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Abstract

We provide a lower bound for the efficiency of polarization or coherence transfer
between quantized states under unitary transformations. Mathematically the problem
is the determination of the C-numerical radius of A for certain nilpotent matrices C
and A. The presented lower bound is conjectured to be exact as it coincides with
numerical data provided in [U. Helmke et al., J. Global Opt. 23 (2002), 283-308].

1 Introduction

In the study of the efficiency of polarization or coherence transfer between quantized
states under unitary transformations (see [1, 2, 3, 5, 6]), one is interested in determining
or estimating the quantity

b(An, Cn) := max
UU∗=I

|tr(C∗
nUAnU∗)|, (1.1)

∗Research of both authors are supported in part by National Science Foundation.
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where U∗ denotes the Hermitian transpose of U , and An and Cn are given matrices
derived from a spin system, defined as follows:

An =
(

Nn 0
0 Nn

)
, Cn =

(
0 0

I2n 0

)
, (1.2)

with Im the m×m identity matrix and Nn given inductively by

N0 =
(
0
)
, Nn =

(
Nn−1 0
I2n−1 Nn−1

)
.

Note that the matrices An and Cn are of size 2n+1×2n+1. In matrix analysis literature,
the quantity b(An, Cn) is called the C∗

n-numerical radius of An. In [3] the authors proved
that b(A1, C1) = 2 and b(A2, C2) = 4. By numerical methods, they have the following
conjectured values:

n 3 4 5 6
b(An, Cn) 4(1 +

√
3) 8(1 +

√
3) 16(1 +

√
3) + 4

√
5 32(1 +

√
3) + 8

√
5

In this note, we show that there is a systematic way to extrapolate these values for
general n, and construct unitary matrices Un such that tr (C∗

nUnAnU∗
n) attains these

values. The key idea in our proof is a reduction of An to a weighted Jordan form Ãn

using unitary similarity transforms. One can then get our proposed bounds using the
off-diagonal entries of Ãn.

In the next section we present our main result, and in the last section we discuss
some open problems.

2 Main result

Recall that two matrices A and Ã are unitarily similar (notation: A ∼ Ã) if there
is a unitary matrix U so that A = U∗ÃU . Clearly, when A ∼ Ã and C ∼ C̃, then

b(A,C) = b(Ã, C̃). If we let C̃n be the direct sum of 2n copies of
(

0 0
1 0

)
, then Cn ∼ C̃n.

Thus, to compute b(An, Cn) = b(An, C̃n), we need to find a unitary Un to maximize
the quantity

∣∣∣tr (C̃∗
nU∗

nAnUn)
∣∣∣ =

∣∣∣∣∣∣
2n∑

j=1

a2j,2j−1

∣∣∣∣∣∣ , where U∗
nAnUn = (aij). (2.1)

Therefore, we need to focus on those unitary matrices U such that U∗AnU has large
positive values on the subdiagonal. Proposition 2.1 will give the right tools. We need
some notation to describe the result.
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Consider the (j + 1)× (j + 1) matrices Bj , Sj , Jj , and the (j + 1)× j matrix Zj :

Bj =


0 0 0 . . . 0√
j
√

1 0 0 . . . 0
0

√
j − 1

√
2 0 . . . 0

...
...

. . . . . .
...

0 0 . . .
√

1
√

j 0

 ,

Sj =


√

0 ©√
1

. . .
©

√
j

 , Jj =


© 1

1
·

1 ©

 , Zj =


0 · · · 0
1 ©

© . . .
1

 .

Note that B0 = (0).

Proposition 2.1 The (2j + 2)× (2j + 2) matrix

Uj =
1√

j + 1

(
−SjZj JjZ

∗
j+1Sj+1Jj+1

JjSjZjJj−1 Z∗
j+1Sj+1

)
(2.2)

is unitary and the following equality holds:(
Bj 0
I Bj

)
= Uj

(
Bj−1 0

0 Bj+1

)
U∗

j . (2.3)

Note that Uj is a real matrix with a simple structure. For instance,

U1 =
1√
2


0

√
2 0 0

−1 0 1 0
1 0 1 0
0 0 0

√
2

 , U2 =
1√
3



0 0
√

3 0 0 0
−1 0 0

√
2 0 0

0 −
√

2 0 0 1 0√
2 0 0 1 0 0

0 1 0 0
√

2 0
0 0 0 0 0

√
3


.

