
Numer. Math. (1999) 81: 377–413 Numerische
Mathematik
c© Springer-Verlag 1999

The Lidskii-Mirsky-Wielandt theorem –
additive and multiplicative versions?

Chi-Kwong Li, Roy Mathias

Department of Mathematics, The College of William and Mary, Williamsburg, Virginia
23187, USA; e-mail: ckli@math.wm.edu, mathias@math.wm.edu

Received November 20, 1996 / Revised version received January 27, 1998

Summary. We use a simple matrix splitting technique to give an elemen-
tary new proof of the Lidskii-Mirsky-Wielandt Theorem and to obtain a
multiplicative analog of the Lidskii-Mirsky-Wielandt Theorem, which we
argue is the fundamental bound in the study of relative perturbation the-
ory for eigenvalues of Hermitian matrices and singular values of general
matrices. We apply our bound to obtain numerous bounds on the match-
ing distance between the eigenvalues and singular values of matrices. Our
results strengthen and generalize those in the literature.

Mathematics Subject Classification (1991):65F15

1. Introduction

Given ann × n Hermitian matrixA let λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A)
denote its ordered eigenvalues. Thesingular valuesof anm × n matrixA,
are defined by

σi(A) =
√

λi(A∗A), i = 1, 2, . . . , q ≡ min{m, n}.

An m×n matrix can have at mostq ≡ min{m, n} non-zero singular values
so we shall only consider its largestq singular values.

The Lidskii-Mirsky-Wielandt theorem (e.g., see [19, Theorem IV.4.8] or
[2, Theorem 9.4]) states:
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Theorem 1.1 Let A and E be n × n Hermitian matrices. Then for any
indices1 ≤ i1 < i2 < · · · < ik ≤ n we have

k∑
j=1

[λij (A + E) − λij (A)] ≤
k∑

j=1

λj(E).(1.1)

This is a very useful result in matrix theory. It is a majorization relation
that implies a bound on the matching distance between the eigenvalues of
A and those ofA + E, namely,

k∑
j=1

|λij (A + E) − λij (A)| ≤
k∑

j=1

σj(E).(1.2)

This result can also be stated in terms of norms. A norm‖ · ‖ on R
n is

called asymmetric normif it is both permutation invariant, that is,

‖Px‖ = ‖x‖, ∀ x ∈ R
n, permutation matrices P

and absolute, that is,

‖(xi)n
i=1‖ = ‖(|xi|)n

i=1‖, ∀ x ∈ R
n.

Symmetric norms are also sometimes called symmetric gauge functions. For
every symmetric norm‖·‖ onR

n there is a corresponding unitarily invariant
norm, which we shall denote by||| · |||, on the space ofn × n matrices. The
correspondence is given by

|||A||| = ‖ (σi(A))n
i=1 ‖.(1.3)

For example, the norms corresponding to the`2 and`∞ norms onRn are the
the Frobenius norm (denoted||| · |||F) and spectral (or 2-) norm (denoted||| ·
|||2) respectively. See [8, Sect. 7.4] for further information and background
on the connection between symmetric norms and unitarily invariant norms.

With this notation, and the theory of majorization, the result (1.2) is
equivalent to the statement that

‖(λi(A + E) − λi(A))n
i=1‖ ≤ |||E|||(1.4)

is valid for any HermitianA andE and any symmetric norm. This bound
is frequently stated and referred to when perturbation theory is studied in
the context of matrix inequalities. If one specializes this to the`2 and`∞
norms onRn then one obtains the Wielandt-Hoffman and the Lidskii-Weyl
inequalities: (

n∑
i=1

(λi(A + E) − λi(A))2
)1/2

≤ |||E|||F(1.5)

max
i=1,...,n

|λi(A + E) − λi(A)| ≤ |||E|||2(1.6)
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In numerical linear algebra one typically considers only the Wielandt-Hoff-
man and Lidskii-Weyl bounds, even though they are both just special cases
of the fundamental Lidskii-Wielandt perturbation bound (1.2), or its norm
form (1.4).

In multiplicative (or relative) perturbation theory one wants to bound
quantities such as

∣∣∣∣∣λi(S∗AS) − λi(A)√
λi(A)λi(S∗AS)

∣∣∣∣∣ or
∣∣∣∣log

λi(S∗AS)
λi(A)

∣∣∣∣(1.7)

in terms of the distance betweenS and the set of unitary matrices. Ipsen has
surveyed the results on multiplicative perturbation theory for eigenvalues
and singular values [10]. The paper [12] contains numerous references on
the subject of multiplicative perturbation bounds.

Our purpose is to give a multiplicative analog of the fundamental Lidskii-
Wielandt bound and to show that it implies all the other relative perturbation
bounds for eigenvalues of Hermitian matrices and singular values of general
matrices. We also give an elementary new proof of (1.1).

In Sect. 2 we give a simple new proof of (1.1) and its multiplicative
analog. We then show how this multiplicative analog of the Lidskii-Mirsky-
Wielandt inequality implies similar results for singular values, generalized
eigenvalues and generalized singular values. These results give upper and
lower bounds on the ratio of the unperturbed and perturbed eigenvalues. It
is a small step from here to the bounds in Sect. 2.3 which are multiplicative
bounds on the relative perturbation in the eigenvalues. These bounds are
completely analogousto the perturbation bound (1.2). It is only because
we want to state results in terms of norms that we have to continue the
development in Sects. 3, 4 and 5. Notice that Theorem 2.3 is the only new
theorem in this paper – all the other results in this paper may be viewed as
corollaries of Theorem 2.3.

In Sect. 3 we briefly review the connection between majorization and
symmetric norms, which were defined in the the introduction.

In Sect. 4 we take logarithms of the results in Sect. 2 and use the connec-
tion between majorization and symmetric norms to derive a multiplicative
version of the matching bound (1.2) in terms of norms and the relative dis-
tance

rd(α, β) = | log(α/β)| = | log |α| − log |β| |
between two real numbersα andβ of the same sign. This relative distance,
while not new, has not been used before in the context of multiplicative
perturbation theory for eigenvalues. As we shall see in Sects. 4 and 6, there
are good reasons for us to use this measure in our study.
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In Sect. 5 we derive a multiplicative version of the matching bound (1.2)
in terms of the relative error

χ(α, β) =

∣∣∣∣∣
√

α

β
−
√

β

α

∣∣∣∣∣ = |α − β|√
αβ

.

from the results in Sect. 2. In order to do this we need to prove a few scalar
inequalities in Sect. 5.1. Our multiplicative perturbation bounds improve
and generalize the work of R.-C. Li [12] who has extended many of the
classical eigenvalue perturbation bounds from the additive context to the
multiplicative context. The measure of relative differenceχ(·, ·) has been
used by a number of authors butrd has much better mathematical properties
and consequently the results in this section are harder to prove and are less
clean than the results in the previous section.

In Sect. 6 we compare our results with those in the literature. There are
many ways to state relative perturbation bounds. In this section, we also
argue that the form used in Sect. 2.3, is the “right way” even though it is
less familiar than the norm-wise results stated in Sects. 4 and 5. We end
the section with a list of reasons whyrd is a better measure of relative
perturbation thanχ

In Sect. 7 we use the matrix splitting technique to give a proof of
Wielandt’s min-max theorem. We also show that two natural multiplica-
tive analogs of Wielandt’s min-max theorem are false.

2. Matrix inequalities

The key ingredients of our proofs in this section are a matrix splitting tech-
nique and the following results of Weyl and Ostrowski:

Lemma 2.1 (Weyl’s Inequality) [8, Corollary 4.3.3]LetA andE ben × n
Hermitian matrices withE positive semi-definite. Then

λi(A) ≤ λi(A + E) i = 1, 2, . . . , n.(2.1)

Lemma 2.2 (Ostrowski’s Inequality) [8, Theorem 4.5.9]LetA be ann×n
Hermitian matrix and letS be ann × n matrix withλn(S∗S) ≥ 1. Then
for i = 1, 2, . . . , n, we have

|λi(A)| ≤ |λi(S∗AS)|,(2.2)

or equivalently,

1 ≤ λi(S∗AS)
λi(A)

.(2.3)

Here we use the fact thatS∗AS andA have the same inertia and the con-
vention that0/0 = 1 to ensure that the right side of(2.3) is always positive.
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2.1. Proofs of Lidskii-Mirsky-Wielandt theorems

Let us prove (1.1). We may assume, without loss of generality, thatλk(E) =
0; otherwise, we may replaceE by E − λk(E)I which reduces both sides
of (1.1) bykλk(E). Let E = E+ + E− be the usual decomposition ofE
into positive and negative parts, i.e.,

E+ =
n∑

i=1

max{0, λi(E)}xix
∗
i and E− =

n∑
i=1

min{0, λi(E)}xix
∗
i ,

where E =
∑n

i=1 λi(E)xix
∗
i is a spectral decomposition ofE. Since

λk(E) = 0 it follows that trace(E+) =
∑k

i=1 λi(E), and hence we need
only prove that

k∑
j=1

[λij (A + E) − λij (A)] ≤ trace(E+).

Using Weyl’s inequality with the fact thatA + E ≤ A + E+, we have
λij (A + E) ≤ λij (A + E+) and hence

k∑
j=1

[λij (A + E) − λij (A)] ≤
k∑

j=1

[λij (A + E+) − λij (A)]

Using Weyl’s inequality again, this time with the fact thatE+ ≥ 0, we have
thatλj(A + E+) − λj(A) is nonnegative for eachj = 1, . . . , n, and hence

k∑
j=1

[λij (A + E+) − λij (A)] ≤
n∑

j=1

[λj(A + E+) − λj(A)]

= trace(A + E+) − trace(A)
= trace(E+),

as desired.
Typically one derives the Lidskii-Mirsky-Wielandt bound from Wie-

landt’s min-max representation of
∑k

j=1 λij (A) [2] [19]. This is consider-
ably more complicated than our approach.1 In the last section we show that
our technique can be used to prove Wielandt’s min-max theorem. Now we
use the same technique to prove a multiplicative analog of (1.1).

