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Abstract

Let m,n, p be positive integers such that m ≥ n + p. Suppose (A, B) ∈ Cm×n ×Cm×p,
and let

P(A, B) = {(E, F ) ∈ Cm×n ×Cm×p : there is X ∈ Cn×p such that (A− E)X = B − F}.

The total least square problem concerns the determination of the existence of (E, F ) in

P(A, B) having the smallest Frobenius norm. In this paper, we characterize elements of the

set P(A, B) and derive a formula for

ρ(A, B) = inf {‖[E|F ]‖ : (E, F ) ∈ P(A, B)} ,

for any unitarily invariant norm ‖·‖ on Cm×(n+p), where [E|F ] denotes the m×(n+p) matrix
formed by the columns of E and F . Furthermore, we give a necessary and sufficient condition
on (A, B) and the unitarily invariant norm ‖·‖ so that there exists (E, F ) ∈ P(A, B) attaining

ρ(A, B). The results cover those on the total least square problem, and those of Huang and

Yan on the existence of (E, F ) ∈ P(A, B) so that [E|F ] has the smallest spectral norm.
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1 Introduction

Let A ∈ Cm×n and b ∈ Cm. The classical least square problem concerns the determination
of x ∈ Cn such that the vector f = b − Ax has the smallest `2 norm. In other words, one
wants to determine the vectors f in the set P = {g ∈ Cm : Ax = b− g is solvable} with the
smallest `2 norm. It is well known that if b = b0 + f , where b0 belongs to the column space
V of A and f belongs to the orthogonal complement of V , then f is the vector in P having
the minimum `2 norm.

More generally, one may consider the set P(A, b) of all (E, f) ∈ Cm×n ×Cm so that the
modified linear system

(A− E)x = b− f

is solvable, and one would like to construct (E, f) ∈ P(A, b) with the smallest Frobenius

norm ‖[E|f ]‖Fr = {tr (E∗E + f ∗f)}1/2, where [E|f ] denotes the m× (n + 1) matrix formed
by the columns of E and f . This is known as the total least square problem. Clearly, if
E = 0 and f is the least square solution, then (E, f) ∈ P(A, B). Thus, the total least

square solution (E, f) often has a smaller Frobenius norm comparing with the least square
solution. However, in general, it is not easy to determine the smallest norm for those pairs
(E, f) ∈ P(A, b), and it is sometimes impossible to construct (E, f) attaining the smallest
Frobenius norm value. Here is an example.

Example 1.1 Let A =
[
1 0
0 0

]
and b =

[
0
1

]
. Then for any d > 0 and

Eε =
[
0 0
0 ε

]
and fε =

[
0
0

]
,

we have (Eε, fε) ∈ P(A, b). So,

inf
(E,f)∈P(A,b)

‖(E, f)‖Fr = 0.

However, ‖(E, f)‖Fr = 0 if and only if (E, f) = (0, 0). Evidently, (0, 0) /∈ P(A, b). Thus,

there is no element in P(A, b) attaining the value 0.

Many researchers have studied the total least square problem and its extension to the
matrix equation

AX = B

for A ∈ Cm×n and B ∈ Cm×p; see [1, 5, 6, 8, 10, 11]. In particular, conditions for the

existence of elements (E, F ) in the set

P(A, B) = {(E, F ) ∈ Cm×n ×Cm×p : there is X ∈ Cn×p such that (A− E)X = B − F}

attaining the smallest Frobenius norm ‖[E|F ]‖Fr = {tr (E∗E + F ∗F )}1/2 are determined,

where [E|F ] denotes the m× (n + p) matrix formed by the columns of E and F .
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Theorem 1.2 Let A ∈ Cm×n and B ∈ Cm×p. Suppose W ∈ C(n+p)×(n+p) is unitary such
that

W ∗[A|B]∗[A|B]W = diag (s2
1, . . . , s

2
n+p) with s1 ≥ · · · ≥ sn+p ≥ 0.

