplus U_{1}^{*}\right)= \\
= & \left(U_{1} \oplus U_{1}\right) Y_{2}\left(\begin{array}{cccc}
B_{0} & 0 & 0 & 0 \\
\mathbb{I} & B_{0} & 0 & 0 \\
0 & 0 & B_{2} & 0 \\
0 & 0 & \mathbb{I} & B_{2}
\end{array}\right) Y_{2}^{*}\left(U_{1}^{*} \oplus U_{1}^{*}\right)= \\
= & \left(U_{1} \oplus U_{1}\right) Y_{2}\left(U_{0} \oplus U_{2}\right)\left(2 B_{1} \oplus B_{3}\right)\left(U_{0}^{*} \oplus U_{2}^{*}\right) Y_{2}^{*}\left(U_{1}^{*} \oplus U_{1}^{*}\right),
\end{aligned}
$$

where

$$
Y_{k}=\left(\begin{array}{cccc}
\mathbb{I}_{k} & 0 & 0 & 0 \\
0 & 0 & \mathbb{I}_{k} & 0 \\
0 & \mathbb{I}_{k} & 0 & 0 \\
0 & 0 & 0 & \mathbb{I}_{k}
\end{array}\right) .
$$

Furthermore, $C_{3}=Y_{4}\left(C_{2} \oplus C_{2}\right) Y_{4}^{*}, C_{2}=V\left(2 L_{1} \oplus L_{2}\right) V^{*}, Y_{1} L_{2} Y_{1}^{*}=L_{1} \oplus L_{1}$, where

$$
V=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

So

$$
\operatorname{tr}\left(C_{3}^{*} U A_{3} U^{*}\right)=4 \sqrt{3}+4
$$

for

$$
U=Y_{4}(V \oplus V)\left(\mathbb{I}_{4} \oplus Y_{1}^{*} \oplus \mathbb{I}_{4} \oplus Y_{1}^{*}\right)\left(U_{0}^{*} \oplus U_{2}^{*} \oplus U_{0}^{*} \oplus U_{2}^{*}\right)\left(Y_{2}^{*} \oplus Y_{2}^{*}\right) 4 U_{1}^{*}
$$

It is still a challenge to give an easy formula for the unitary matrix in the general case. By the way, it is interesting to note that in [4] the matrix $2 B_{1} \oplus B_{3}$ appears (up to a permutation) as the matrix O_{-}.

3 Open problems

As mentioned in the introduction, the right hand side of (2.9) coincides with the numerical computation of $b\left(A_{n}, C_{n}\right), n=1, \ldots, 6$, in [3]. In addition, it is straightforward to check that the U attaining the right hand side of (2.9) satisfies the optimality condition of Lagrange multipliers that

$$
C_{n} U A_{n} U^{*}-U A_{n} U^{*} C_{n}
$$

is Hermitian. These observations lead us to believe that equality holds in (2.9). Thus the inequality \leq in Theorem 2.3 remains to be proven (if our conjecture is true).

From a practical NMR viewpoint it is a very important question whether the optimal U_{n} can actually be realized in experiments. Indeed, in NMR spectroscopy there are a limited number of manipulations that one can perform that mathematically result in a unitary transformation. In other words, only a limited number of unitary matrices corresponds to physically possible experiments. The possible unitaries are formed by cascades of operations $e^{i H}$, where the selfadjoint matrix H can be one of the following:

$$
\begin{gathered}
H_{r f}=a I_{k x}+b I_{k y}, H_{J h e}=2 c I_{k z} S_{z}, H_{J h o}=c\left(I_{k z} S_{z}+I_{k x} S_{x}+I_{k y} S_{y}\right), \\
H_{\text {shift }}=d I_{k z}+e S_{z}, H_{d i h e}=2 f I_{k z} S_{z}, H_{d i h o}=g\left(2 I_{k z} S_{z}-I_{k x} S_{x}-I_{k y} S_{y}\right), \\
H_{\text {planar }}=h\left(2 I_{k x} S_{x}+s I_{k y} S_{y}\right), H_{\text {iso }}=i\left(2 I_{k x} S_{x}+2 I_{k y} S_{y}+2 I_{k z} S_{z}\right),
\end{gathered}
$$