1 The recent book [3] does contain two proofs of Lidskii-Mirsky-Wielandt (called Lidskii’s
inequality in [3]) that do not involve Wielandt’s min-max representation. One uses induc-
tion, the other is somewhat similar to ours, but considerably more complicated. Thompson
and Freede proved a generalization of the Lidskii-Wielandt inequalities (1.1) using rather
elementary techniques and an inductive argument [21]. The fact that their result implies the
Lidskii-Weilandt inequality appears to have been overlooked by many researchers.
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Theorem 2.3 Let A be ann × n Hermitian matrix and letÃ = S∗AS.
Then for any indices1 ≤ i1 < i2 < · · · < ik ≤ n such thatλij (A) 6= 0 for
j = 1, . . . , k, we have

k∏
i=1

λn+1−i(S∗S) ≤
k∏

j=1

λij (Ã)
λij (A)

≤
k∏

i=1

λi(S∗S).(2.4)

Here we use the fact that the number of positive( respectively, negative)
eigenvalues ofÃ is not larger than that ofA to ensure that the middle
expression in(2.4) is always nonnegative.

Proof. First assume thatS is invertible. LetS have singular value decompo-
sition S = U diag (d1, d2, . . . , dn)V , whered1 ≥ d2 ≥ · · · ≥ dn > 0 and
U andV are unitary. Since eigenvalues are invariant under unitary similari-
ties we may assume, without loss of generality, thatU = V = I and hence
S = diag (d1, d2, . . . , dn). Furthermore, we may assume thatdk = 1; oth-
erwise, we can replace the matrixS by S/dk which will change all the left,
middle and right quantities in (2.4) by the same multiple, namely,1/d2k

k .
(This is where we use the assumption thatλij (A) 6= 0 for all j.)

LetD̃ = diag (d1, . . . , dk)⊕In−k. Thendet (D̃∗D̃) =
∏k

i=1 λi(S∗S),
and hence we need only to prove

k∏
j=1

λij (Ã)
λij (A)

≤ det (D̃∗D̃)

to get the upper bound in(2.4).
Using Ostrowski’s inequality with the fact thatλn((S−1D̃)∗(S−1D̃)) ≥

1, we have

k∏
j=1

λij (S
∗AS)

λij (A)
≤

k∏
j=1

λij ((S
−1D̃)∗S∗AS(S−1D̃))

λij (A)

=
k∏

j=1

λij (D̃
∗AD̃)

λij (A)
.(2.5)

Using Ostrowski’s inequality again, this time with the fact thatλn(D̃∗D̃) ≥
1, we have1 ≤ λi(D̃∗AD̃)

λi(A) for all i = 1, . . . , n, and hence

k∏
j=1

λij (D̃
∗AD̃)

λij (A)
≤

n∏
j=1

λi(D̃∗AD̃)
λi(A)

= det(D̃∗D̃).(2.6)

Combining (2.5) and (2.6), we get the desired upper bound.
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Now, using the result established in the preceding paragraph, we have
 k∏

j=1

λij (S
∗AS)

λij (A)




−1

=
k∏

j=1

λij ((S
−1)∗S∗ASS−1)

λij (S∗AS)

≤
k∏

j=1

λj(S−∗S−1)

=


 k∏

j=1

λn+j−1(S∗S)




−1

.

Taking the inverse of this inequality, we get the lower bound.
Now consider the singular case. The lower bound is trivially true in this

case. LetS(t) = S + tI with 0 < t < |λ| for any nonzero eigenvalue
λ of S. ThenS(t) is invertible andlimt↓0 S(t) = S. By the continuity of
eigenvalues and (2.4) in the invertible case, we get the result for the singular
case also. ut

One may be tempted to remove the requirement in Theorem 2.3 that
λij (A) 6= 0 and instead use the convention that0/0 = 1. To see that the
resulting statement is not correct just consider the scalar exampleA = 0,
S = 2.

We may summarize our proofs by saying that Weyl’s qualitative bound
(2.1) together with the linearity of the trace implies the much stronger bound
(1.1), and that Ostrowski’s qualitative bound (2.3) together with the multi-
plicativity of the determinant implies the much stronger bound (2.4). See
[16] for another instance where a matrix splitting technique and Weyl’s
simple monotonicity result yield much stronger eigenvalue bounds.

To conclude this section, we remark that Theorem 2.3 provides some
basic inequalities relating the eigenvalues ofS∗AS andA. Similar to many
other results in matrix inequalities, once some basic inequalities are available
one can use the theory of majorization on real vectors to obtain a whole
family of inequalities (e.g., see [9,15]). In fact, since we have a product
inequality we may take positive powers of all the terms and obtain new
inequalities. For example, in the development in Sect. 5 it is convenient to
take the square root of the inequality of (2.11), but we could have equally
well taken another power and obtained a different perturbation bound.

2.2. Related Lidskii-Mirsky-Wielandt inequalities

The inequalities (2.4) appear to be new for Hermitian matrices. In the special
case thatA is positive semi-definite (2.4) is equivalent to the singular value
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inequalities
k∏

i=1

σij (A
1/2S)

σij (A1/2)
≤

k∏
i=1

σi(S)(2.7)

which is a special case of a more general family of inequalities [20] (or
see [9, (3.3.53)] for the result without proof). The inequalities (2.7) were
first proved by Gelfand and Naimark [7] (or see [3, Theorem III.4.5] or [9,
(3.3.52)]).

Theorem 2.3 implies similar multiplicative inequalities for singular val-
ues, generalized eigenvalues, and generalized singular values.

Since the positive singular values of anm×n matrixA are the nonnega-
tive square roots of the nonzero eigenvalues ofAA∗ orA∗A, two applications
of (2.4) yield

Corollary 2.4 Let A be anm × n matrix withq positive singular values.
SupposeS is m × m andT is n × n. Then

k∏
i=1

σm+1−i(S)σn+1−i(T ) ≤
k∏

j=1

σij (SAT )
σij (A)

≤
k∏

i=1

σi(S)σi(T )(2.8)

for any set of indices1 ≤ i1 < · · · < ik ≤ q.

Proof. We shall prove the upper bound only since the lower bound can be
proved in the same way. We have used the upper bound in (2.4) for the two
inequalities below.

k∏
j=1

σ2
ij

(SAT )

σ2
ij

(A)
=

k∏
j=1

λij (SATT ∗A∗S∗)
λij (ATT ∗A∗)

λij (ATT ∗A∗)
λij (AA∗)

≤
k∏

j=1

λi(SS∗)
k∏

j=1

λij (ATT ∗A∗)
λij (AA∗)

=
k∏

j=1

σ2
i (S)

k∏
j=1

λij (T
∗A∗AT )

λij (A∗A)

≤
k∏

j=1

σ2
i (S)

k∏
j=1

λi(T ∗T )

=
k∏

j=1

σ2
i (S)

k∏
j=1

σ2
i (T ).

This is the square of the upper bound.ut
Notice that whenm 6= n, the pairing of the singular values ofS andT

in the upper and lower bounds is not the same.
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Corollary 2.5 Consider the generalized eigenvalue problems

A1−λA2 ≡ S∗
1H1S

∗
1−λS∗

2H2S
∗
2 , and Ã1−λÃ2 ≡ S∗

1H̃1S
∗
1−λS∗

2H̃2S
∗
2

where theH ’s and H̃ ’s are positive definite andS2 is invertible. Let
their eigenvalues beλi and λ̃i. Let F1 = H

−1/2
1 H̃1H

−1/2
1 and letF2 =

H̃
−1/2
2 H2H̃

−1/2
2 . Then

k∏
i=1

λn+1−i(F1)λn+1−i(F2) ≤
k∏

j=1

λ̃ij

λij

≤
k∏

i=1

λi(F1)λi(F2)(2.9)

for any set of indices1 ≤ i1 < · · · < ik ≤ q.

Corollary 2.6 Consider the pairs ofn × n matrices(B1, B2) ≡ (G1S1,
G2S2) and(B̃1, B̃2) ≡ (G̃1S1, G̃2S2) where theG’s andG̃’s and at least
one of theS’s is nonsingular. Let their generalized singular values beσi

andσ̃i, i = 1, . . . , n. Then

k∏
i=1

σn+1−i(G̃1G
−1
1 )σn+1−i(G2G̃

−1
2 ) ≤

k∏
j=1

σ̃ij

σij

≤
k∏

i=1

σi(G̃1G
−1
1 )σi(G2G̃

−1
2 )(2.10)

for any set of indices1 ≤ i1 < · · · < ik ≤ q.

2.3. Multiplicative matching bounds

In Theorem 2.3 we gave a multiplicative analog of (1.1). In this subsection
we give a multiplicative analog of (1.2) that follows easily from Theorem
2.3. There are also matching bounds that follow from the results in the
previous subsection.

Corollary 2.7 Let A be ann × n Hermitian matrix and letÃ = S∗AS
whereS is a invertible matrix. Using the fact thatS∗AS and A have the
same inertia and the convention that0/0 = 1, we have

k∏
j=1

max

{
λij (A)

λij (Ã)
,
λij (Ã)
λij (A)

}
≤

k∏
j=1

η2
j (S),(2.11)

for any indices1 ≤ i1 < i2 < · · · < ik ≤ n, where

ηi(S) ≡ max{στ(i)(S), σ−1
τ(i)(S)},(2.12)

whereτ is a permutation such thatη1 ≥ · · · ≥ ηn.
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Proof. Let the indicesl1 < · · · < lk1 be indices fromi1 < · · · < ik for
which

λij (A)

λij (Ã)
≤ λij (Ã)

λij (A)
.

Let m1 < · · · < mk2 be the remaining indices fromi1 < · · · < ik. Then,
using the upper bound in (2.4) to bound the first product and the lower bound
in (2.4) to bound the second, we have

k∏
j=1

max

{
λij (A)

λij (Ã)
,
λij (Ã)
λij (A)

}

=
k1∏

j=1

λlj (A)

λlj (Ã)

k2∏
j=1

λmj (Ã)
λmj (A)

≤
k1∏

j=1

λj(S∗S)
k2∏

j=1

λ−1
n+1−j(S

∗S)

≤
k1∏

j=1

max{λj(S∗S), λ−1
j (S∗S)}

×
k2∏

j=1

max{λn+1−j(S∗S), λ−1
n+1−j(S

∗S)}

≤
k∏

j=1

η2
j (S).

The final inequality follows from the definition of theηi’s–the penultimate
line is the product ofk of theηi’s, while in the last line we have the product
of the largestk of theηi’s. ut

The bound (2.11) is the multiplicative analog of (1.2). The use ofηi may
seem rather unnatural because its definition is awkward, but in fact theηi’s
are entirely analogous to the singular values of a Hermitian that appear on
the right hand side of (1.2). To see this note that we could define the singular
values of aHermitian matrixE by

σi(E) = max{λτ(i)(E),−λτ(i)(E)},

where the permutationτ is such thatσ1(E) ≥ · · · ≥ σn(E). Another
analogy between theηi’s and singular values is that the singular values of a
general matrixm × n matrix X may be defined as the largestmin{m, n}
eigenvalues of the Jordan-Wielandt matrix(

0 X
X∗ 0

)
.
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Theηi’s corresponding to ann × n invertible matrixS may be defined as
the largestn singular values of the matrix(

S 0
0 S−1

)
.