Assume b ≤ n < d ≤ n + p are such that sb > sb+1 = · · · = sd > sd+1, where sd+1 = 0 if
d = n + p, and

W =
n
p

[
W11 W12 W13

W21 W22 W23

]
,

b d− b n + p− d .

Then

inf {‖[E|F ]‖Fr : (E, F ) ∈ P(A, B)} =


p∑

j=1

s2
n+j


1/2

,

and there exists (E, F ) in P(A, B) attaining the infimum if and only if rank W23 has rank

n + p− d and [W22|W23] has rank p.

In [3], the authors determined the condition for the existence of (E, F ) ∈ P(A, B) such

that [E|F ] attains the smallest spectral norm on Cm×(n+p) defined by

‖X‖Sp = max{(v∗X∗Xv)1/2 : v ∈ Cn+p, v∗v = 1}.

Theorem 1.3 Let A ∈ Cm×n, B ∈ Cm×p, W ∈ C(n+p)×(n+p), nonnegative numbers s1 ≥
· · · ≥ sn+p, and positive integers b, d satisfy the hypotheses of Theorem 1.2. Then

inf {‖[E|F ]‖Sp : (E, F ) ∈ P(A, B)} = sn+1,

and there exists (E, F ) in P(A, B) attaining the infimum if and only if W22 has rank at least
d− n.

The Frobenius norm and the spectral norm are special instances of unitarily invariant

norms, i.e., norms ‖·‖ that satisfy ‖UXV ‖ = ‖X‖ for all X ∈ Cm×(n+p) and unitary matrices

U ∈ Cm×m and V ∈ C(n+p)×(n+p); see [7, 9] and their references for general background of
unitarily invariant norms. It is interesting that in both Theorems 1.2 and 1.3, the smallest
norm value of (E, F ) ∈ P(A, B) is expressed in terms of the singular values of [A|B], and the

existence of (E, F ) ∈ P(A, B) attaining the smallest norm value is determined by the ranks

of certain submatrices of a unitary matrix W such that W ∗[A|B]∗[A|B]W is in diagonal
form. In this paper, we show that the same is actually true for any unitarily invariant norm

on Cm×(n+p). In Section 2, we characterize the elements in the set P(A, B) and determine

the value ρ(A, B) for an arbitrary unitarily invariant norm ‖ · ‖. We then use the results to

determine the condition for the existence of (E, F ) ∈ P(A, B) attaining ρ(A, B) in Section
3.

In our discussion, {E11, E12, . . . , Em,n+p} denotes the standard basis for Cm×(n+p). We

always assume that m ≥ n + p; otherwise, we may append zero rows to A and B. For

X ∈ Ck×` with k ≥ `, let s(X) = (s1(X), . . . , s`(X)) be the vector of singular values of X

such that s1(X) ≥ · · · ≥ s`(X).
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2 Elements in P(A, B) and a formula for ρ(A, B)

We use an idea in [3] to characterize elements in P(A, B) in the following proposition.

Proposition 2.1 Let (A, B) ∈ Cm×n ×Cm×p be given. Then (E, F ) ∈ P(A, B) if and only
if any one of the following holds.

(a) There is an n× p matrix X such that [E|F ]
[−X

Ip

]
= [A|B]

[−X
Ip

]
.

(b) There is an (n+p)×p matrix Y =
[
Y1

Y2

]
such that Y2 ∈ Cp×p is invertible, Y ∗Y = Ip,

and [E|F ]Y = [A|B]Y .

Proof. If (E, F ) ∈ P(A, B), then there is X such that (A − E)X = B − F . Thus,

−AX + B = −EX + F , and condition (a) follows.

If (a) holds, then (b) holds with Y =
[−X

Ip

]
(Ip + X∗X)−1/2.

If (b) holds, let X = −Y1Y
−1
2 . Then −AX + B = −EX + F , i.e., (A − E)X = B − F .

