
Determinants of Certain Classes
of Zero-One Matrices with Equal Line Sums

Chi-Kwong Li∗

Department of Mathematics, College of William and Mary
Williamsburg, VA 23187 ckli@math.wm.edu

Julia Shih-Jung Lin†

Department of Mathematics, University of California
Santa Barbara, CA 93106 ulins01@mcl.ucsb.edu

and
Leiba Rodman‡

Department of Mathematics, College of William and Mary
Williamsburg, VA 23187 lxrodm@math.wm.edu

Abstract

We study the possible determinant values of various classes of n×n zero-one matri-
ces with fixed row and column sums. Some new results, open problems, and conjectures
are presented.

Keywords: Determinant, matrix.
AMS Subject Classification: 05B20, 15A36.

1 Introduction

Let k, n be positive integers with k ≤ n. Denote by S(n, k) the set of zero-one n×n matrices
with row sums and column sums equal to k.

There has been considerable interest in studying the determinant values of matrices in
S(n, k) and various its subsets. This interest is motivated, among other things, by many
interesting connections with graph theory and combinatorics (designs and configurations).
So far the research in this area focused on the minimal positive value of determinants of
matrices in S(n, k) (see, e.g., [13, 7, 8, 11]) and on the maximal value of determinants for
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matrices in certain subsets of S(n, k) and for certain values of n and k (see, e.g., [15, 4, 6])
and see also the books [16, 2]. The main focus of the present paper is to describe in some
cases the complete set of determinantal values of matrices in S(n, k). We also consider the
subset of symmetric matrices in S(n, k) and the subset of S(n, k) which is generated by
powers of the standard circulant. Both subsets are of considerable interest in combinatorics.

Note that if A ∈ S(n, k) with det(A) = t, then one can interchange the first two rows of
A to obtain a matrix in S(n, k) with determinant −t. Thus we can focus on the set

D(n, k) = {|det(A)| : A ∈ S(n, k)}.

The problem of determining the set D(n, k) remains generally open. In particular, there is
no general information about the quantity

M(n, k) = max{| det(A)| : A ∈ S(n, k)}.

We consider here also two subsets in S(n, k): the set of symmetric zero-one matrices with
constant row and column sums:

Sym(n, k) = {A ∈ S(n, k) : A = AT},

and the set of polynomials with zero-one coefficients of the standard circulant n× n matrix
Pn = E12 + · · ·+ En−1,n + En1, where Eij are the standard matrix units:

Cir(n, k) =


k∑

q=1

P iq
n : 0 ≤ i1 < i2 < · · · < ik < n

 .

The possible values of determinants of matrices in Sym(n, k) and Cir(n, k) are of particular
interest. Thus, we introduce the following notions analogously to those introduced for the
set S(n, k):

DSym(n, k) = {| det A| : A ∈ Sym(n, k)},

and
DCir(n, k) = {| det A| : A ∈ Cir(n, k)}.

We emphasize that the problem under consideration and the several related subjects are
well known to be difficult, and researchers have invested a lot of effort to them in the last few
decades. This purpose of this paper is to add some more results as well as useful techniques
to the study of these problems. In particular, we shall present results, open problems and
conjectures concerning the sets D(n, k), Dsym(n, k), DCir(n, k), and the maximum values in
these sets, and explore connections between this topic and other areas such as designs and
graph theory.

Throughout the paper we denote by Pn the standard circulant n× n matrix, and by Fn

the symmetric n× n matrix defined by Fn = E1n + E2,n−1 + · · ·+ En1.
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2 Upper Bounds for M(n, k)

In this section we present some known information concerning the quantity M(n, k).
Denote by Jn, or simply J , the unique matrix in S(n, n). It is clear that det(Jn) = 0,

if n ≥ 2. It is also easy to see that D(n, 1) = {1} and D(n, n − 1) = {n − 1}. One may
therefore focus on those k satisfying 1 < k < n − 1. We have the following general results
(e.g., see [13]):

(2.1) Let A ∈ S(n, k). Then Ã = J − A ∈ S(n, n− k) and k · det(Ã) = (n− k) det(A).

(2.2) If A ∈ S(n, k), then det(A) is a multiple of k · gcd(n, k).

(2.3) Let n, k be integers such that n ≥ k ≥ 1. Then S(n, k) always contains a non-singular
matrix, except when n = k > 1, and when n = 4, k = 2.

It is easy to verify that D(4, 2) = {0}. Newman [13] conjectured that:

(2.4) If 1 ≤ k ≤ n− 1 and (n, k) 6= (4, 2), then

m(n, k) := min{| det(A)| > 0 : A ∈ S(n, k)} = k · gcd(n, k).

This conjecture was confirmed in [11]. The number M(n, k) is unknown in general. However,
several upper bounds exist in the literature:

Lemma 2.1 (i) If n is divisible by 4, then M(n− 1, k) ≤ nn/2/2n−1.

(ii) If n is odd, then M(n− 1, k) ≤ (2n− 1)1/2(n− 1)(n−1)/2/2n−1.

(iii) If n ≡ 2 (mod 4), then M(n− 1, k) ≤ (2n− 2)(n− 2)(n/2)−1/2n−1.