The Jordan-Wielandt matrix has proved useful in studying singular values,
perhaps this2n × 2n matrix will be useful in studying theηi’s.

We feel that (2.11) is the right analog of (1.2), and we shall discuss this in
Sect. 6.2. One can use it to derive other matching bounds. In the next section,
we shall derive one such bound that generalizes results in the literature.

One can prove a similar perturbation bound for singular values, gener-
alized eigenvalues and generalized singular values. The results are straight
forward and so we will only give the result for singular values. We shall
assume thatm = n in order to simplify the notation.

Corollary 2.8 LetA, S andT ben×n matrices. Assume thatS andT are
invertible. Then

k∏
j=1

max
{

σij (SAT )
σij (A)

,
σij (A)

σij (SAT )

}
≤

k∏
i=1

ηi(2.13)

for any set of indices1 ≤ i1 < · · · < ik ≤ q, where

ηi = max{στ(i)(S)στ(i)(T ), σ−1
τ(i)(S)σ−1

τ(i)(T )},

whereτ is a permutation such thatη1 ≥ · · · ≥ ηn.

Note that
k∏

i=1

ηi ≤
k∏

i=1

[ηi(S)ηi(T )].

The idea of usingmax{α/β, β/α} as the measure of the relative distance
from α to β (whenα andβ have the same sign) has been suggested before.
For example, Olver [18] proposes

| log(α/β)| = log max{α/β, β/α}
as the appropriate measure because it is a metric and it interacts with mul-
tiplication and division more neatly than, say,|(α − β)/α|.

The quantitymax{x, x−1} is the maximum ofx and its multiplicative
inverse is the multiplicative analog of

|x| ≡ max{x,−x},

the (additive) absolute value. This multiplicative absolute value occurs in
many places in this paper, especially in Sect. 5. Perhaps the presentation
and the analogy with the additive case would have been clearer if we had
defined a symbol to denote this multiplicative absolute value, say

|x|× ≡ max{x, x−1}.
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3. Majorization and norms

In this section, we briefly review the aspects of majorization and symmetric
norms that we shall use in the next two sections.

Recall that for two vectorsx, y ∈ R
n, we say thaty weakly majorizes

x (denoted byx ≺w y) if the sum of thek largest entries ofx is not larger
than that ofy for k = 1, . . . , n. If in addition the sum of all the entries of
x is equal to that ofy then we say thaty majorizesx. See [15] for further
information on majorization and numerous applications.

The theory of majorization greatly simplifies our proofs because there
are many functions that preserve weak majorization. The notation of ma-
jorization simplifies also the presentation of our results. For example, the
fundamental additive perturbation bound for eigenvalues of Hermitian ma-
trices (1.1) can be stated simply as

(λi(A + E) − λi(A))n
i=1 ≺w (λi(E))n

i=1.(3.1)

The family of inequalities (1.1) states that (3.1) is a weak majorization.
However, consideration of the trace shows that (3.1) is actually a majoriza-
tion.

There is an intimate connection between symmetric norms and majoriza-
tion. It is summarized in the following lemma. See e.g., [8, Theorem 7.4.45]
for the usual proof of this fact or [11] for a new approach.

Lemma 3.1 Letx, y ∈ R
n
+. Then

x ≺w y

if and only if
‖x‖ ≤ ‖y‖

for all symmetric norms‖ · ‖ on R
n.

In view of this result we can equivalently state results in terms of weak
majorization of vectors or in terms of norm inequalities. We shall do the
latter as it is the standard approach in numerical linear algebra.

In the context of the perturbation of singular values of rectangular ma-
trices one needs to consider norms on spaces of different sizes. (The reader
who is not interested in the strongest possible result in the rectangular case
may assume thatm = n and skip the technicalities in this paragraph.) We
shall use the following natural convention. Givenm ≤ n, the symmetric
norm‖ · ‖ on R

m induces a norm onRn by

‖x‖ = max
i1<···<im

‖(xi1 , . . . , xim)‖.

(That is,‖x‖ is the largest norm of any vector consisting ofm of the n
components ofx. It is easy to show that the maximum is obtained when
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one chooses the largestm components ofx.) Consequently, a symmetric
norm onR

m induces a unitarily invariant norm||| · ||| on the space ofn × n
matrices. Note that the resulting unitarily invariant norm is not what one
might at first expect. For example, if‖ · ‖ is the Euclidean norm ofR2, and
we taken = 4 then symmetric norm induced onR4 is the square root of
the sum of the squares of the two largest elements of the 4-vector and the
unitarily invariant norm it induced on the space of say,4 × 4 matrices is

|||X||| = (σ2
1(X) + σ2

2(X))1/2,

and not the Frobenius norm on the space of4 × 4 matrices:

|||X|||F = (σ2
1(X) + σ2

2(X) + σ2
3(X) + σ2

4(X))1/2.

Never-the-less, it is true that|||X||| ≤ |||X|||F and this is sufficient to deduce
(5.11) from (5.10).

It is easy to prove the following natural lemma on the norm induced on
R

n by ‖ · ‖ on R
m for m ≤ n.

Lemma 3.2 Letm ≤ n be positive integers. Let‖ · ‖ be a symmetric norm
on R

n and letx = (x1, . . . , xn) ∈ R
n. Then for any indicesi1 < · · · < im

‖(xij )
m
j=1‖ ≤ ‖(xj)n

j=1‖.

4. Perturbation bounds using| log(α/β)|
One can completely avoid the complications of the next section by using

rd(α, β) = | log(α/β)| = | log |α| − log |β| |
as the measure of the relative distance between real numbersα andβ with
the same sign. In fact, ifβ = αδ for someδ > 0, then

rd(α, β) = | log δ|.
As we shall see in the following discussion, if a matrixA is perturbed to a
matrixB = AS, then the norm of the matrixlog |S|, where|S| ≡ (S∗S)1/2,
plays an important role in deriving perturbation bounds. In some sense, this
can be viewed as a generalization of the scalar case. Also, notice thatrd is
a metric, unlikeχ. The idea of usingrd(·, ·) as the measure of the relative
distance fromα to β (whenα andβ have the same sign) has been suggested
before. For example, Olver [18] proposes it as the appropriate measure
because it is a metric and it interacts with multiplication and division more
neatly than, say,|(α − β)/α|.

Since the results are so straight forward we shall give the proofs of the
first two results only. They contain all the elements essential to the other
proofs.
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Proposition 4.1 LetA andÃ = S∗AS ben×n Hermitian matrices, where
S is invertible. Letλi and λ̃i, i = 1, 2, . . . , n be the eigenvalues ofA and
Ã. Then (

| log(λi/λ̃i)|
)n

i=1
≺w (| log λi(S∗S)|)n

i=1(4.1)

Let‖ ·‖ be any symmetric norm and let||| · ||| be the corresponding unitarily
invariant norm. Then

‖(| log(λi/λ̃i)|)n
i=1‖ ≤ ||| log(S∗S)|||.(4.2)

Proof. Taking logarithms of the multiplicative perturbation bound (2.11)
gives the majorization (4.1). By Lemma 3.1 this majorization is equivalent
to the corresponding norm inequality for all symmetric norms:

||( | log(λi/λ̃i)| )n
i=1|| ≤ ||( log(λi(S∗S)) )n

i=1||.
Now using functional calculus and the correspondence between symmetric
norms and unitarily invariant norms (1.3) we have

|| (λi(log S∗S))n
i=1 || = ||| log(S∗S) |||,

which combined with the previous inequality gives us (4.2).ut
Notice how straightforwardly Proposition 4.1 follows from the multi-

plicative bounds in Sect. 2 and a standard majorization result involving
symmetric norms. Compare this with the proof of Proposition 5.3 the corre-
sponding result in Sect. 5 which depends on the preliminary result Lemma
5.1.

Proposition 4.2 Let A and Ã bem × n and have singular valuesσi and
σ̃i, respectively. Suppose thatÃ = SAT whereS andT are invertible. Let
‖ · ‖ be any symmetric norm symmetric norm onR

q, (q = min{m, n}) and
let ||| · ||| be the corresponding unitarily invariant norm. Then

‖(| log(σi/σ̃i)|)q
i=1‖ ≤ 1

2
{ ||| log(S∗S)||| + ||| log(T ∗T )||| } .(4.3)

Sincelog(S∗S) = 2 log |S| we could have eliminated the factor of1/2
in (4.3) at the cost of replacingS∗S andT ∗T by |S| and|T |.
Proof. LetÂ = SA, have singular valueŝσi. Thenusing the fact thatrd(·, ·)
is a metricfor the first inequality, the triangle inequality for the second, and
Lemma 3.2 for the third, we have

‖(| log(σi/σ̃i)|)q
i=1‖ = ‖(| log(σi/σ̂i) + log(σ̂i/σ̃i)|)q

i=1‖
≤ ‖(| log(σi/σ̂i)| + | log(σ̂i/σ̃i)|)q

i=1‖
≤ ‖(| log(σi/σ̂i)|)q

i=1‖ + ‖(| log(σ̂i/σ̃i)|)q
i=1‖.

≤ ‖(| log(σi/σ̂i)|)m
i=1‖ + ‖(| log(σ̂i/σ̃i)|)n

i=1‖.
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Now we need only bound the effect ofS on the singular values ofA and
that ofT on the singular values ofSA separately. Each of these can be done
by appealing to Proposition 4.1. ForS:

‖(| log(σi/σ̂i)|)n
i=1‖ =

1
2

∥∥∥∥
(

log
(

λi(A∗A)
λi(S∗A∗AS)

))n

i=1

∥∥∥∥
≤ 1

2
||| log S∗S |||.

Using the same argument forT and adding the bounds gives (4.3).ut
Notice how much simpler the proof of Proposition 4.2 is than the proof of

the corresponding result expressed in terms ofχ – Corollary 5.5. Corollary
5.5 is proved from scratch, via the intermediate result Proposition 5.4, and
the technical results Lemmata 5.1 and 5.2. We were not able to easily deduce
it from Proposition 5.3 – the result in terms ofχ for Hermitian matrices.
R.-C. Li was able to deduce his singular value result from his eigenvalue
result together with the weak triangle inequality forχ, i.e. (5.4), but his
bound is weaker than ours.