Proof of Proposition 2.1. Note that each column of Uj has at most two nonzero
entries. It is straightforward to check the columns of Uj form an orthoromal family.
Also, it is straightforward to check that(

Bj 0
I Bj

)
Uj = Uj

(
Bj−1 0

0 Bj+1

)
.

�

As B1 = N1, equation (2.3) yields that

N2 =
(

N1 0
I N1

)
∼ B0 ⊕B2.
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Here A ⊕ B stands for the direct sum of A and B, i.e., A ⊕ B =
(

A 0
0 B

)
. Clearly,

A⊕B ∼ B ⊕A, but in general A⊕B 6= B ⊕A. Next, again using (2.3), we have

N3 =
(

N2 0
I N2

)
∼

(
B0 ⊕B2 0

I B0 ⊕B2

)
∼

(
B0 0
I B0

)
⊕

(
B2 0
I B2

)
∼ B1⊕(B1⊕B3).

We shall abbreviate B1 ⊕B1 ⊕B3 as 2B1 ⊕B3. In other words,

nBj := Bj ⊕ · · · ⊕Bj ,

where Bj appears n times in the right hand side. Continuing this way, we get

N4 ∼ 2
(

B1 0
I B1

)
⊕

(
B3 0
I B3

)
∼ 2(B0 ⊕B2)⊕ (B2 ⊕B4) ∼ 2B0 ⊕ 3B2 ⊕B4,

N5 ∼ 2
(

B0 0
I B0

)
⊕ 3

(
B2 0
I B2

)
⊕

(
B4 0
I B4

)
∼

∼ 2B1 ⊕ 3(B1 ⊕B3)⊕ (B3 ⊕B5) ∼ 5B1 ⊕ 4B3 ⊕B5,

etc. In general, we have

N2m+1 ∼ a
(2m+1)
1 B1 ⊕ a

(2m+1)
3 B3 ⊕ · · · ⊕ a

(2m+1)
2m+1 B2m+1 (2.4)

and
N2m ∼ a

(2m)
0 B0 ⊕ a

(2m)
2 B2 ⊕ · · · ⊕ a

(2m)
2m B2m, (2.5)

where for j ≥ i ≥ 0 the numbers a
(j)
i are integers satisfying

a
(j)
j = 1, a

(j)
i = a

(j−1)
i−1 + a

(j−1)
i+1 , if i + j is even. (2.6)

a
(j)
i = 0 if i + j is odd.

The numbers a
(j)
i are uniquely determined by the above conditions. We can tablilize

the values as follows.
Table for a

(j)
i

j \ i 0 1 2 3 4 5 6 7 · · ·
1 1
2 1 1
3 2 1
4 2 3 1
5 5 4 1
6 5 9 5 1
7 14 14 6 1
8 14 28 20 7 1
...

We derive the following closed formula for the numbers a
(j)
i in terms of binomial coef-

ficients
(
r
s

)
. As usual we let

(
r
s

)
= 0 when s < 0 or s > r, and

(
0
0

)
= 1.
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Proposition 2.2 For j ≥ i ≥ 0, the following formulas hold:

a
(j)
i =

(
j − 1
j−i
2

)
−

(
j − 1

j−i
2 − 2

)
, i + j is even, (2.7)

and a
(j)
i = 0, otherwise.

Proof. First observe that a
(j)
j = 1 =

(
0
0

)
−

(
0
−2

)
. Since the numbers a

(j)
i are

uniquely determined by the recurrence relation (2.6), it suffices to show that our pro-
posed formula in (2.7) satisfy (2.6) if i+j is even. Using the Pascal identity on binomial
coefficients

(
k

l−1

)
+

(
k
l

)
=

(
k+1

l

)
, we have

a
(j−1)
i−1 + a

(j−1)
i+1 =

(
j − 2
j−i
2

)
−

(
j − 2

j−i
2 − 2

)
+

(
j − 2

j−i
2 − 1

)
−

(
j − 2

j−i
2 − 3

)
=

=
(

j − 1
j−i
2

)
−

(
j − 1

j−i
2 − 2

)
= a

(j)
i . �

Our main result is the following.