Lemma 2.1 is presented in [12] (the part (ii) is attributed there to [1]). For small values
of n and k, the following table provides the upper bounds given by Lemma 2.1:

n 4 5 6 7 8 9 10 11 12 13 14
upper bound
on M(n, k) 3 5 12 32 65 144 447 1458 3645 9477 34648

Notice that the bounds in Lemma 2.1 do not make use of the value k. For k ≥ n/2, one
may use (2.2) to improve the bounds. Then one can use (2.1) to get bounds for M(n, n−k).
Here are some examples. (Again, we focus on 1 < k < n− 1.)

n=4 5 6 7 8 9 10
k=2 0 2 4 12 20 40 108

3 3 9 24 39 72 189
4 8 32 64 112 296
5 30 65 140 425
6 60 144 444
7 140 441
8 432
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Table 1. Upper bounds for M(n, k)

Ryser [15] obtained a bound for the determinant of a zero-one matrix in terms of the size
and the number of one’s in the matrix. The result is certainly applicable to our study. We
give a short proof of the result for our special case in the following.

Lemma 2.2 If A ∈ S(n, k), then

| det(A)| ≤ |(xn + k)−1k|[k((1 + x)2 + (n− k)x2]
n
2 (2.5)

for any x ∈ R. Consequently, we have

M(n, k) ≤ k(k − λ)(n−1)/2 with λ =
k(k − 1)

n− 1
.

Proof. Suppose A ∈ S(n, k). The Hadamard Bound for determinants shows that

| det(xJ + A)| ≤ [k(1 + x)2 + (n− k)x2]
n
2 for every x ∈ R.

By [13, Lemma1], one can write | det(A)| in terms of | det(xJ + A)|:

| det(A)| = k|(xn + k)|−1| det(xJ + A)|,

and (2.5) follows. Let f(x) be the right-hand side of (2.5). It is easy to see that f(x) has its
minimum value at

x∗ =
−k(n− 1)±

√
k(n− 1)(n− k)

n(n− 1)
.

Substituting x∗ in (2.5) and simplifying the expression, we get the last assertion. 2

Lemma 2.2 together with (2.2) give better upper bounds for M(n, k) when k or n − k
is small. For example, we have the following improvement of Table 1 (improved values are
underlined):

n=4 5 6 7 8 9 10
k=2 0 2 4 8 12 18 24

3 3 9 24 39 72 135
4 8 32 64 112 296
5 20 65 140 425
6 36 144 444
7 63 315
8 96

Table 2. Improved upper bounds for M(n, k)

For certain values of n, k, one can use the theory of symmetric (n, k, λ) designs (also
known as (n, k, λ)-configurations) to get the exact value of M(n, k). We refer the readers
to [2] and [17] for the basic definitions and results on this subject. In connection to our
problem, every (n, k, λ) symmetric design can be represented by a matrix A ∈ S(n, k), the
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incidence matrix of the symmetric design, such that AAT = AT A = B, where the matrix B
has k on the main diagonal and λ in all the other positions, i.e.,

B = λJ + (k − λ)I.

The eigenvalues of B are (k − λ) + nλ,

n−1︷ ︸︸ ︷
k − λ, . . . , k − λ. Therefore,

det(B) = (k − λ + nλ)(k − λ)n−1.

Because of the equality k−λ = k2−λn (see, e.g., [15]), we have det(B) = k2(k−λ)n−1, and
hence

det(A) = k(k − λ)(1/2)(n−1).

The following result was proved in [15]:

Lemma 2.3 If an (n, k, λ) symmetric design exists, then

M(n, k) = k(k − λ)(n−1)/2.

It is known (e.g., see [2]) that if an (n, k, λ) symmetric design exists, then (n−1)λ = k(k−
1). However, the converse does not hold in general. The existence problem for symmetric
(n, k, λ) designs is open in general. In the following, we list all the M(n, k) for n ≤ 20
determined by symmetric (n, k, λ) designs.

M(7, 3) = 24; M(7, 4) = 32;
M(11, 5) = 1215; M(11, 6) = 1458;
M(13, 4) = 2916; M(13, 9) = 6561;
M(15, 7) = 114688; M(15, 8) = 131072;
M(16, 6) = 196608; M(16, 10) = 327680;
M(19, 9) = 17578125; M(19, 10) = 19531250.

By the above discussion, one sees that determining M(n, k) and D(n, k) is indeed a
difficult problem. Some partial results and techniques are presented in the following sections.