When analyzing the accuracy of Jacobi’s method [4,17] applied to graded
positive definite matrices one has a positive definite matrix written asA =
C∗HC which one perturbs tõA = C∗H̃C and one would like relative
perturbation bounds on the eigenvalues in terms of∆H = H − H̃ andH
rather than∆A andA. Since

λi(A) = σ2
i (H

1/2C),

and
λi(Ã) = σ2

i ((H̃
1/2H−1/2)H1/2C).

Proposition 4.2 now yields

Proposition 4.3 LetA = C∗HC andÃ = C∗H̃C ben×n positive definite
matrices with eigenvaluesλi, λ̃i. Then for any symmetric norm‖ · ‖ onR

n

and the corresponding unitarily invariant norm||| · |||
‖(| log(λi/λ̃i)|)n

i=1‖ ≤ ||| log H−1/2H̃H−1/2|||,(4.4)

or equivalently

‖(| log(λi/λ̃i)|)n
i=1‖ ≤ ||| log(I + E)|||(4.5)

whereE = H−1/2∆HH−1/2.

To see that the right hand side is indeed unchanged when the roles ofH
andH̃ are reversed notice that the eigenvalues ofH−1/2H̃H−1/2 are the
inverses of those of̃H−1/2HH̃−1/2.



392 C.-K. Li, R. Mathias

Proposition 4.4 Consider the generalized eigenvalue problems

A1−λA2 ≡ S∗
1H1S1−λS∗

2H2S2, and Ã1−λÃ2 ≡ S∗
1H̃1S1−λS∗

2H̃2S2

where theH ’s andH̃ ’s are positive definite and at least one of theSi’s is
invertible. Let|| · || be any symmetric norm onRn and let ||| · ||| be the
corresponding unitarily invariant norm. Then

‖(log(λi/λ̃i))n
i=1)|| ≤ ||| log(H−1/2

1 H̃1H
−1/2
1 )|||

+||| log(H−1/2
2 H̃2H

−1/2
2 )|||,(4.6)

or equivalently,

‖(log(λi/λ̃i))n
i=1‖ ≤ 1

2
[||| log(I + E1)||| + ||| log(I + E2)|||] ,(4.7)

whereEi = H
−1/2
i ∆HiH

−1/2
i .

The bound (4.6), which expresses the perturbation multiplicatively, is
perhaps more natural than (4.7) which expresses the perturbation additively.
In the rest of the paper we shall express perturbations additively as that is
what is usually done in numerical linear algebra, but all of our perturbations
could be expressed multiplicatively also.

Proposition 4.5 Consider the pairs ofn × n matrices(B1, B2) ≡ (G1S1,
G2S2) and(B̃1, B̃2) ≡ (G̃1S1, G̃2S2) where theG’s andG̃’s and at least
one of theS’s are nonsingular. Let the generalized singular values beσi

andσ̃i, i = 1, . . . , n. Let‖ · ‖ be any symmetric norm onRn and let||| · |||
be the corresponding unitarily invariant norm. LetEi = ∆Gi(Gi)−1. Then

‖(χ(σ1, σ̃1), . . . , χ(σn, σ̃n))‖ ≤ ||| log |I + E1| |||
+||| log |I + E2| |||.(4.8)

5. Perturbation bounds usingχ

For nonzero real numbersα andβ with αβ > 0, define

χ(α, β) =

∣∣∣∣∣
√

α

β
−
√

β

α

∣∣∣∣∣ = |α − β|√
αβ

and defineχ(0, 0) = 0. The functionχ is a measure of relative separation.
Notice thatχ(max{x, x−1}, 1) = χ(x, 1) for any scalarx > 0.

In this section, we combine the multiplicative bounds in Sect. 2 with the
theory of majorization to obtain perturbation bounds in terms ofχ that im-
prove a number of results in the multiplicative perturbation theory literature.
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5.1. Some scalar inequalities forχ

First, we establish some inequalities forχ which allow us to derive ma-
jorizations in terms ofχ from the the product majorizations of Sect. 2 (or
equivalently log majorizations like (5.1)).

Lemma 5.1 Letx andy be positiven vectors such that ,

(log max{x1, x
−1
1 }, . . . , log max{xn, x−1

n })
≺w (log max{y1, y

−1
1 }, . . . , log max{yn, y−1

n }).(5.1)

Then

(|x1 − 1/x1|, . . . , |xn − 1/xn|)
≺w (|y1 − 1/y1|, . . . , |yn − 1/yn|).(5.2)

Consequently, for any symmetric norm

‖(|x1 − 1/x1|, . . . , |xn − 1/xn|)‖
≤ ‖(|y1 − 1/y1|, . . . , |yn − 1/yn|)‖.(5.3)

Proof. Since the functiong(t) = et − e−t is convex and increasing on
[0, ∞), we have

(g(log max{x1, x
−1
1 }), . . . , g(log max{xn, x−1

n }))
≺w (g(log max{y1, y

−1
1 }), . . . , g(log max{yn, y−1

n }))

by a result of Schur (e.g., see [15, Chapter 3,C.1]). This is the desired ma-
jorization since

g(log max{t, t−1}) = |t − t−1|
for any positive numbert.

By Lemma 3.1 this majorization implies the inequality (5.3).ut
Let r, s be positive numbers. One might hope that the relative separation

betweenrs and1 is at most the sum of the relative separation betweenr and
1 and the relative separation betweenr andrs. That is

χ(rs, 1) ≤ χ(r, 1) + χ(rs, r) = χ(r, 1) + χ(s, 1).

Unfortunately this inequality is true if and only if(r−1)(s−1) ≤ 0. When
dealing with multiplicative perturbation bounds that contain two multiplica-
tive perturbations, for example, the perturbation of singular values when one
allows multiplicative perturbations on both sides, one would like to bound
quantities likeχ(rs, 1) in terms of a function ofr and a function ofs. One
way is to use the approach of R.-C. Li, [12, Lemma 6.1]:

χ(rs, 1) ≤ χ(r, 1) + χ(s, 1)
1 − 1

8χ(r, 1)χ(s, 1)
.(5.4)

Another is the following lemma.
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Lemma 5.2 Let r, s > 0. Then

χ(rs, 1) ≤ 1
2
[
χ(r2, 1) + χ(s2, 1)

]
(5.5)

The inequality (5.4) is an equality if and only if at least one ofr ands
is 1, the inequality (5.5) is an equality if and only ifr = s. Thus neither is
uniformly stronger than the other. In the limit asr ands approach1, which
is when one will usually use these bounds they are about the same.

A third way to deal with the problem is to decide to boundχ(
√

rs, 1)
instead ofχ(rs, 1). If we do this, then we can use Lemma 5.2 to conclude
that

χ(
√

rs, 1) ≤ χ(r, 1) + χ(s, 1).

Proof of Lemma 5.2.Without loss of generality we may assume that bothr
ands are greater than or equal to 1. Since if they are not, replace those that
are less than one by their inverses. This can only increase the left hand side,
but will leave the right hand side unchanged.

Now, without loss of generality we may assume thatr ≥ s. Now regard
s as fixed andr as variable. Whenr = s (5.5) is as equality. One can easily
check that

d

dr

[
1
2
(χ(r2, 1) + χ(s2, 1)) − χ(rs, 1)

]
is positive when everr > s. This ensures that the inequality (5.5) holds, and
indeed that it is a strict inequality unlessr = s. ut

5.2. Perturbation bounds

We are now ready to derive normwise perturbation bounds in terms ofχ
from the results in Sect. 2.

In numerical linear algebra one often states perturbation bounds in terms
of the norm of the perturbing matrix (or some function of the matrix), rather
than in terms of the singular values of the perturbing matrix. For this reason
we state the bounds in this section in terms of the norm of the perturbing
matrix. We could have equivalently stated them as weak majorizations (see
for example (5.6)) or as a norm bound in terms of the singular values of the
perturbing matrix (see for example (5.7)). In the interests of brevity we have
given these different forms in Proposition 5.3 only.

Proposition 5.3 LetA andÃ = S∗AS ben×n Hermitian matrices, where
S is invertible. Letλi and λ̃i, i = 1, 2, . . . , n be the eigenvalues ofA and
Ã. Then

(χ(λ1, λ̃1), . . . , χ(λn, λ̃n)) ≺w (χ(λ1(S∗S), 1), . . . , χ(λn(S∗S), 1)).
(5.6)
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Consequently, for any symmetric norm,

‖(χ(λ1, λ̃1), . . . , χ(λn, λ̃n))‖
≤ ‖(χ(λ1(S∗S), 1), . . . , χ(λn(S∗S), 1))‖.(5.7)

Equivalently, for any symmetric norm‖ · ‖ and corresponding unitarily
invariant norm||| · |||

‖(χ(λ1, λ̃1), . . . , χ(λn, λ̃n))‖ ≤ |||S∗ − S−1|||.(5.8)

In particular √√√√ n∑
i=1

χ2(λi, λ̃i) ≤ |||S∗ − S−1|||F

and
max

i=1,...,n
χ(λi, λ̃i) ≤ |||S∗ − S−1|||2.

Proof. SinceS is invertible,A andÃ have the same inertia. Letx, y ∈ R
n be

such thatxi =
√

λi(A)/λi(Ã) with the convention that0/0 = 1, andyi =
σi(S), for i = 1, . . . , n. Taking square root of (2.11) in Corollary 2.7, we see
that the hypothesis of Lemma 5.1 holds. The first two inequalities now follow

easily from Lemma 5.1 and the equalityχ(α, β) =
∣∣∣√α/β −√β/α

∣∣∣.
Notice that the two unnumbered inequalities are just special cases of

(5.8) and the left hand sides of (5.7) and (5.8) are the same. To establish the
proposition we need only show that the right hand side of (5.7) is the same
as that of (5.8). To see this note that the right hand side of (5.7) is the norm
of the vector whoseith component is

χ(λi(S∗S), 1) =
∣∣∣∣√λi(S∗S) −

√
λ−1

i (S∗S)
∣∣∣∣ = |σi(S) − σ−1

i (S)|.

Let S = UΣV ∗ be a singular value decomposition ofS. Then

S∗ − S−1 = V (Σ − Σ−1)U∗

has singular values

|σi(S) − σ−1
i (S)|, i = 1, . . . , n.