with

$$
S_{\alpha}=I_{\alpha} \otimes \mathbb{I} \otimes \cdots \otimes \mathbb{I}, I_{k \alpha}=\mathbb{I} \otimes \cdots \otimes \mathbb{I} \otimes I_{\alpha} \otimes \mathbb{I} \otimes \cdots \mathbb{I}, \alpha \in\{x, y, z\}
$$

where in the last equality I_{α} apears in the $k+1$ st position. Here \otimes stands for the Kronecker product, and

$$
I^{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), I^{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), I_{x}=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), I_{y}=\frac{i}{2}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), I_{z}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

These choices of H correspond to typical experiments, but other experiments may be possible as well. Note that the above operations yield a subgroup of the unitaries.

We also would like to mention the problem of finding a physical explanation for our result. As remarked earlier, the matrices A_{n} have singular values that are square roots of integers. In the case that n is odd, half of them are square roots of odd integers, and one simply needs to add all of these to obtain the right hand side of (2.9). Is there a physical explanation for this phenomenon?

Finally, the physical problem we discussed in this paper concerns the transformation from the so-called -1 quantum coherence of the I spins to the -1 quantum coherence of the S spin (see [2]). Other transformations are of interest as well, namely in [2] the transfer between $A=F^{-}$and $C=2 F_{z} S^{-}$is mentioned. This leads to the same A_{n} 's as before, but now C_{n} is given by

$$
C_{n}=\left(\begin{array}{cc}
0 & 0 \\
M_{n} & 0
\end{array}\right),
$$

where $M_{0}=0$ and

$$
M_{j}=M_{j-1} \otimes \mathbb{I}_{2}+\mathbb{I}_{2^{j-1}} \otimes\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Also in this case one would like to determine $b\left(A_{n}, C_{n}\right)$.
Acknowledgment: We wish to thank Professors John Delos (The College of William and Mary) and Robert L. Vold (The College of William and Mary) for useful discussions involving the underlying physics, and N. C. Nielsen (University of Aarhus) for commenting on our manuscript and mentioning the open problem of checking whether the unitary we found can be implemented experimentally. Moreover, Professor Uwe Helmke (University of Würzburg) was helpful in providing us with his manuscript.

References

[1] R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford University Press, New York, 1987.
[2] S. J. Glaser, T. Schulte-Herbrüggen, M. Sieveking, O. Schedletzky, N. C. Nielsen, O. W. Sorensen, and C. Griesinger, Unitary control in quantum ensembles: Maximizing signal intensity in coherent spectroscopy, Science, 280 (1998), pp. 421-424.
[3] U. Helmke, K. Hüper, J. B. Moore, and T. Schulte-Herbrüggen, Gradient flows computing the C-numerical range with applications in NMR spectroscopy, J. Global Optim., 23 (2002), pp. 283-308.
[4] N. C. Nielsen and O. W. Sorensen, Conditional bounds on polarization transfer, J. Magn. Reson. A, 114 (1995), pp. 24-31.
[5] O. W. Sorenson, Polarization transfer experiments in high-resolution NMR spectroscopy, Progress in NMR spectroscopy, 21 (1989), pp. 503-569.
[6] J. Stoustrup, O. Schedletzky, S. J. Glaser, C. Griesinger, N. C. Nielsen, and O. W. Sorensen, Generalized bound on quantum dynamics: efficiency of unitary transformations between non-hermitian states, Phys. Rev. Lett., 74 (1995), pp. 2921-2924.

[^0]: *Research of both authors are supported in part by National Science Foundation.