3 Results for D(n, 2)

We start with the following theorem:

Theorem 3.1 Suppose n = 3k + t > 3 with k ≥ 1 and t = 0, 2, or 4. Then

D(n, 2) = {0} ∪
{
2k−2i : 0 ≤ i < k/2

}
,

and
D(n, n− 2) = {0} ∪

{
(n− 2)2k−2i−1 : 0 ≤ i < k/2

}
.
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Proof. Let Pm be the standard circulant m ×m matrix. Then det(λI − Pm) = λm − 1,
and hence

| det(I + Pm)| =

 0 if m is even,

2 otherwise.
(3.1)

Now suppose A ∈ S(n, 2) and det A 6= 0. Then (e.g., see [3, Corollary 1.2.5]) A = Q̃ + R̃
for some permutation matrices Q̃ and R̃. So | det A| = | det(I + R)| where R = Q̃−1R̃. By
Cycle Decomposition, R can be written as the following:

P̃RP̃ T = Pm1 ⊕ Pm2 ⊕ · · · ⊕ Pmj
,

where P̃ is a certain permutation matrix. By (3.1), it is easy to see that | det(A)| = 0 if
mi is even for some i; and | det(A)| = 2j if mi is odd for i = 1, . . . , j. Since det A 6= 0,
the numbers m1, . . . ,mj are odd; moreover, since Pm1 ⊕ · · · ⊕ Pmj

∈ S(n, 2), we must have
mr ≥ 3 for r = 1, . . . , j. Also,

n = m1 + · · ·+ mj,

and therefore j and k have the same parity. Now it is easy to see that j = k − 2i for some
i, 0 ≤ i < k

2
. This proves that

D(n, 2) ⊆ {0} ∪
{

2k−2i : 0 ≤ i <
k

2

}
.

It is not difficult to construct A ∈ S(n, 2) such that | det A| = 2k−2i (0 ≤ i < k
2
). Namely, let

m1 = m2 = · · · = mk−2i−2 = 3; mk−2i−1 = 3 + t; mk−2i = 6i + 3

(it is assumed there that k − 2i > 2; if k − 2i = 2, we let m1 = 3 + t; m2 = 6i + 3; and if
k − 2i = 1, we let m1 = n). In any case,∣∣∣det

(
(Im1 + Pm1)⊕ · · · ⊕ (Imk−2i

+ Pmk−2i
)
)∣∣∣ = 2k−2i,

as required. Finally, the second formula in Theorem 3.1 follows from (2.1). 2

We note that a very similar proof of Theorem 3.1 was obtained independently in [6,
Section 3] with emphasis on finding M(n, 2).

Theorem 3.1, together with the results (2.1)–(2.4) and the bound M(6, k) ≤ 9 (see Table
1) allows us to determine D(n, k) for n ≤ 6.

Corollary 3.2 D(5, 2) = {0, 2}; D(5, 3) = {0, 3};
D(6, 2) = {0, 4}; D(6, 3) = {0, 9}; D(6, 4) = {0, 8}.

One may try to extend the technique in the proof of Theorem 3.1 to D(n, k) for k ≥ 2.
In fact, it is true that every A ∈ S(n, k) can be written as

A = P1 + · · ·+ Pk
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for k different permutation matrices such that no two of them have a nonzero entry at the
same position. As a result, we have

| det(A)| = | det(P1)| · | det(I + Q2 · · ·+ Qk)| = | det(I + Q2 · · ·+ Qk)|

with Qj = P−1
1 Pj for j = 2, . . . , k. Unfortunately, unlike the case when k = 2, there does not

seem to have an easy way to determine det(I +Q2 + · · ·+Qk) if k > 2. Even for n = 7, 8 and
k = 3, 4, the problems are highly nontrivial and we need to develop some new techniques to
determine S(n, k) as shown in the next section.

4 Partial Results on D(n, k) and Some Techniques

In this section, we determine D(n, k) for n = 7, 8. By Theorem 3.1 and (2.1), we need only
to consider case 2 < k ≤ n/2.

Theorem 4.1 D(7, 3) = {0, 3, 6, 24}; D(8, 3) = {0, 3, 6, 9, 15, 27}; D(8, 4) = {0, 16, 32}.

Observe that by (2.4) and Lemma 2.3, we have

{0, 3, 24} ⊆ D(7, 3) ⊆ {0, 3, 6, 9, 12, 15, 18, 21, 24}.

Thus, by Theorem 4.1, there is just one additional non-zero value of | det A|, A ∈ S(7, 3), in
addition to m(7, 3) and M(7, 3). Also, Table 1 only guarantees that M(8, 3) ≤ 39; M(8, 4) ≤
64. Thus, already for relatively small numbers n, such as n = 8, there is a significant gap
between the upper bounds and the actual values of D(n, k).

One may wonder if, for some values of n and k, a simple computer search can be done to
determine D(n, k). However, even for small (n, k) pairs such as (7, 3), (8, 3), (8, 4), it seems
difficult to write an efficient computer program to generate all the matrices in S(n, k) and
compute the determinants. We therefore develop some techniques to study the problem so as
to obtain the result directly, or reduce the computer work to a manageable level. Hopefully,
our techniques can be further developed to obtain more results on the topic. In the following
we discuss several ideas and lemmas that are useful to prove Theorem 4.1. A sketch of the
proof will be given without details on the computer work. One may consult [9] for the full
details.

A. Permutation of rows and columns.

Clearly, the value det(A) is invariant under permutation of rows and columns. Such
operations are used frequently in our study.

B. Using the structure of AT A.

Sometimes, one can use the structure of AT A to get information about det(AT A) =
| det(A)|2. (Likewise, one can use the structure of AAT by replacing A with AT .) For
example, we have the following observation.