Thus the vector(σi(S∗ − S−1))n
i=1 is just a permutation of the vector

(χ(λi(S∗S), 1))n
i=1, and consequently they have the same norm.ut

An n × n matrix S is unitary if and only if the eigenvalues ofS∗S
are all 1, or equivalently if and only ifS∗ = S−1. The relative distance be-
tweenλi(S∗S) and1 isχ(λi(S∗S), 1). Thus (5.7) and (5.8) are the pleasing
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statement that, in any symmetric norm, the relative perturbation in the eigen-
values ofA caused by the congruenceS is bounded by the relative distance
from S to the set of unitary matrices.

Notice that in the proof of Proposition 5.3 we took the square root of the
multiplicative inequality (2.11). We could have taken some other positive
power and obtained another inequality. In fact, we could have stated apth
power version of all our results in this section but we found the additional
generality to be useful only in the context of Corollary 5.5.

Now we turn to singular values of possibly rectangular matrices. Propo-
sition 5.4 is the strongest possible result in the rectangular case, but it is
not at all satisfactory. Firstly the definition of theρ’s is rather complicated,
especially in the rectangular case. Secondly, it would be nice to separate the
effect ofS andT on the right hand side. We give a number of bounds that
do not involveρ and that do separate the effects ofS andT in Corollary
5.5. Readers may wish to omit the next technical result and skip straight to
Corollary 5.5.

Proposition 5.4 LetA andÃ bem×n with singular valuesσ1 ≥ · · · ≥ σq

and σ̃1 ≥ · · · ≥ σ̃q, respectively, whereq = min{m, n}. Suppose that
Ã = SAT whereS andT are invertible. Letρ1, . . . , ρq consist of the first
q1 terms,0 ≤ q1 ≤ q, of the decreasing sequence{σj(S)σj(T )}q

j=1 and the
first q − q1 terms of the increasing sequence{σm−j+1(S)σn−j+1(T )}q

j=1
so that theq numbers

max{ρi, ρ
−1
i }, i = 1, . . . , q,

are the largestq of the2q numbers

σi(S)σi(T ), i = 1, . . . , q,

and
σ−1

m−i(S)σ−1
n−i(T ), i = 1, . . . , q.

Then

(χ(σ1, σ̃1), . . . , χ(σq, σ̃q)) ≺w (χ(ρ1, 1), . . . , χ(ρq, 1)),(5.9)

and for any symmetric norm

‖(χ(σ1, σ̃1), . . . , χ(σq, σ̃q))‖ ≤ ‖(χ(ρ1, 1), . . . , χ(ρq, 1))‖
An alternative way to defineq1 andρi’s is the following. Letq1 be the

largest integer between 1 andq such that

max{σq1(S)σq1(T ), (σq1(S)σq1(T ))−1}
≥ max{σm−q1+1(S)σn−q1+1(T ), (σm−q1+1(S)σn−q1+1(T ))−1}.
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If there is no such integer then setq1 = 0. Now for i = 1, . . . , q, define

ρi =
{

σi(S)σi(T ) if i ≤ q1,
σm−(q1−i)(S)σn−(q1−i)(T ) otherwise .

In any event, one can check that ifm = n then we may takeρi = σi(S)σi(T )
– a considerable simplification!

Proof of Proposition 5.4.SinceS andT are invertible,A andÃ have the
same rank, i.e., the same number of nonzero singular values. Letx, y ∈ R

n

be such thatxi =
√

σ̃i/σi with the convention that0/0 = 1, andyi =
√

ρ
i
,

for i = 1, . . . , n. Suppose thek largest entries of̂x arexi1 , . . . , xik1
and

x−1
j1

, . . . , x−1
jk2

, wherexia > 1 for all 1 ≤ a ≤ k1,xjb
≤ 1 for all 1 ≤ b ≤ k2,

andk1+k2 = k. Taking the square root of (2.8) in Corollary 2.4, we see that∏k1
a=1 xia is not larger than the product of the firstk1 terms of the sequence

{σ1(S)σ1(T )}q
j=1 and

∏k2
b=1 x−1

jb
is not larger than the product of the re-

ciprocal of the firstk2 terms of the sequence{σm−j+1(S)σn−j+1(T )}q
j=1.

By the construction ofρi’s, we see that the hypothesis of Lemma 5.1 holds.

Using Lemma 5.1 and the equalityχ(α, β) =
∣∣∣√α/β −√β/α

∣∣∣, we get

(5.9). ut
Corollary 5.5 LetA andÃ bem × n with singular valuesσ1 ≥ · · · ≥ σq

and σ̃1 ≥ · · · ≥ σ̃q, respectively, whereq = min{m, n}. Suppose that
Ã = SAT whereS andT are invertible. Let‖ · ‖ be and any symmetric
norm onR

q and let||| · ||| be the corresponding unitarily invariant on the
matrix space of the appropriate dimension. Then,

‖(χ(σ1, σ̃1), . . . , χ(σq, σ̃q))‖
≤ 1

2 |||S∗ − S−1||| + 1
2 |||T ∗ − T−1|||,(5.10)

and in particular(
q∑

i=1

χ2(σi, σ̃i)

)1/2

≤ 1
2
|||S∗ − S−1|||F +

1
2
|||T ∗ − T−1|||F,(5.11)

and

max
i=1,...,q

χ(σi, σ̃i) ≤ 1
2
|||S∗ − S−1|||2 +

1
2
|||T ∗ − T−1|||2.(5.12)

Furthermore, for any positivep we have

‖(χ(σp
1 , σ̃

p
1), . . . , χ(σp

q , σ̃
p
q ))‖ ≤ 1

2
||| |S|p − |S|−p|||

+
1
2
||| |T |p − |T |−p|||.(5.13)
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If T is unitary then

||χ(σi, σ̃i)|| ≤ ||(χ(σi(S), 1)|| = ||| |S|1/2 − |S|−1/2|||.(5.14)

We define the matrix absolute value in the usual way:

|X| ≡ (X∗X)1/2.

When it is applicable the inequality (5.14) is slightly stronger than (5.11).
One may wonder whether, when bothS andT are merely nonsingular, it is
true that

||χ(σi, σ̃i)|| ≤ ||| |S|1/2 − |S|−1/2||| + ||| |T |1/2 − |T |−1/2|||.(5.15)

To see that it is not true one need look no further than the scalar example,
A = 1, S = T = 2. This is just a manifestation of the fact thatχ(rs, 1) ≤
χ(r, 1) + χ(s, 1) if and only if (r − 1)(s − 1) ≤ 0. It is true that

||χ(σi, σ̃i)|| ≤ ||| |S|1/2 − |S|−1/2||| + ||| |T |1/2 − |T |−1/2|||
1 − 1

8 ||| |S|1/2 − |S|−1/2|||2 ||| |T |1/2 − |T |−1/2|||2
provided that the denominator is positive. Sinceχ(r, 1) ≤ 1

2χ(r2, 1), we
have

||| |S|1/2 − |S|−1/2 ||| ≤ 1
2
||| S∗ − S−1 |||(5.16)

so this bound is slightly stronger than R.-C. Li’s bound [12, Theorem 4.1].
Alternatively, one could apply (5.13) withp = 1/2 and obtain the valid
bound

||χ(
√

σi,
√

σ̃i)|| ≤ ||| |S|1/2 − |S|−1/2||| + ||| |T |1/2 − |T |−1/2|||.

The bound (5.13) is perhaps a little hard to interpret because of the matrix
absolute value. However, it is useful. We’ve seen one application withp =
1/2 in the previous display; the bound (5.10) is just (5.13) withp = 1; and in
the context of the generalized eigenvalue problem we will see an application
with p = 2.

Proof of Corollary 5.5.First we deduce (5.10) from (5.9). We know that
ρi = σji(S)σki

(T ), for eachi = 1, . . . , q, and that the indicesj1, . . . , jq

are distinct as are the indicesk1, . . . , kq. That is, each singular value ofS
and each singular value ofT occurs at most once in the definition of theρi’s.

By Lemma 5.2 we have

χ(ρi, 1) ≤ 1
2

{
|σji(S) − σ−1

ji
(S)| + |σki

(T ) − σ−1
ki

(T )|
}
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Using this entry-wise inequality for the first inequality below, the triangle
inequality for the second, and Lemma 3.2 for the third, we have

‖ (χ(ρi, 1))q
i=1‖

≤ ‖1
2

{
|σji(S) − σ−1

ji
(S)| + |σki

(T ) − σ−1
ki

(T )|
}

)q
i=1‖

≤ 1
2

{
‖(σji(S) − σ−1

ji
(S))q

i=1‖ + ‖(σki
(T ) − σ−1

ki
(T ))q

i=1‖
}

≤ 1
2
{‖(σi(S) − σ−1

i (S))m
i=1‖ + ‖(σi(T ) − σ−1

i (T ))n
i=1‖

}
=

1
2
{||| S∗ − S−1 ||| + ||| T ∗ − T−1 |||} .

To prove (5.13) take thep/2 power of (2.8), instead of the square root
as we did in Proposition 5.4, and prove the corresponding generalization of
Proposition 5.4. Then use the proof of (5.10) above to deduce (5.13).ut

We may apply the majorization result Lemma 5.1 to the singular value
bound (2.8), without taking square roots to obtain:

Proposition 5.6 LetA = C∗HC andÃ = C∗H̃C ben×n positive definite
matrices with eigenvaluesλi, λ̃i. Let E = H−1/2∆H H−1/2. Then for
any symmetric norm‖ · ‖ on R

n and the corresponding unitarily invariant
norm||| · |||

‖(χ(λ1, λ̃1), . . . , χ(λn, λ̃n))‖ ≤ |||E(I + E)−1/2|||(5.17)

and in particular√√√√ n∑
i=1

χ2(λi, λ̃i) ≤ |||E(I + E)−1/2|||F(5.18)

and

max
i=1,...,n

χ(λi, λ̃i) ≤ |||E(I + E)−1/2|||2.(5.19)

Now let us consider multiplicative perturbation bounds for the general-
ized eigenvalue and singular value problems. The conditions here are the
same as those in [12] and are somewhat more restrictive than those for the
standard eigenvalue and singular value problems.