So, (E, F ) ∈ P(A, B). 2

Next, we derive a formula for ρ(A, B). We will use the fact that

P(A, B) = {(E, F ) ∈ Cm×n ×Cm×p : rank ([A− E|B − F ]) = rank (A− E)}.

Theorem 2.2 Let ‖·‖ be a unitarily invariant norm on Cm×(n+p), and let (A, B) ∈ Cm×n×
Cm×p. If [A|B] ∈ Cm×(n+p) has singular values s1 ≥ · · · ≥ sn+p, then

ρ(A, B) =

∥∥∥∥∥∥
n+p∑

j=n+1

sjEjj

∥∥∥∥∥∥ .

Proof. We consider two cases. First, suppose rank ([A|B]) ≤ n. Let P be an n × n
permutation matrix such that the first r columns of AP form a basis for the range space of

A. Furthermore, let B̃ consist of t columns of B such that the first r columns of AP and

the columns of B̃ combined form a basis for the column space of [A|B]. Let E ∈ Cm×n such

that EP = [Om×(n−t)|B̃] and F = Om×p. Then for any δ > 0, the columns of the matrix

(A − δE)P span the column space of [A|B]. So, for any ε > 0 there is δ > 0 such that

rank ([A− δE|B − F ]) = rank (A− δE) and ‖[δE|F ]‖ < ε. Hence,

ρ(A, B) = 0 =

∥∥∥∥∥∥
n+p∑

j=n+1

sjEjj

∥∥∥∥∥∥ .

Now, suppose rank ([A|B]) > n. If (E, F ) ∈ P(A, B), then

rank ([A|B]− [E|F ]) = rank (A− E) ≤ n.
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By the result of Mirsky [9],

‖[E|F ]‖ ≥

∥∥∥∥∥∥
n+p∑

j=n+1

sjEjj

∥∥∥∥∥∥ .

Suppose U ∈ Cm×(n+p) and V ∈ C(n+p)×(n+p) are such that U∗U = V ∗V = In+p and

[A|B] = Udiag (s1, . . . , sn+p)V . The matrix

[Ã|B̃] = U∗diag (s1, . . . , sn, 0, . . . , 0)V

has rank n. By the proof in the preceding paragraph, there is Ẽ ∈ Cm×n such that

rank ([Ã− δẼ|B̃]) = rank (Ã− δẼ)

for any δ > 0. Thus for any ε > 0, we can construct (E, F ) ∈ P(A, B) such that

[E|F ] = U(diag (0, . . . , 0, sn+1, . . . , sn+p))V + [δẼ|On×p]

and

‖[E|F ]‖ <

∥∥∥∥∥∥
n+p∑

j=n+1

sjEjj

∥∥∥∥∥∥ + ε.

Hence, ρ(A, B) = ‖∑n+p
j=n+1 sjEjj‖ as asserted. 2

3 Existence of elements in P(A, B) attaining ρ(A, B)

Let ‖ · ‖ be a norm on Cm×(n+p), and let (A, B) ∈ Cm×n × Cm×p. We say that ρ(A, B) is

attainable if there is (E, F ) ∈ P(A, B) such that ‖[E|F ]‖ = ρ(A, B).

Proposition 3.1 Let ‖ · ‖ be a norm on Cm×(n+p), and let (A, B) ∈ Cm×n ×Cm×p. Then

ρ(A, B) = 0 is attainable (by (E, F ) = (O, O)) if and only if rank ([A|B]) = rank (A). In

case ‖ · ‖ is unitarily invariant, ρ(A, B) = 0 if and only if rank ([A|B]) ≤ n.

Proof. The first assertion can be verified readily. The second assertion follows from
Theorem 2.2. 2

The problem is more delicate if ρ(A, B) > 0. We need some more notation and facts

about unitarily invariant norms. Given two real vectors x = (x1, . . . , x`) and y = (y1, . . . , y`)

in R1×` with ` ≤ n + p, we say that y is weakly majorized by x, denoted by y ≺w x, if the
sum of the t largest entries of y is not larger than that of x for t = 1, . . . , `. In addition,
if all the entries of x and y are nonnegative, then for any unitarily invariant norm ‖ · ‖ on

Cm×(n+p), we have ∥∥∥∥∥∥
p∑

j=1

yjEjj

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥

p∑
j=1

xjEjj

∥∥∥∥∥∥ ;

see [9].
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Theorem 3.2 Let ‖·‖ be a unitarily invariant norm on Cm×(n+p), and let (A, B) ∈ Cm×n×
Cm×p. The following conditions are equivalent.