Lemma 4.2 Suppose A ∈ S(n, k). Then det(A) = 0 if

(a) AT A has an off-diagonal entry equal to k, or
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(b) n = 2k and AT A has an off-diagonal entry equal to 0.

Proof. (a) Suppose the (i, j) entry of AT A is k. Then the ith and the jth columns of A
must be identical. Thus det(A) = 0.

(b) Suppose n = 2k and the (i, j) entry of AT A is 0. Then the entries of the ith and
the jth columns of A have disjoint support, and the sum of the two columns equal to e, the
vector of all entries equal to one. Now the sum of all other columns equals (k − 1)e. Thus
A has linearly dependent columns, and hence det(A) = 0. 2

There are other results one can prove using the structure of AT A. For example, the
following result was developed in the study of D(8, 3).

Lemma 4.3 Let A ∈ S(8, 3). If all the off-diagonal entries of AT A are not larger than 1,
then | det(A)| = 27.

Proof. By the hypothesis, each row and column of AT A has a diagonal entry equal to 3, six
off-diagonal entries equal to 1, and one off-diagonal entry equal to 0. Thus AT A−J = 2I−Q
for some symmetric permutation matrix Q with all diagonal entries equal to 0. Since all
eigenvalues of 2I −Q is real, the cycle decomposition of Q has only cycles of length 2. Thus
Q is permutationally similar to

∑
i+j=9 Eij, and hence | det(2I −Q)| = 34. Now AT A has all

line sums equal to 9. By [13, Lemma 1], | det(AT A)| = 32| det(J − AT A)| = 36, and hence
| det(A)| = 27. 2

By Lemmas 4.2 and 4.3, we have the following corollary.

Corollary 4.4 If A ∈ S(8, 3) is such that det(A) 6= 0, ±27, then A has two columns bi and
bj satisfying bT

i bj = 2.

C. Use of graph theory.

Note that if k2 = nm for some nonnegative integer m and if A ∈ S(n, k), then B =
AT A−mJ is a symmetric matrix with zero line sums. Under certain additional assumption
on A, the matrix B can be viewed as the Laplacian of a graph G (e.g., see [3] for the basic
definitions and theory). Then one may use some graph theory to determine det(B), and
hence | det(A)|2 = det(AT A). We illustrate this idea by the following lemma.

Lemma 4.5 Let A ∈ S(n, k) with (n, k) = (8, 4) or (9, 3). If AT A has no off-diagonal
entries equal to k − 1, then | det(A)| = 0 or nk.

Proof. We first consider the case when (n, k) = (8, 4). If AT A has an off-diagonal
entry equal to 0 or 4, then det(A) = 0 by Lemma 4.2. Suppose AT A has no off-diagonal
entries equal to 0, 3 or 4. Then each row and each column of AT A has a diagonal entry
equal to 4, five off-diagonal entries equal to 2, and two off-diagonal entries equal to 1.
Thus B = AT A − 2J has diagonal entries all equal to 2 and all line sums equal to zero.
In particular, B can be viewed as the Laplacian of a 2-regular graph G. Suppose B has
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn = 0, so that Be = λne, where e is the vector of all
ones. Then AT A = B + 2J has eigenvalues λ1, . . . , λn−1, and 16 (eigenvalue of 2J). If G is
disconnected, then λn−1 = 0. Thus det(AT A) = 0. If G is connected, then G is a cycle and

8



λ1 · · ·λn−1 = sum of 7× 7 principal minors of B = 8× t = 64, where t = 8 is the number of
spanning trees of B. (See [3, Theorem 2.5.3].) We have | det(AT A)| = 16 × 64, and hence
| det(A)| = 32.

Now for (n, k) = (9, 3), if AT A has an off-diagonal entry equal to 3, then det(A) = 0 by
Lemma 4.2. Suppose AT A has no off-diagonal entries equal to 2 or 3. Then B = AT A − J
can be viewed as the Laplacian of a 2-regular graph, and one can get the conclusion by
arguments similar to those in the preceding paragraph. 2

D. Schur complement.

One may use Schur complement to reduce the problem. For example, in many cases
a matrix A ∈ S(7, 3) or S(8, 3) can be reduced (by row and column permutations) to the
situation  B C

D E

 with B =

 1 1 1
1 1 0
1 0 0

 .

Since | det A| = | det(E −DB−1C)|, one only need to study the determinants of the matrix
E −DB−1C.

In the following, we give a

Sketch of the proof of Theorem 4.1. It is relatively easy to construct determinant values
in D(n, k) as proposed in the theorem. The difficult part is to show that those are the only
possible values. We shall focus on this part of the proof.