Proposition 5.7 Consider the generalized eigenvalue problems

A1−λA2 ≡ S∗
1H1S

∗
1−λS∗

2H2S
∗
2 , and Ã1−λÃ2 ≡ S∗

1H̃1S
∗
1−λS∗

2H̃2S
∗
2
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where theH ’s and H̃ ’s and at least one of theS’s is invertible. Let|| · ||
be any symmetric norm onRn and let||| · ||| be the corresponding unitarily
invariant norm. Then

‖(χ(λi, λ̃i))n
i=1||| ≤ 1

2
[|||(I + E1) − (I + E1)−1|||
+|||(I + E2) − (I + E2)−1|||](5.20)

and

‖(χ(
√

λi,

√
λ̃i))n

i=1‖ ≤ |||E1(I + E1)−1/2|||
+|||E2(I + E2)−1/2|||.(5.21)

Furthermore

‖(χ(λi, λ̃i))n
i=1||| ≤ |||E1(I + E1)−1/2||| + |||E2(I + E2)−1/2|||

1 − 1
8 |||E1(I + E1)−1/2|||2 |||E2(I + E2)−1/2|||2

,

(5.22)
provided that the denominator is positive.

The last bound (5.22) is the the generalization of [12, Theorem 7.1] to all
unitarily invariant norms. We could of course have stated the special cases
of (5.22) corresponding to the Frobenius norm and the 2-norm explicitly.
Note that R.-C. Li weakened the result slightly by replacing|||Ei||| by

|||H−1
i |||2|||∆Hi|||√

1 − |||H−1
i |||2|||∆Hi|||2

,

so as to avoid the use ofEi in the final bound. The first two bounds are
somewhat cleaner than the last.

Neither of (5.20) and (5.22) is always stronger than the other. IfE1 = 0
andE2 6= 0 then, by (5.16), (5.22) is stronger. On the other hand, in the limit
as the denominator approaches 0 in (5.22), the bound (5.20) is stronger.

Proof. Without loss of generalityS2 is invertible.2 Following R.-C. Li [12,
Section 7], the eigenvalues of the unperturbed pencil are the same as the
eigenvalues of the matrix

H
−1/2
2 S−∗

2 S∗
1H1S1S

−1
2 H

−1/2
2

2 If S2 is singular thenS1 must be invertible. Letµi and µ̃i be the eigenvalues of the
pencilsA2 − λA1. Ã2 − λÃ1. Then, if we defineχ(∞, ∞) = 0, χ(µi, µ̃i) = χ(λi, λ̃i),
and so the left hand side of (5.20) is unchanged by reversing the roles ofA1 andA2. One
can check that the right hand side is not changed either, and so it is sufficient to prove the
result withA1 andA2 reversed.
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which are the same as the squares of the singular values of the matrix

B = H
−1/2
2 S−∗

2 S∗
1H

1/2
1 .

In the same way the eigenvalues of the perturbed pencil are the squares of
the singular values of the matrix

B̃ = H̃
−1/2
2 S−∗

2 S∗
1H̃

1/2
1 = SBT

where
S = H̃

−1/2
2 H

1/2
2 , and T = H

−1/2
1 H̃

1/2
1 .

Notice that|T |2 = T ∗T = I + E1 and that|S|2 = (S∗S)−1 = I + E2.
Now apply (5.13) withp = 2 we get

‖(χ(λi, λ̃i)n
i=1)‖

= ‖(χ(σ2
i , σ̃

2
i )

n
i=1)‖

≤ 1
2
(||| |T |2 − |T |−2||| + ||| |S|2 − |S|−2|||)

=
1
2
[|||(I + E1) − (I + E1)−1||| + |||(I + E2) − (I + E2)−1|||]

which is (5.20). Applying (5.13) withp = 1/2 and manipulating the result-
ing expression gives (5.21).

To deduce (5.22) one combines the scalar inequality (5.4) with the ma-
jorization

(χ(σ2
i , σ̃

2
i ))

n
i=1 ≺w (χ(σ2

i (S)σ2
i (T ), 1))n

i=1.(5.23)

In particular, from (5.4) we have

χ(σ2
i (S)σ2

i (T ), 1) ≤ χ(σ2
i (S), 1) + χ(σ2

i (S), 1)
1 − (1/8) · χ(σ2

i (S), 1)χ(σ2
i (S), 1)

=
|σi(S) − σ−1

i (S)| + |σi(T ) − σ−1
i (T )|

1 − (1/8) · |σi(S) − σ−1
i (S)||σi(T ) − σ−1

i (T )|

≤ |σi(S) − σ−1
i (S)| + |σi(T ) − σ−1

i (T )|
1 − (1/8) · |||S − S−1|||2|||T − T−1|||2

≡ γ(|σi(S) − σ−1
i (S)| + |σi(T ) − σ−1

i (T )|)
Now using (5.23) for the first inequality and the component-wise bound on
χ(σ2

i (S)σ2
i (T ), 1) that we have just derived for the second inequality we

have

‖(χ(λi, λ̃i))n
i=1|||

= ‖(χ(σ2
i , σ̃

2
i ))

n
i=1||

≤ ‖(χ(σ2
i (S)σ2

i (T ), 1))n
i=1||
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≤ γ‖ (|σi(S) − σ−1
i (S)| + |σi(T ) − σ−1

i (T )|)n
i=1||

≤ γ(|| (|σi(S) − σ−1
i (S)|)n

i=1|||| (σi(T ) − σ−1
i (T )|)n

i=1||)
= γ(|||S∗ − S−1||| + |||T ∗ − T−1|||)
= γ(||| |S| − |S|−1||| + ||| |T | − |T |−1|||).

Now note that|T | = (T ∗T )1/2 = (I + E1)1/2. Substituting for|S| and|T |
and manipulating the resulting expression yields the desired bound (5.22).

ut
Now let us consider the generalized singular value problem.

Proposition 5.8 Consider the pairs ofn × n matrices(B1, B2) ≡ (G1S1,
G2S2) and(B̃1, B̃2) ≡ (G̃1S1, G̃2S2) where theG’s andG̃’s and at least
one of theS’s is nonsingular. Let the generalized singular values beσi and
σ̃i, i = 1, . . . , n. Let‖ · ‖ be any symmetric norm onRn and let||| · ||| be
the corresponding unitarily invariant norm. LetEi = ∆Gi(Gi)−1. Then

‖(χ(σ1, σ̃1), . . . , χ(σq, σ̃q))‖ ≤ 1
2
|||(I + E1)∗ − (I + E1)−1|||

+
1
2
|||(I + E2)∗ − (I + E2)−1|||,(5.24)

and in particular(
q∑

i=1

χ2(σi, σ̃i)

)1/2

≤ 1
2
|||(I + E1)∗ − (I + E1)−1|||F

+
1
2
|||(I + E2)∗ − (I + E2)−1|||F,(5.25)

and

max
i=1,...,q

χ(σi, σ̃i) ≤ 1
2
|||(I + E1)∗ − (I + E1)−1|||2

+
1
2
|||(I + E2)∗ − (I + E2)−1|||2.(5.26)

In the case that eitherE1 orE2 is 0 one can strengthen the result (5.24) just
as (5.14) is a strengthening of (5.10), the only problem is that the resulting
right hand side rather cumbersome.

Proof. As in the previous result, without loss of generalityS2 is invertible.
The the generalized singular values of the first pair are just the singular
values ofB = G1S1S

−1
2 G−1

2 and those of the second pair are the singular
values ofB̃ = (I + E1)B(I + E2)−1. The inequalities now follow from
Corollary 5.5. ut

One can also apply these ideas to the relative perturbation of eigenvalues
of matrices that are known to have positive eigenvalues.
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Proposition 5.9 Let A = X diag(λ1, . . . , λn ) X−1 and Ã =
X̃diag(λ̃1, . . . , λ̃n)X̃−1. Suppose that̃A = DA. Then

(χ(λ1, λ̃1), . . . , χ(λn, λ̃n)) ≺w κ(X−1X̃)(χ(σ1, 1), . . . , χ(σn, 1)),

whereσi = σi(X−1DX). Consequently for any symmetric norm

‖(χ(λ1, λ̃1), . . . , χ(λn, λ̃n))‖ ≤ κ(X−1X̃)‖(χ(σ1, 1), . . . , χ(σn, 1))‖.

Proof. Let B = X−1DX. Then

Λ̃ = (X−1X̃)−1BΛ(X−1X̃).

Since bothΛ̃ andΛ are positive definite their eigenvalues are the same as
their singular values. Thus, from (2.4) we have

k∏
i=1

κ−1(X−1X̃)σn+1−i ≤
k∏

j=1

λ̃ij

λij

≤
k∏

i=1

κ(X−1X̃)σi.(5.27)

One can derive the majorization result from this using a technique very
similar to Lemma 5.1. ut

We have not provided all the details in the proof of Proposition 5.9 (nor
have we stated the result in its most general form, i.e.,Ã = D1AD2). Our
main point is that it is possible, using our methods, to prove a Lidskii-
Wielandt type bound for diagonalizable matrices with real eigenvalues.
Whether our bound (5.27) is good depends on whetherκ(XX̃−1) is small
(as it will be in the limit as‖D − I‖ → 0). The norm on the right hand side
of (5.27) is bounded, at least approximately, by

κ(X−1X̃)‖(χ(σ1(D − I), 1), . . . , χ(σn(D − I), 1)‖

sinceX−1DX = I + X−1(D − I)X.

6. Comparison with other research

First we compare our results with those in the literature. Then we compare
our techniques and our approach with those in the literature and argue that
our purely multiplicative result (Corollary 2.7) is the fundamental result and
although it uses less familiar notation its use simplifies and strengthens the
results based on it. Finally we compare the different measures of relative
error.
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6.1. Comparison of results

There are numerous papers with relative error bounds for eigenvalues and
singular values – see [10]. The results due to R.-C. Li in [12] are the most
general to date so, for the most part, we will confine our comparison to them.

First, one is usually interested in perturbation bounds when the pertur-
bation is fairly small. In that case little is lost in taking first order approxi-
mations. One can check that in any given context all the applicable bounds
in this paper (both those in terms ofχ and those in terms of| log(α/β)|) as
well as R.-C. Li’s in [12] are the same to first order. Thus the differences
in the results are mainly a matter of the generality of the bound and the
simplicity of the statement and the proof of the bound.

Our perturbation bounds are considerably more general being for all
symmetric norms while those in [12] are only for the two norms

l∞(x) = max{|x1|, . . . , |xn|}, and l2(x) =

{
n∑

i=1

x2
i

}1/2

.(6.1)

That is, our results are multiplicative analogs of the more general Lidskii-
Wielandt perturbation bound while those in [12] are multiplicative analogs
of the Lidskii-Weyl (forl∞) and Wielandt-Hoffman (forl2) inequalities. The
techniques in [12] do however extend to normal and (even diagonalizable)
matrices and to analyzing the perturbation of invariant subspaces.