Theorem 2.3 Suppose n is a positive integer. We have

b(An+1, Cn+1) ≥ 2b(An, Cn). (2.8)

Moreover, if n = 2m + 1 is odd, then b(An, Cn) is not less than

2
m∑

k=0


((

2m

k

)
−

(
2m

k − 2

)) m+1−k∑
q=1

√
2(m + 1− k − q) + 1

√
2q − 1

 . (2.9)

Proof. Suppose U =
(

U11 U12

U21 U22

)
is a 2n+1 × 2n+1 unitary matrix such that

U11, U12, U13, U14 are 2n × 2n matrices, and b(An, Cn) = |tr (C∗
nUAnU∗)|. Let

Ũ =


U11 0 U12 0
0 U11 0 U12

U21 0 U22 0
0 U21 0 U22

 .

Then
b(An+1, Cn+1) ≥ |tr (Cn+1ŨAn+1Ũ

∗)| = 2b(An, Cn).

So, (2.8) holds.

Next, consider the 2r × 2r matrix

Lr =
(

0 0
Ir 0

)
.
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Then Cn = L2n is unitarily similar to Lr1 ⊕ · · · ⊕ Lrk
as long as r1 + . . . + rk = 2n. In

particular, we have
Cn ∼ Cn−1 ⊕ Cn−1

and
Cn−1 ∼ a

(2m+1)
1 L1 ⊕ a

(2m+1)
3 L2 ⊕ · · · ⊕ a

(2m+1)
2m+1 Lm+1.

Thus, combining this with (2.4),

b(An, Cn) ≥ 2b(Nn, Cn−1) ≥

≥ 2[(a(2m+1)
1 b(B1, L1)+a

(2m+1)
3 b(B3, L2)+ . . .+a

(2m+1)
2m+1 b(B2m+1, Lm+1)]. (2.10)

Also, observe that by a permutation

B2m+1 ∼
(

0 Sm

Tm 0

)
, (2.11)

where Tm and Sm are the (m + 1)× (m + 1) matrices

Tm =


√

2m + 1
√

1 ©√
2m− 1

√
3

. . .
©

√
1
√

2m + 1

 ,

Sm = (0)⊕


√

2m
√

2 ©√
2m− 2

√
4

. . .
©

√
2
√

2m

 .

Thus

b(B2m+1, Lm+1) ≥
m+1∑
q=1

√
2(m + 1− q) + 1

√
2q − 1. (2.12)

Combining (2.10) with (2.12) yields the lower bound in (2.9). �

An alternative way to compute the quantity on the right hand side of (2.9) is the
following: Compute the singular values of the matrix An. These numbers are square
roots of even and odd integers. When one adds up all the singular values that are
square roots of odd integers, one arrives at the quantity on the right hand side of (2.9).
For the unitary matrix one may take either the unitary matrix consisting of the left
singular vectors of An or the unitary matrix consisting of the right singular vectors
of An. As it turns out, a permutation connects the left and right singular vectors.
Indeed, this follows immediately from the fact that An is unitarily similar to a direct
sum decomposition of Bj ’s (see (2.4) and (2.5)) and from the unitary similarity given
in (2.11).
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Keeping track of the unitary similarities to achieve the bound in (2.9) gives a
way to construct the corresponding unitary U . For instance, when n = 3, we have

N3 =
(

N2 0
I N2

)
. As

N2 =
(

B1 0
I B1

)
= U1(B0 ⊕B2)U∗

1 ,

we get that

N3 = (U1 ⊕ U1)


B0 0 0 0
0 B2 0 0
I 0 B0 0
0 I 0 B2

 (U∗
1 ⊕ U∗

1 ) =

= (U1 ⊕ U1)Y2


B0 0 0 0
I B0 0 0
0 0 B2 0
0 0 I B2

 Y ∗
2 (U∗

1 ⊕ U∗
1 ) =

= (U1 ⊕ U1)Y2(U0 ⊕ U2)(2B1 ⊕B3)(U∗
0 ⊕ U∗

2 )Y ∗
2 (U∗

1 ⊕ U∗
1 ),

where

Yk =


Ik 0 0 0
0 0 Ik 0
0 Ik 0 0
0 0 0 Ik

 .