If A ∈ S(7, 3), one can consider three cases:
(a) AT A has an off-diagonal entry equal to 3, and hence det(A) = 0 by Lemma 4.2,
(b) AT A has all off-diagonal entries equal to 1, then AT A = 2I + J and hence | det(A)| = 24

by the result of Ryser [15],
(c) AT A has all off-diagonal entries equal to 2 or 0, then by a suitable permutation of rows

and columns the first four rows of A may be put in the form:
1 1 1 0 0 0 0
1 1 0 1 0 0 0
1 0 1 1 0 0 0
0 1 1 1 0 0 0

 ,

and hence the remaining three rows must be identical, contradicting the fact that AT A
has no off-diagonal entries equal to 3,

(d) AT A has off-diagonal entries equal to 2 and 1, respectively, but not 3, then by a suitable
permutation of rows and columns, one may assume that A is of the block form mentioned
in D, and use the Schur complement technique. The proof is then finished by a computer
search for det(E −DB−1C).

If A ∈ S(8, 3), then by Lemma 4.2 and Corollary 4.4, either
(a) det(A) = 0 or ±27, or
(b) AT A has off-diagonal entries equal to 2, but not 3. If there is a row in AT A containing

entries 2 and 1, then by a suitable permutation of rows and columns, one may assume
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that A is of the block form mentioned in D. and use the Schur complement technique.
The proof is then finished by a computer search for det(E −DB−1C). If all off-diagonal
entries are either 0 or 2, then by a suitable permutation of the rows and columns of A,
we may assume that the first 4 rows of A are of the form

1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0

 .

Thus A is essentially the direct sum of two matrices A1 and A2 in S(4, 3) and hence
det(A) = det(A1) det(A2) = ±9.

If A ∈ S(8, 4), then by Lemmas 4.2 and 4.5, either
(a) det(A) = 0 or ±32, or
(b) AT A has off-diagonal entries equal to 3, but not 0. By a suitable permutation of rows

and columns of A we may assume that the first row of AT A is of the form

(4, 3, 3, 2, 1, 1, 1, 1) or (4, 3, 2, 2, 2, 1, 1, 1).

One can then use computer search to finish the proof. 2

The general problem of identifying the sets D(n, k), or even the maximal number M(n, k)
in D(n, k), remains open. There are a few other techniques one may use.

E. Direct sum.

The following result is clear.

Lemma 4.6 Suppose d1 ∈ D(n1, k) and d2 ∈ D(n2, k). Then d1d2 ∈ D(n1 + n2, k). Alter-
natively, we can write D(n1, k)D(n2, k) ⊆ D(n1 + n2, k).

F. Reversing the Schur Complement.

Lemma 4.7 Suppose A = [Ars] ∈ S(n, k) is such that Aij = 1 for all those i+j ≤ k. Define

the (n+k)×(n+k) matrix Ã =
[

B C
CT A′

]
, where B = [Brs] is a k×k matrix and C = [Crs]

is a k × n matrix satisfying

Brs =
{

1 if r + s ≥ k + 1,
0 otherwise,

Crs =
{

1 if r + s ≤ k,
0 otherwise,

and A′ is obtained from A by setting Ars to 0 for all those r + s ≤ k. Then Ã ∈ S(n + k, k)
and | det(Ã)| = | det(A)|.

Proof. Apply the Schur complement to Ã, which gives the equality

det(Ã) = det(B) det(A′ − CT B−1C).
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It is easy to see that | det(B)| = 1, and that the entries of B−1 = [B−1
rs ] are given by B−1

rs = 1
if r + s = k + 1, B−1

rs = −1 if r + s = k, and B−1
rs = 0 otherwise. Now a computation shows

that A′ − CT B−1C = A. 2

For example, using Lemma 4.7, one can show that D(n, 3) ⊆ D(n + 3, 3) for n ≥ 4.
The next unsolved case is D(9, 3). By (2.2), (2.4), and Lemma 2.3 we know that

{0, 9} ⊆ D(9, 3) ⊆ {0, 9, 18, 27, 36, 45, 54, 63, 72}.

Our experience shows that if A ∈ S(n, k) satisfies det(A) = M(n, k), then the off-diagonal
entries of AT A and AAT are as uniform as possible. Motivated by Lemmas 4.3 and 4.5, we
formulate the following conjecture:

Conjecture 4.8 Suppose A ∈ S(n, k) is non-singular such that the off-diagonal entries x
of AT A and of AAT satisfy ∣∣∣∣∣x− k2 − k

n− 1

∣∣∣∣∣ < 1.

Then | det(A)| = M(n, k).

5 Results for Sym(n, k)

In this section we focus on the set Sym(n, k) of all symmetric zero-one n×n matrices having
row sums and column sums equal to k. Here 1 ≤ k ≤ n are integers. Let

DSym(n, k) = {| det A| : A ∈ Sym(n, k)}.

Since J = JT , the result of (2.1) holds with S(n, k) (resp. S(n, n−k)) replaced by Sym(n, k)
(resp. Sym(n, n − k)). Also, (2.2) trivially holds for Sym(n, k) (just because Sym(n, k) ⊆
S(n, k)). Clearly, DSym(n, 1) = {1}, DSym(n, n − 1) = {n − 1}. Further, observe that
if Fn =

∑
i+j=n+1 Eij, then Fnf(Pn) ∈ Sym(n, k) for any polynomial f . It follows that

DCir(n, k) ⊆ DSym(n, k).

Proposition 5.1 If 1 < k < n− 1, then there is a singular matrix in Sym(n, k).