In the following, we illustrate how our results in Sect. 3, expressed in
terms ofχ improve those in [12] in various cases. The technical report
[14], which is an earlier version of [12], contains more results and slightly
stronger results that those in [12], but our results are also improvements over
the corresponding results in [14].

First, whenA = A∗ is positive definite, the results in [12, Theorem 3.1,
part 2] are exactly the same as our Proposition 5.3 restricted to the two norms
in (6.1).

Second, whenA = A∗ is indefinite, [14, Equation (7.4)] is

max
i=1,...,n

χ(λi, λ̃i) ≤ |||S−1|||2|||I − SS∗|||2

while our result (5.7) is

max
i=1,...,n

χ(λi, λ̃i) ≤ |||S−1 − S∗|||2,

which is stronger because

|||S−1 − S∗|||2 = |||S−1(I − SS∗)|||2 ≤ |||S−1|||2|||I − SS∗|||2.
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Third, the Wielandt-Hoffman type bound for possibly indefinite Hermi-
tian matrices in [12, Theorem 3.1, part 1] states that ifA is Hermitian and
Ã = S∗AS there is a permutationτ such that

n∑
i=1

(λi − λ̃τ(i))2

λ2
i + λ̃2

τ(i)

≤
n∑

i=1

(1 − σi(S))2 +
n∑

i=1

(1 − σi(S)−1)2.

This inequality, and the additional fact that the permutationτ can be taken
to be the identity follows from our result:

n∑
i=1

(λi − λ̃i)2

λ2
i + λ̃2

i

≤
n∑

i=1

(λi − λ̃i)2

2λiλ̃i

≤
n∑

i=1

(σi(S) − σi(S)−1)2

2

≤
n∑

i=1

(1 − σi(S))2 +
n∑

i=1

(1 − σi(S)−1)2.

The first and third inequalities are easily verified because the individual
summand satisfy the same inequalities. The second inequality is the square
of our bound (5.8) in the case of the norml2.

Note that in general, our bounds and proofs are the same in both the
positive definite and the general Hermitian case, whereas in [12] the results
in the indefinite case are weaker. Note also, that our bound (5.8) is stronger
than the Wielandt Hoffman bound [13, Corollary 2.1] even though the latter
contains an additional condition which may be hard to verify.

Using a slightly different notion of relative error R.-C. Li (see [10, Corol-
lary 5.1]) states that there is a permutationτ such that√√√√ n∑

i=1

(
|λi − λ̃τ(i)|

λi

)2

≤ |||S|||2 · |||S∗ − S−1|||F.

Our (5.8) implies this result and the fact thatτ can be taken to be the
identity. We discuss where this unknown permutation comes from in the
next subsection.

Fourth, ifÃ = SAT the result in [12, Theorem 4.1] asserts that

‖(χ(σi(A), σi(Ã))1≤i≤n‖ ≤ γ

2
{|||S∗ − S−1||| + |||T ∗ − T−1|||} ,

with

γ =
32

32 − |||S∗ − S−1|||2|||T ∗ − T−1|||2 ,
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if ‖ ·‖ is l2 or l∞. By Corollary 5.5, we have the inequality for all symmetric
norms withγ = 1. In the next subsection we explain why the factorγ arises
in R.-C. Li’s bounds. Using similar methods as when comparing eigenvalues
one can show that our singular value bounds are stronger and more general
than those in [12, Theorem 4.2]. We omit the details for the sake of brevity.

Fifth, Proposition 5.6, on graded matrices, is a generalization of [12,
Theorem 3.2, bounds (3.9) and (3.11)] to all symmetric norms. We can also
generalize [12, Theorem 5.5] to all symmetric norms in exactly the same
way.

Sixth, our bounds (5.20) and (5.21) for the generalized eigenvalue prob-
lem are valid for a larger range of perturbations than (5.22), which is the
type of bound obtained in [12, Theorem 7.1].

Finally, our bound for the generalized singular value problem is stronger
than [12, Theorem 7.3] by the same factorγ above.

In conclusion, we have generalized all the perturbation bounds in [12]
involving either the (possibly generalized) eigenvalues of Hermitian matri-
ces or the (possibly generalized) singular values of general matrices to all
symmetric norms. Our approach is to first prove a multiplicative majoriza-
tion like those in Sect. 2 and then use the majorization result Lemma 5.1 to
deduce a bound on the norm of the vector of relative perturbations.

6.2. Comparison of techniques

Now we look at the difference between our proof techniques and existing
techniques, and we argue that (2.11) is the correct generalization of additive
perturbation bound (1.2).

The proofs in [12] and rest of the literature are almost entirely at the
matrix level–none use majorization. Our proofs move very quickly from
matrices to scalars, that is, to singular values and eigenvalues.

Our approach to proving the fundamental inequalities

k∑
j=1

[λij (A + E) − λij (A)] ≤
k∑

j=1

λj(E)(6.2)

and its multiplicative analog (2.11) is to deduce them from the much simpler
monotonicity properties of eigenvalues of Hermitian matrices expressed in
Weyl’s and Ostrowskii’s Inequalities. In this sense our approach is somewhat
similar to most3 of the other work in this area that is based on min-max char-
acterizations or monotonicity properties of eigenvalues of Hermitian matri-
ces. R.-C. Li’s work [12] is different in that it uses a perturbation equation

3 Eisenstat and Ipsen use both monotonicity principles and a perturbation equation in [5],
and using R.-C. Li’s technique they do derive a multiplicativeWielandt-Hoffman type bound
for diagonalizable matrices [6, Section 6].
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and then the fact that the permutation matrices are the extreme point of the
doubly stochastic as in the standard proof of the Wielandt-Hoffman theorem.
By using this approach R.-C. Li was able to obtain simultaneous bounds on
all the eigenvalues and thus give the first relative Wielandt-Hoffman type
result. The weakness of this approach is that it just states that “there is a
matching of theλ’s and theλ̃’s” such that the norm of the differences is
small. It does not specify the matching. In the positive definite case one can
use a separate argument to show that the best matching is matchλi with λ̃i

i = 1, . . . , n, this is not the case in the indefinite case [12, Propositions 2.3
and 2.4 and Remarks 2.1, 2.2 and 2.3]. Our approach shows that in the indef-
inite case, even though the identity permutation may not give the smallest
norm of the differences, the norm of the differences is still smaller than the
right hand side. That is, even though the identity permutation may not be
the best it is good enough.

Let us see why (2.11) is the right analog of (1.2). If we take logarithms
of (2.11) and state the result as a weak majorization we have:

(| log λi(S∗AS) − log λi(A)|)n
i=1 ≺w (| log λi(S∗S)|)n

i=1(6.3)

while we may state (1.2) as the weak majorization

(|λi(A) − λi(A + E)|)n
i=1 ≺w (|λi(E)|)n

i=1.(6.4)

The analogy is immediate–thus we have a multiplicative analog of the funda-
mental additive perturbation bound for eigenvalues of Hermitian matrices.

One may wonder why we feel that (2.11) is the fundamental result rather
than the weak majorization (5.6) or the equivalent result statement in terms
of norms (5.7). The reason is that (2.11) is stronger than (5.6) and (5.7). One
cannot deduce (2.11) from (5.6) and (5.7). Another way to think of this is
that in Lemma 5.1 (5.1) implies (5.2) but not conversely.

This objection to the relative distanceχ does not apply to the relative
distancerd. One can derive (2.11) (or its logarithmic version (6.3)) from
the weak majorization (4.1) which is expressed in terms ofrd. To see this,
observe that since multiplyingS by t > 0 merely adds2 log t to each
component of the left hand side and right hand side of (6.3), and so it is
sufficient to prove (6.3) in the case whereσn(S) ≥ 1. However, in this case
the components of the vectors on either side of (4.1) are nonnegative even
without the absolute value sign. That is, ifσn(S) ≥ 1 then (4.1)is (6.3).

Notice also that we do not derive Proposition 5.4 and Corollary 5.5, the
norm-wise form of the relative singular value bound from Proposition 5.3,
the norm-wise form of the relative eigenvalue bound, rather we combine the
singular value bound (2.8) from Sect. 2, and the key Lemma 5.1 that states
that log majorization implies majorization in terms of theχ’s. Another way
to see that the fundamental result for the relative perturbation of singular
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values is (2.8) and not Proposition 5.4 is that if we raise theσ’s andρ’s in the
majorization Proposition 5.4 to any positive powerp we get the statement

(χ(σp
1 , σ̃

p
1), . . . , χ(σp

n, σ̃p
n)) ≺w (χ(ρp

1, 1), . . . , χ(ρp
n, 1)).(6.5)

This is indeed a valid inequality, but it cannot be deduced from Proposition
5.4 , which is the special case whenp = 1. It does however follow easily
from the singular value bound (2.8) in Sect. 2–just take thepth power of
(2.8) and then apply Lemma 5.1 as in the proof of Proposition 5.4. The
inequality (6.5) withp other than 1 is not just a curiosity, we we have used
(6.5) withp = 1/2 andp = 2.

Yet another reason for preferring (2.11) is that it deals very easily with
the case when we have two (or more) multiplicative perturbations. In this
situation the natural way to proceed would be to bound the effect of one
perturbation and then the effect of other and then add the two bounds, and
this is what we do in the proof of Corollary 2.4. However, once we have
a bound in terms ofχ it is much harder to deal with two multiplicative
perturbations since this approach does not work because it is not true that
χ(a, c) ≤ χ(a, b)+χ(b, c) for all a, b, c > 0. One has then to resort to using
the more cumbersome inequality

χ(a, c) ≤ χ(a, b) + χ(b, c)
1 − 1

8χ(a, b)χ(b, c)
(6.6)

which is valid whenever the denominator is positive [12, Lemma 6.1]. This
is why R.-C. Li’s relative Wielandt-Hoffman bound has an extra factor

γ =
32

32 − |||S∗ − S−1|||2|||T ∗ − T−1|||2 .

Notice that this factor is 1 if, and only if, one ofS orT is unitary. The reason
is that in this case the one that is unitary does not change the singular values
of SAT and so we need only bound the effect of the other. It is no longer a
two step process and so there is no need to use the bound (6.6).