Furthermore, C3 = Y4(C2 ⊕ C2)Y ∗
4 , C2 = V (2L1 ⊕ L2)V ∗, Y1L2Y

∗
1 = L1 ⊕ L1, where

V =



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

So
tr(C∗

3UA3U
∗) = 4

√
3 + 4

for
U = Y4(V ⊕ V )(I4 ⊕ Y ∗

1 ⊕ I4 ⊕ Y ∗
1 )(U∗

0 ⊕ U∗
2 ⊕ U∗

0 ⊕ U∗
2 )(Y ∗

2 ⊕ Y ∗
2 )4U∗

1 .

It is still a challenge to give an easy formula for the unitary matrix in the general case.
By the way, it is interesting to note that in [4] the matrix 2B1 ⊕ B3 appears (up to a
permutation) as the matrix O−.
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3 Open problems

As mentioned in the introduction, the right hand side of (2.9) coincides with the numer-
ical computation of b(An, Cn), n = 1, . . . , 6, in [3]. In addition, it is straightforward to
check that the U attaining the right hand side of (2.9) satisfies the optimality condition
of Lagrange multipliers that

CnUAnU∗ − UAnU∗Cn

is Hermitian. These observations lead us to believe that equality holds in (2.9). Thus
the inequality ≤ in Theorem 2.3 remains to be proven (if our conjecture is true).

From a practical NMR viewpoint it is a very important question whether the opti-
mal Un can actually be realized in experiments. Indeed, in NMR spectroscopy there are
a limited number of manipulations that one can perform that mathematically result in
a unitary transformation. In other words, only a limited number of unitary matrices
corresponds to physically possible experiments. The possible unitaries are formed by
cascades of operations eiH , where the selfadjoint matrix H can be one of the following:

Hrf = aIkx + bIky,HJhe = 2cIkzSz,HJho = c(IkzSz + IkxSx + IkySy),

Hshift = dIkz + eSz,Hdihe = 2fIkzSz,Hdiho = g(2IkzSz − IkxSx − IkySy),

Hplanar = h(2IkxSx + sIkySy),Hiso = i(2IkxSx + 2IkySy + 2IkzSz),

with
Sα = Iα ⊗ I⊗ · · · ⊗ I, Ikα = I⊗ · · · ⊗ I⊗ Iα ⊗ I⊗ · · · I, α ∈ {x, y, z},

where in the last equality Iα apears in the k + 1st position. Here ⊗ stands for the
Kronecker product, and

I+ =
(

0 1
0 0

)
, I− =

(
0 0
1 0

)
, Ix =

1
2

(
0 1
1 0

)
, Iy =

i

2

(
0 −1
1 0

)
, Iz =

1
2

(
1 0
0 −1

)
.

These choices of H correspond to typical experiments, but other experiments may be
possible as well. Note that the above operations yield a subgroup of the unitaries.

We also would like to mention the problem of finding a physical explanation for our
result. As remarked earlier, the matrices An have singular values that are square roots
of integers. In the case that n is odd, half of them are square roots of odd integers,
and one simply needs to add all of these to obtain the right hand side of (2.9). Is there
a physical explanation for this phenomenon?

Finally, the physical problem we discussed in this paper concerns the transformation
from the so-called −1 quantum coherence of the I spins to the -1 quantum coherence
of the S spin (see [2]). Other transformations are of interest as well, namely in [2] the
transfer between A = F− and C = 2FzS

− is mentioned. This leads to the same An’s
as before, but now Cn is given by

Cn =
(

0 0
Mn 0

)
,
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where M0 = 0 and

Mj = Mj−1 ⊗ I2 + I2j−1 ⊗
(

1 0
0 −1

)
.

Also in this case one would like to determine b(An, Cn).
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