Proof. If k ≤ n/2, then A = Jk ⊕ A0 ∈ Sym(n, k) is singular, where

A0 = Fn−k(
k∑

j=1

P j
n−k).

If n < 2k, let A ∈ Sym(n, n− k) be a singular matrix. Then J −A ∈ Sym(n, k) is singular.
2

The “symmetric” analog of (2.3) and (2.4) is also valid as shown in the following result.

Theorem 5.2 If 1 ≤ k ≤ n− 1, and (n, k) 6= (4, 2), then there is A ∈ Sym(n, k) such that

| det A| = k · gcd(n, k).

11



Proof. It suffices to consider the case when n ≥ 2k. Let Q = Q1 ⊕ 0n−2k, where

Q1 =

−Ik−1 0k−1,2 Ik−1

02,k−1 02 02,k−1

Ik−1 0k−1,2 −Ik−1

 .

If n = 2k > 4, then (see [11]) A = Q +
∑k−2

i=−1 P i
n ∈ S(n, k) satisfies | det(A)| = k2. Then

FnA ∈ Sym(n, k) satisfies | det(FnA)| = k2. If n > 2k, then (see [8]) A = Q +
∑k−1

i=0 P i
n ∈

S(n, k) satisfies | det(A)| = k ·gcd(n, k). One easily checks that Ã = FnP
k
nAP−k

n ∈ Sym(n, k)
satisfies | det(FnA)| = k · gcd(n, k). 2

Thus, the minimal absolute value of determinants of non-singular matrices in S(n, k) is
achieved actually in the smaller set Sym(n, k).

We obtain the exact values for DSym(n, k) in some cases:

Theorem 5.3 We have
DSym(n, k) = D(n, k) (5.1)

for n ≤ 8 and 1 ≤ k ≤ n. Also
DSym(n, 2) = D(n, 2) (5.2)

for n ≥ 2.

Proof. It suffices to consider the cases when 1 < k ≤ n/2. The equalities (5.2) follow
from the proof of Theorem 3.1 and the fact that Fm(I + Pm) ∈ Sym(m, 2). Furthermore, by
Corollary 3.2, Theorem 4.1 and Theorem 5.2, it remains to consider the following cases:

(n, k) ∈ {(7, 3), (8, 3), (8, 4)}.

For the case (n, k) = (7, 3) we need only to exhibit matrices A1 and A2 in Sym(7, 3) having
absolute values of determinants 6 and 24:

A1 =



1 1 1 0 0 0 0
1 1 0 1 0 0 0
1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 1 0 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1


, A2 =



1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 1 0


.

For the case (n, k) = (8, 3), one obtains (using Matlab) 3, 9, 15, 27 as the absolute values
of determinants of matrices of the form I8 + P i1

8 + P i2
8 , where 0 < i1 < i2 ≤ 7. Multiplying

such matrices on the left by F8 =
∑

i+j=9 Eij, we get matrices in Sym(8, 3) having the same
absolute values of determinants. Thus DSym(8, 3) ⊇ {0, 3, 9, 15, 27}. On the other hand,

12



A3 ∈ Sym(8, 3) satisfies | det(A3)| = 16, where

A3 =



1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 0 0 0 1 1 0 0
0 1 0 0 1 0 1 0
0 0 1 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 0 1 0 1 1 0
0 0 0 0 1 1 0 1


.

So we are done for (n, k) = (8, 3) by Theorem 4.1.
Finally, assume (n, k) = (8, 4). By Theorem 5.2, there exists A ∈ Sym(8, 4) with

| det A| = 16. On the other hand, using Matlab we have verified that {0, 32} are the absolute
values of determinants of matrices of the form I +P i1

8 +P i2
8 +P i3

8 , where 0 < i1 < i2 < i3 ≤ 7.
By Theorem 4.1, we are done. 2

We do not think that it is true that D(n, k) = DSym(n, k) in general. It is interesting to
consider the following problem.

Problem 5.4 Determine those positive integers k ≤ n so that

(a) D(n, k) = DSym(n, k).

(b) M(n, k) = max DSym(n, k).

6 Results for Cir(n, k)

Another interesting class of matrices in S(n, k) are polynomials with zero-one coefficients of
the standard circulant.

Cir(n, k) =


k∑

q=1

P iq
n : 0 ≤ i1 < i2 < · · · < iq < n

 .

Proposition 6.1 Let 1 ≤ k ≤ n− 1. Then all matrices Cir(n, k) are singular if and only if
n is a power of 2 and either k = 2 or k = n− 2.