(a) There is (E, F ) ∈ P(A, B) such that ‖[E|F ]‖ = ρ(A, B).

(b) There is an (n+p)×p matrix Y =
[
Y1

Y2

]
such that Y2 ∈ Cp×p is invertible, Y ∗Y = Ip,

and for [Y |0] ∈ C(n+p)×(n+p) we have

‖[A|B][Y |0]‖ =

∥∥∥∥∥∥
p∑

j=1

sj([A|B]Y )Ejj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
n+p∑

j=n+1

sj([A|B])Ejj

∥∥∥∥∥∥ .

Proof. Suppose (b) holds. Let [E|F ] = [A|B]Y Y ∗. Then [E|F ]Y = [A|B]Y Y ∗Y =

[A|B]Y , and hence (E, F ) ∈ P(A, B) by Proposition 2.1. Let U be a unitary matrix of the

form [Y |Z]. Then

‖[E|F ]‖ = ‖[E|F ]U‖ = ‖[A|B]Y Y ∗[Y |Z]‖ = ‖[A|B][Y |0]‖ = ρ(A, B).

Conversely, suppose there exists (E, F ) ∈ P(A, B) such that ‖[E|F ]‖ = ρ(A, B). By

Proposition 2.1, there is Y satisfying Proposition 2.1 (b) such that [E|F ]Y = [A|B]Y . So,

there exists a unitary U ∈ C(n+p)×(n+p) of the form [Y |Z] such that [E|F ]Y = [A|B]Y is a

submatrix of [A|B]U . By the result in [12], we have

sj([A|B][Y |0]) ≥ sn+j([A|B]) for j = 1, . . . , p.

Thus, ‖[A|B]‖ ≥ ‖[A|B][Y |0]‖. Similarly, ‖[E|F ]‖ ≥ ‖[E|F ][Y |0]‖. Hence,

ρ(A, B) = ‖[E|F ]‖ ≥ ‖[E|F ][Y |0]‖ = ‖[A|B][Y |0]‖

=

∥∥∥∥∥∥
p∑

j=1

sj([A|B][Y |0])Ejj

∥∥∥∥∥∥ ≥
∥∥∥∥∥∥

n+p∑
j=n+1

sj([A|B])Ejj

∥∥∥∥∥∥ = ρ(A, B).
2

Condition (b) in Theorem 3.2 is not easy to check. We obtain a better condition, which
is computable and easier to check, in Theorem 3.4. We first prove an auxiliary lemma.

Lemma 3.3 Suppose a unitarily invariant norm ‖ · ‖ on Cm×(n+p) and X ∈ Cm×(n+p) are
given so that

‖X‖ =

∥∥∥∥∥∥
r∑

j=1

sj(X)Ejj

∥∥∥∥∥∥ >

∥∥∥∥∥∥
r−1∑
j=1

sj(X)Ejj

∥∥∥∥∥∥ .

Assume that sr(X) = · · · = st(X) > st+1(X) for some positive integer t ≥ r, and Z ∈
Cm×(n+p) such that sj(Z) ≥ sj(X) for all j = 1, . . . , n+p. If ‖X‖ = ‖Z‖, then sj(X) = sj(Z)

for all j = 1, . . . , t.
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Proof. Let ‖ ·‖ and X satisfy the hypotheses of the lemma. Then (see [4, 7]), there exists

a compact subset K of nonnegative vectors of the form (c1, . . . , cn+p) with c1 ≥ · · · ≥ cn+p

such that
‖Y ‖ = max{‖Y ‖c : c ∈ K},

where

‖Y ‖c =
n+p∑
j=1

cjsj(Y ).