6.3. Which relative distance?

A number of different measures of the relative difference between two num-
bersα andβ of the same sign have been proposed in the context of multi-
plicative perturbation bounds for eigenvalues and singular values. We shall
not attempt a survey here, but will argue that

rd(α, β) ≡ | log α/β| = | log |α| − log |β| |,
even though it is perhaps less intuitive that some of the others, has the best
mathematical properties in this context:
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1. rd is a metric, and so two step proofs are easier (compare the proofs of
Corollary 5.5 and Proposition 4.2)

2. rd is symmetric in its arguments.
3. rd has a connection with the standard (additive) absolute value.
4. As explained in the previous subsection, the weak majorization (4.1) in

terms ofrd implies the fundamental bound (5.3). This is not the case for
the weak majorization (5.6) which is expressed in terms ofχ.

5. Taking powers of the basic inequality (2.11) before applying majoriza-
tion techniques doesn’t give new inequalities, thus there is no question
of which power to use.

In Subsect. 6.2 we argued that one should not express multiplicative
perturbation bounds in terms of norms. However, if one has to use norms,
perhaps it would be best to userd as the measure of relative error and use
the norm bounds in Sect. 4.

7. Remarks and related inequalities

As mentioned in Sect. 2, typically one derives the Lidskii-Mirsky-Wielandt
bound from a result of Wielandt. In this section, we give a proof for the
result of Wielandt using our technique, and show that some other well-
known matrix inequalities also follow readily from our proof. Furthermore,
we give examples showing that it is impossible to get a multiplicative analog
of Wielandt to prove Theorem 5.3.

We shall use{e1, . . . , en} to denote the standard basis ofC
n in our

discussion.

Theorem 7.1 [19, Chapter IV, Theorem 4.5]LetA be ann × n Hermitian
matrix. For any indices1 ≤ i1 < i2 < · · · < ik ≤ n,

k∑
j=1

λij (A) = max
W1⊂W2⊂···⊂Wk

dim Wj=ij

min
Y ∈Cn×k

Y ej∈Wj, Y ∗Y =Ik

tr(Y ∗AY ),(7.1)

whereW1 ⊂ · · · ⊂ Wk are subspaces ofCn.

Proof. SupposeA has spectral decomposition
∑n

j=1 λj(A)xjx
∗
j . If Wj =

span{x1, . . . , xj} for j = 1, . . . , ik, then

k∑
j=1

λij (A) = min
Y ej∈Wj
Y ∗Y =Ik

tr(Y ∗AY ).

Thus one can focus on proving that the left side is not less than the right
side of (7.1). To this end, letW1 ⊂ · · · ⊂ Wk be subspaces ofC

n. We shall
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show that there existsY ∈ C
n×k satisfyingY ej ∈ Wj andY ∗Y = Ik such

that
∑k

j=1 λij (A) ≥ tr (Y ∗AY ).
We prove by induction onn. The result is trivial whenn = 1. Suppose

n ≥ 2 and we know that the result is true for Hermitian matrices of order
(n − 1). We consider three cases:

(a)k = 1;
(b) ij = j for j = 1, . . . , k;
(c) none of (a) or (b) hold.

In all cases, we may replaceA by

Ã =
∑
j<ik

λj(A)xjx
∗
j + λik(A)

∑
j≥ik

xjx
∗
j .

If we can findY ∈ C
n×k satisfyingY ej ∈ Wj andY ∗Y = Ik such that∑k

j=1 λij (Ã) ≥ tr (Y ∗ÃY ), then the result will follow from the facts that∑k
j=1 λij (A) =

∑k
j=1 λij (Ã) andtr (Y ∗ÃY ) ≥ tr (Y ∗AY ).

For case (a), letW1 have dimensioni1 = p. Since the null space of
Ã − λp(A)I has dimensionn − p + 1, there exists a unit vectory ∈ W1

such thatÃy = λp(A)y, and henceλp(Ã) = y∗Ãy.
For case (b), letY ∈ C

n×k satisfyY ej ∈ Wj andY ∗Y = Ik. Then
there exists ann × (n − k) matrix Z such that[Y | Z] is unitary. Since
Ã ≥ λk(A)I, we have

k∑
j=1

λj(Ã) = tr Ã − tr (Z∗λk(A) Z) ≥ tr Ã − tr (Z∗ÃZ) = tr (Y ∗ÃY ).

For case (c), we may assume thatik = n. Otherwise, we can add the
termsik + 1, ik + 2, . . . , n = ik̃ to the sequence, and enlargeWk to get
Wk+1, Wk+2, . . ., until we getCn = Wk̃. Suppose the modified problem is

solved, i.e., we can findY ∈ C
n×k̃ satisfyingY ej ∈ Wj andY ∗Y = Ik̃

such that
∑k̃

j=1 λij (Ã) ≥ tr (Y ∗ÃY ). One can writeY = [Y1 | Y2] so that

Y1 ∈ C
n×k. Using the fact that̃A ≥ λik(A)I, we have

k∑
j=1

λij (Ã) =
k̃∑

j=1

λij (Ã) − tr (Y ∗
2 λik(A)IY2)

≥ tr (Y ∗AY ) − tr (Y ∗
2 ÃY2) = tr (Y ∗

1 ÃY1).

(The rest of the proof uses the idea of Wielandt and the results of the
special cases we developed. We present it for the sake of completeness.)

Now supposeik = n. Since case (a) does not hold, there exists a largest
integer` such thati` + 1 < i`+1. Let i` = p, i`+1 = q, and letW be an
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(n − 1) dimensional subspace inCn containingWi` and the eigenvectors
xj , j = p + 2, . . . , n. DefineW̃j = Wj ∩ W for j = 1, . . . , k. LetB be the
compression of the matrixAonW , i.e.,B = Z∗AZ for someZ ∈ C

n×(n−1)

with Z∗Z = In−1 and the columns ofZ spanW . By construction, the
n− p− 1 smallest eigenvalues ofA are the same as that ofB. By induction
assumption, we can find̃Y ∈ C

(n−1)×k such thatỸ ej ∈ W̃j , Ỹ ∗Ỹ = Ik,
and ∑̀

j=1

λij (B) +
n−1∑

j=q−1

λij (B) ≥ tr (Ỹ ∗BỸ ).

Let Y = ZỸ ∈ C
n×k. ThenY ej ∈ Wj for j = 1, . . . , k, Y ∗Y = Ik, and

tr (Y ∗AY ) = tr (Ỹ ∗BỸ ). The proof is done if we can show that

k∑
j=1

λij (A) ≥
∑̀
j=1

λij (B) +
n−1∑

j=q−1

λj(B).(7.2)

To this end, note that
∑n−1

j=q−1 λij (B) =
∑n

j=q λj(A) =
∑k

j=`+1 λij (A)
by construction, and forj = 1, . . . , `, λij (B) can be viewed as
min{y∗Ay : y ∈ Vj}, whereVj is the ij-dimensional subspace ofC

n

containingZx̃1, . . . , Zx̃ij , wherex̃1, . . . , x̃ij are the eigenvectors ofB cor-
responding to the eigenvaluesλ1(B), . . . , λij (B). By the special case (b),
we haveλij (A) ≥ λij (B). Thus (7.2) follows. ut

We note the proofs of the special cases (a) and (b) are very short, and
one can actually deduce several well-known matrix inequalities from them.

First, if one considers an(n−1)×(n−1) principal submatrixB of A, and
applies the result of case (a) toW1, which is spanned by the eigenvectors ofB
corresponding to thek largest eigenvalues, then we haveλk(A) ≥ λk(B)
Applying the result to−A and−B, we see thatλk(B) ≥ λk+1(A) for
k = 1, . . . , n − 1. The result is the Cauchy interlacing theorem.

Second, if one applies the result of case (b) toWj , which is spanned byj
standard basis vectors, then we see that the sum of anyk diagonal entries of
A is not larger than

∑k
j=1 λj(A) for all k = 1, . . . , n. Clearly, the equality

holds whenk = n by the trace condition. This is the well-known fact that
the eigenvalues of a Hermitian matrix majorize its diagonal entries.

For positive semi-definite matrices, we have the following multiplicative
analog of Theorem 7.1 due to Hoffman.

Theorem 7.2 [1, 2.16] Let A be ann × n positive semi-definite matrix.
For any indices1 ≤ i1 < i2 < · · · < ik ≤ n,

k∏
j=1

λij (A) = max
W1⊂W2⊂···⊂Wk

dim Wj=ij

min
Y ∈Cn×k

Y ej∈Wj, Y ∗Y =Ik

det(Y ∗AY ),(7.3)
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whereW1 ⊂ · · · ⊂ Wk are subspaces ofCn.

One may wonder whether we can extend Theorem 7.2 to Hermitian
matrices by replacing

∏k
j=1 λij (A) by |∏k

j=1 λij (A)| anddet (Y ∗AY ) by
|det (Y ∗AY )|. Unfortunately, as shown by the following example, the re-
sulting statement is false.

Example 7.3Let A = diag(3,−1,−2,−3). Then

3∏
i=1

λi(A) = 6 < 12 = det(diag(3,−2,−3)).

If A is positive semidefinite thenλi(A) = σi(A), and we may regard 7.2
as a statement about singular values. We do have the following representation
of the product of thek largest singular values of general and normal matrices.

Theorem 7.4 LetA be ann×n matrix, and let1 ≤ k ≤ n. Supposeij = j
for j = 1, 2, . . . , k. Then∣∣∣∣∣∣

k∏
j=1

σij (A)

∣∣∣∣∣∣ = max
U1⊂U2⊂···⊂Uk

dim Uj=ij
W1⊂W2⊂···⊂Wk

dim Wj=ij

min
X,Y ∈Cn×k

Xej∈Uj , Y ej∈Wj

X∗X=Y ∗Y =Ik

|det (X∗AY )|,(7.4)

If A is normal, then∣∣∣∣∣∣
k∏

j=1

σij (A)

∣∣∣∣∣∣ = max
W1⊂W2⊂···⊂Wk

dim Wj=ij

min
Y ∈Cn×k

Y ej∈Wj, Y ∗Y =Ik

|det(Y ∗AY )|.(7.5)

The following example shows that Theorem 7.1 is false without the
conditionij = j.

Example 7.5Let A be the Hermitian matrixdiag(1, 1,−1,−1). Then for
i1 = 3, we haveσ3(A) = 1. However, for any subspaceW1 with dimW1 =
3, the compression ofA onW1 is indefinite. Thus we can find a unit vector
y such thaty∗Ay = 0. It follows that

min
y∈W1
y∗y=1

|y∗Ay| = 0,

and it is also clear that for any other 3 dimensional subspaceU1,

min
z∈U1,y∈W1
y∗y=z∗z=1

|y∗Az| = 0.

Acknowledgement.Thanks are due to the referees for their comments that helped improve
the presentation.
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