Proof. The proof of Theorem 1 in [13] shows that Cir(n, k) contains a non-singular matrix
if 3 ≤ k ≤ n− 3. In view of (2.1) we have to consider only the case k = 2. Assume that n is
not a power of 2. Let q be a divisor of n such that s = n/q is an odd prime. It is then easy
to see that 1 + λq 6= 0 for any nth root of unity λ. Thus I + P q

n is non-singular. Assume now
that n is a power of 2: n = 2x. Given any integer i, 1 ≤ i ≤ n − 1, write: i = 2y`, where
0 ≤ y ≤ x − 1 and ` ≥ 1 is odd. Now let q = n

2y+1 . Clearly, q is a positive integer, and,
denoting by w a primitive nth root of unity, we have 1 + (wq)i = 0. Since wq is also an nth

root of unity, it follows that I + P i
n has zero as one of its eigenvalues, and hence I + P i

n is
singular. Thus Cir(2x, 2) consists of singular matrices only. 2
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Note that if w is an primitive nth root of unity, and if 0 = i1 < i2 < · · · < ik < n, then
A = P i1

n + · · · + P ik
n ∈ Cir(n, k) has eigenvalues (wr)i1 + · · · + (wr)ik , r = 1, . . . , n. Thus

there exists a singular matrix in Cir(n, k) if and only if there exist integers 0 = i1 < i2 <
· · · < ik < n such that (wr)i1 + · · · + (wr)ik = 0 for some 1 ≤ r < n. (In fact, it suffices to
consider only the factors r of n.) Unfortunately, the condition mentioned above is not easy
to check. We shall describe several readily computable criteria on some special cases in the
next proposition.

Proposition 6.2 Assume 1 < k < n− 1.

(a) If gcd(n, k) > 1, then there exists a singular matrix in Cir(n, k).

(b) The converse of (a) holds if at least one of the following is true:
(b.i) k ≤ 4; (b.ii) n is a power of a prime; (b.iii) n = 2p, where p is an odd prime.

Proof. For the part (a), let n = n1q, k = k1q, where q = gcd(n, k) > 1. Let w be a qth

primitive root of unity. Since w is also a kth root of unity, we have 1 + w + · · ·+ wk−1 = 0.
But w is also an nth root of unity, so I + Pn + · · ·+ P k−1

n is singular.
For part (b), we first consider the case when (b.i) is true. Let µ be an nth primitive root

of unity. Then Cir(n, 2) contains a singular matrix if and only if 1 + (µr)i2 = 0 for some
r < n and 0 < i2 < n. Thus −1 = µri2 , and hence n is even. Suppose Cir(n, 3) contains
a singular matrix. Then 1 + (µr)i2 + (µr)i3 = 0 for some r < n and 0 < i2 < i3 < n.
Taking complex conjugates in this equality, and multiplying the resulting equality by (µr)i3 ,
we obtain 1 + (µr)(i3−i2) + (µr)i3 = 0. It follows that i3 = 2i2, and therefore µri2 has to be a
primitive cube root of unity. Thus gcd(n, 3) = 3. Next, suppose Cir(n, 4) contains a singular
matrix. Then 1 + (µr)i2 + (µr)i3 + (µr)i4 = 0 for some r < n and 0 < i2 < i3 < i4 < n.
We need to show that n is even. Apply the relation µn = 1, and relabel µri2 , µri3 , and µri4

as µa, µb, and µc, respectively, so that 0 ≤ a ≤ b ≤ c < n. If a, b − a, c − b, n − c are all
odd, then n is even. Otherwise, one of the above integers is even. One can then multiply
1, µa, µb, µc by a suitable µd for some integer d so that the resulting four numbers are of the
form ν, ν̄, z1, z2 (for example, if a is even, we let d = −a

2
). Since ν + ν̄ + z1 + z2 = 0, we have

that either ν + ν̄ = 0, i.e., ν = ±i, or {z1, z2} = {−ν,−ν̄}. In both cases, µs = −1 for some
integer s, and hence n is even.

For part (b.ii) and (b.iii), we use the cyclotomic polynomial Φn(x) =
∏

(x − ζ), where
the product is taken over all primitive nth roots of unity ζ. It is well known that Φn(x) is
irreducible over the field Q of rational numbers; Φn(x) has integer coefficients; and Φn(x) is
the minimal polynomial of the primitive nth root of unity over Q. We will use the equality

xn + xn−1 + · · ·+ 1 =
∏

Φd(x), (6.1)

where the product is taken over all divisors d of n, excluding d = 1 (see, e.g., [5]).
Assume first that n = pα, where p is a prime and α is a positive integer. The equality

(6.1) shows easily (using induction on α), that Φn(1) = p. Assume that there is a singular
matrix in Cir(n, k). Then a primitive nth root of unity ζ is a root of some polynomial p(x)
of the form p(x) =

∑k
j=1 xij . By the minimality of Φn(x) we have p(x) = Φn(x)q(x) for some

polynomial q(x) with integer coefficients. Therefore, k = p(1) = Φn(1)q(1) = p · q(1), which
contradicts the fact that gcd(n, k) = 1.