By the assumption on X and the norm ‖ · ‖, we see that sr(X) > 0 and there is a vector

c = (c1, . . . , cn+p) ∈ K with cr > 0 such that

‖X‖ = ‖X‖c.

Assume that there is j ∈ {1, . . . , t} such that sj(Z) > sj(X). If j > r, then sr(Z) ≥ sj(Z) >

sj(X) = sr(X). So, we may assume that j ≤ r. Thus,
∑r

j=1 cj(sj(Z)− sj(X)) > 0, and

‖Z‖ ≥ ‖Z‖c > ‖X‖c = ‖Z‖,

which is a contradiction. 2

Theorem 3.4 Let ‖·‖ be a unitarily invariant norm on Cm×(n+p), and let (A, B) ∈ Cm×n×
Cm×p be such that [A|B] has singular values s1 ≥ · · · ≥ sn+p with sn > 0. Suppose

ρ(A, B) =

∥∥∥∥∥∥
p∑

j=1

sn+jEjj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
r∑

j=1

sn+jEjj

∥∥∥∥∥∥ >

∥∥∥∥∥∥
r−1∑
j=1

sn+jEjj

∥∥∥∥∥∥ .

Let b ≤ n < d ≤ n + t satisfy sb > sb+1 = · · · = sd > sd+1 and sn+r = · · · = sn+t > sn+t+1,

W =
n
p

[
W11 W12 W13 W14

W21 W22 W23 W24

]
,

b d− b n + t− d p− t

be unitary such that W ∗[A|B]∗[A|B]W = diag (s2
1, . . . , s

2
n+p). The following conditions are

equivalent.

(a) There is (E, F ) ∈ P(A, B) such that ‖[E|F ]‖ = ρ(A, B).

(b) W23 has rank n + t− d and [W22|W23] has rank at least t.

(c) There is an orthonormal family {v1, . . . , vt} of eigenvectors for the matrix [A|B]∗[A|B]

corresponding to the eigenvalues s2
n+1, . . . , s

2
n+t such that [v1| · · · |vt] =

[
V1

V2

]
for a p × t V2

matrix having rank t.
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Proof. It is easy to verify (b) ⇐⇒ (c). Suppose (c) holds. Let V be the (n + p) × t
matrix with v1, . . . , vt as columns. One can find an orthonormal set of vectors yt+1, . . . , yp

such that V ∗yj = 0 and ‖Ayj‖ ≤ sn+t for j = t + 1, . . . , p. Let Y = [V |yt+1| · · · |yp]. Then

Theorem 3.2 (a) holds, and hence condition (a) holds by Theorem 3.2 .

Suppose (a) holds. Then Theorem 3.2 (b) holds. Let Y be the matrix satisfying Theorem

3.2 (b). If [A|B]Y has singular values µ1 ≥ · · · ≥ µp, then µj ≥ sn+j for j = 1, . . . , p, by the

result in [12]. Since ∥∥∥∥∥∥
p∑

j=1

sn+jEjj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
r∑

j=1

sn+jEjj

∥∥∥∥∥∥ ,

we see that µj = sn+j for j = 1, . . . , t by Lemma 3.3. Suppose U is a unitary matrix of the

form [Y |Z]. Then

U∗[A|B]∗[A|B]U =
[
P R∗

R Q

]
such that P is p × p and has eigenvalues µ2

1, . . . , µ
2
p. Since µj = sn+j for j = 1, . . . , t,

we can apply [2, Theorem 2.1 (ii)] to conclude that the column spaces of Y contains an
orthonormal set V with at least t elements from the subspace spanned by the eigenvectors of

the matrix [A|B]∗[A|B] corresponding to the eigenvalues s2
b+1, . . . , s

2
n+t. Since µj = sn+j for

j = 1, . . . , d− n, we see that there are at least d− n eigenvectors in V corresponding to the

eigenvalue s2
n+1. Since µd−n+1 = sd+1 < sd, we see that there are at most d−n eigenvectors in