14



Assume now n = 2p, where p is an odd prime, and let k be relatively prime to n. Using
(6.1), one verifies that Φn(x) = xp−1 − xp−2 + · · · − x + 1. We show that if wn = 1, then
w cannot be a root of any polynomial of the form f(x) = xi1 + xi2 + · · · + xik , where
0 ≤ i1 < · · · < ik < n. Suppose it is. Without loss of generality, we can assume k ≤ p. Then
in fact, because of the relative primeness of n and k, we have that k < p and k is odd. Three
cases can occur: (1) w2 = 1; (2) wp = 1; (3) w is a primitive nth root of unity. In case (1) we
clearly obtain a contradiction, because w = ±1, and therefore f(w) 6= 0. In case (2), f(x) is
divisible by Φp(x) = 1 + x + · · ·+ xp−1: f(x) = Φp(x)q(x) for some polynomial with integer
coefficients q(x). Evaluating both sides for x = 1, a contradiction follows: k = p · q(1). In
case (3),

f(x) = Φn(x)q(x) = (xp−1 − xp−2 + · · · − x + 1)q(x)

for some polynomial q(x) (with integer coefficients). Evaluating for x = −1, we have f(−1) =
p · q(−1), which is clearly impossible, because 0 < |f(−1)| < p, in view of k < p and k being
odd. 2

The following example shows that the converse of the first assertion of (a) may not be
true if k ≥ 5.

Example 6.3 Let A = I + P 3
12 + P 6

12 + P 8
12 + P 10

12 ∈ Cir(12, 5). Then det(A) = 0.

It is worthwhile to mention the idea behind the construction of the above example that
can be viewed as a generalization of Proposition 6.2 (a). Observe that to construct (n, k)
so that Cir(n, k) contains a singular matrix, one may consider k = k1 + · · ·+ kt so that the
mth primitive root of unity η = exp(2πi/m) satisfies

ηjs1 + · · ·+ ηjsks = 0, s = 1, . . . , t,

for some integer sequences 0 = js1 < js2 < · · · < jsks < m. Then for n = mr with r ≥ t, and
µ = exp(2πi/n), each matrix

As = P (s−1)m
n (P js1

n + · · ·+ P jsks
n ) (s = 1, . . . , t)

has an eigenvalue 0 with v = (1, µr, µ2r, . . . , µ(n−1)r)T as a corresponding eigenvector. Thus
the matrix A = A1 + · · ·+ At ∈ S(n, k) is singular. In Example 6.3, we have k = 5 = 3 + 2,

m = 6, n = 2m = 12, (j11, j12) = (0, 3) and (j21, j22, j23) = (0, 2, 4).

It is interesting to point out the connection of the problem of existence of a singular matrix
in Cir(n, k) and some other subjects. First, the same property on (n, k) appears in the study
of stability of invariant subspaces (see [14]). Second, very recently, it was shown in [9] that if
n has prime factor decomposition n = pa1

1 · · · pam
m , then there exists positive integers i1, . . . , ik

not necessarily distinct such that wi1 + · · · + wik = 0 if and only if k = b1p1 + · · · + bmpm

for some nonnegative integers b1, . . . , bm. Unfortunately, this latter condition is necessary
but not sufficient to ensure the existence of a singular matrix in DCir(n, k). For instance,
consider (n, k) = (10, 7). Then 7 = 2 + 5, is a sum of the prime factors of 10, but there is no
singular A ∈ DCir(10, 7) by Proposition 6.2 (b).
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The identification of the set DCir(n, k) is an open problem in general. Calculations using
Matlab show that

DCir(7, 3) = {3, 24};
DCir(8, 3) = {3, 9, 15, 27}; DCir(8, 4) = {0, 32};
DCir(9, 3) = {0, 27}; DCir(9, 4) = {4, 16, 28, 76};
DCir(10, 3) = {3, 9, 33}; DCir(10, 4) = {0, 8, 16, 88};
DCir(11, 3) = {3, 69}.

By the remark before Proposition 5.1 we have

DCir(n, k) ⊆ DSym(n, k). (6.2)

However, the above calculations show that the proper containment is possible in (6.2). More-
over, in contrast with Theorem 5.2,

m(8, 4) = 16 /∈ DCir(8, 4).

Concerning the maximal value of the determinant, we have

M(7, 3) ∈ DCir(7, 3); M(8, 3) ∈ DCir(8, 3); M(8, 4) ∈ DCir(8, 4),

but M(11, 3) /∈ DCir(11, 3). Indeed, we can construct a matrix A ∈ S(11, 3) having the form
A = A1⊕A2, where A1 ∈ S(7, 3) with det A1 = 24 and A2 ∈ S(4, 3) with det A2 = 3. Thus,
det A = 72, and therefore M(11, 3) ≥ 72.

Another open problem involves the symmetric (n, k, λ) designs for which the exact value
of M(n, k) is known (see Section 2). One easily verifies that the exact values M(7, 3) = 24
and M(11, 5) = 1215 are achieved on the set Cir(7, 3) and Cir(11, 5), respectively. For
example,

det(I + P11 + P 2
11 + P 4

11 + P 7
11) = det(I + P11 + P 2

11 + P 6
11 + P 9

11) = 1215.

In fact, it is known (e.g., see [2]) that M(n, k) = max DCir(n, k) if there exists a symmetric
(n, k, λ) design arising from a cyclic difference set. Nonetheless, it is interesting to study the
following problem:

Problem 6.4 Determine those positive integers k ≤ n such that

(a) DSym(n, k) = DCir(n, k),

(b) D(n, k) = DCir(n, k),

(c) M(n, k) = max DCir(n, k).
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