V corresponding to the eigenvalue s2
n+1. Consequently, the remaining t− (d−n) eigenvectors

must correspond to the eigenvalues s2
d+1, . . . , s

2
n+t. Thus, the column space of Y contains an

orthonormal family {v1, . . . , vt} satisfying condition (c). 2

Specializing Theorem 3.4 to the Frobenius norm, we see that the equivalence of (a)

and (b) reduces to the result in [8]; see also Theorem 1.2. Note that in this case, W14

and W24 are vacuous. Moreover, if (E, F ) ∈ P(A, B) satisfies ‖[E|F ]‖Fr = ρ(A, B), then

s([E|F ]) = (sn+1, . . . , sn+p, 0, . . . , 0). Hence, ρ(A, B) is attained by (E, F ) for any other

unitarily invariant norm ‖ · ‖ on Cm×(n+p). In fact, the same result holds whenever p = t in
the hypotheses of Theorem 3.4. We have the following.

Corollary 3.5 Use the notation of Theorem 3.4. Suppose t = p. If (E, F ) ∈ P(A, B) satis-

fies ‖[E|F ]‖ = ρ(A, B), then ρ(A, B) is attained by (E, F ) for any other unitarily invariant

norm on Cm×(n+p).

We note that the hypothesis of the above corollary is satisfied by many unitarily invariant

norms. For example, the Schatten q-norms defined by Sq(X) = {∑p
j=1 sj(X)q}1/q for q ≥ 1.

Specializing Theorem 3.4 to the spectral norm, we see that the equivalence of (a) and

(b) reduces to the result in [3]; see also Theorem 1.3. Note that in this case, W13 and W23

are vacuous. Moreover, we have the following.

Corollary 3.6 If (E, F ) ∈ P(A, B) satisfies ‖[E|F ]‖ = ρ(A, B) for a given unitarily invari-

ant norm ‖ · ‖, then (E, F ) also attains ρ(A, B) for the spectral norm.

8



References

[1] G.H. Golub and C.F. Van Loan, An analysis of the total least squares, SIAM J.

Numer. Anal. 17 (1980), 883-893.

[2] R.A. Horn, N.H. Rhee, W. So, eigenvalue inequalities and equalities, Linear Algebra

Appl. 270 (1998), 29-44.

[3] K.B. Huang and S.J. Yan, The solvability of the multidimensional total least per-

turbation problem in spectral norm, Math. Numer. Sinica 19 (1997), 185-192 (in

Chinese).

[4] R.A. Horn and R. Mathias, Cauchy-Schwartz inequalities associated with positive

semidefinite matrices, Linear Algebra Appl. 142 (1990), 63-82.

[5] S. Van Huffel and J. Vandewalle, The least square problem: Computational aspects
and analysis, Frontiers in Appl. math., SIAM Philadelphia, 1991.

[6] A. Kukush and S. Van Huffel, Consistency of elementwise-weighted total least
squares estimator in a multivariate errors-in-variables model AX = B, Metrika 59
(2004), no. 1, 75–97.

[7] C.K. Li, Some aspects of the theory of norms, Linear Algebra Appl. 212/213 (1994),
71-100.

[8] X.-G. Liu, On the solvability and perturbation analysis of the TLS problem, Math.

Appl. Sinica 19 (1996), 255-262 (in Chinese).

[9] L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart. J.

Math. Oxford 11 (1960), 50-59.

[10] M.-S. Wei, The analysis for the total least squares problem with more than one

solution, SIAM J. Matrix Anal. Appl. 2 (1992), 746-763.

[11] M.-S. Wei, Algebraic relations between the total least squares and least squares

problem with more than one solution, Numer. Math. 62 (1992), 132-148.

[12] R.C. Thompson, Principal submatrices IX: Interlacing inequalities for singular val-

ues of submatrices, Linear Algebra Appl. 5 (1972), 1-12.

9


