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Summary. We use a simple matrix splitting technique to give an elemen-
tary new proof of the Lidskii-Mirsky-Wielandt Theorem and to obtain a
multiplicative analog of the Lidskii-Mirsky-Wielandt Theorem, which we
argue is the fundamental bound in the study of relative perturbation the-
ory for eigenvalues of Hermitian matrices and singular values of general
matrices. We apply our bound to obtain humerous bounds on the match-
ing distance between the eigenvalues and singular values of matrices. Our
results strengthen and generalize those in the literature.
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1. Introduction

Given ann x n Hermitian matrixA let A\;(A) > A2(A) > -+ > A\ (4)
denote its ordered eigenvalues. Tiegular valuef anm x n matrix A,
are defined by

0i(A) =/ Ni(A*A), i=1,2,...,q = min{m,n}.

Anm x n matrix can have at mogt= min{m, n} non-zero singular values
so we shall only consider its largessingular values.

The Lidskii-Mirsky-Wielandt theorem (e.g., see [19, Theorem IV.4.8] or
[2, Theorem 9.4]) states:

* Both authors were supported by grants from the National Science Foundation
Correspondence tdR. Mathias
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Theorem 1.1 Let A and E ben x n Hermitian matrices. Then for any
indicesl < i1 <19 < -+ < 4 < nwe have
k k

(1.1) > M (A+E) Z

j=1 j=1

This is a very useful result in matrix theory. It is a majorization relation

that implies a bound on the matching distance between the eigenvalues of
A and those ofd + E, namely,

k k
(1.2) Z (A+E) =\, (4)] <) 0y(E)
: j:l

This result can also be stated in terms of norms. A nprmj onRR" is
called asymmetric nornif it is both permutation invariant, that is,

|Px| = ||z||, V2 € R", permutation matrices P
and absolute, that is,
[(@i)ia | = [[(lz)isi [, V2 e R™

Symmetric norms are also sometimes called symmetric gauge functions. For
every symmetric norm- || onRR™ there is a corresponding unitarily invariant
norm, which we shall denote by} - |||, on the space af x n matrices. The
correspondence is given by

(1.3) A =1 (:(A))izq I

For example, the norms corresponding todhand/., norms onR™ are the

the Frobenius norm (denotéd- |||r) and spectral (or 2-) norm (denotgg

|||2) respectively. See [8, Sect. 7.4] for further information and background

on the connection between symmetric norms and unitarily invariant norms.
With this notation, and the theory of majorization, the result (1.2) is

equivalent to the statement that

(1.4) (A + E) = X(A)isall < [IE]]

is valid for any HermitianA and E' and any symmetric norm. This bound

is frequently stated and referred to when perturbation theory is studied in
the context of matrix inequalities. If one specializes this toghand /.,
norms onR" then one obtains the Wielandt-Hoffman and the Lidskii-Weyl
inequalities:

n 1/2

(L5) (Z(&(Aw) - Ai(A))2> < [I1EI|le
=1

(L6) max [\(A+E) = x(4)] < [|Ell
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In numerical linear algebra one typically considers only the Wielandt-Hoff-
man and Lidskii-Weyl bounds, even though they are both just special cases
of the fundamental Lidskii-Wielandt perturbation bound (1.2), or its norm
form (1.4).

In multiplicative (or relative) perturbation theory one wants to bound
guantities such as

Ai(S*AS) — Mi(A)
V(AN (S AS)

a.7)

' Ai(5*AS) '
Ai(4)

in terms of the distance betwegrand the set of unitary matrices. Ipsen has
surveyed the results on multiplicative perturbation theory for eigenvalues
and singular values [10]. The paper [12] contains numerous references on
the subject of multiplicative perturbation bounds.

Our purpose is to give a multiplicative analog of the fundamental Lidskii-
Wielandt bound and to show that itimplies all the other relative perturbation
bounds for eigenvalues of Hermitian matrices and singular values of general
matrices. We also give an elementary new proof of (1.1).

In Sect. 2 we give a simple new proof of (1.1) and its multiplicative
analog. We then show how this multiplicative analog of the Lidskii-Mirsky-
Wielandt inequality implies similar results for singular values, generalized
eigenvalues and generalized singular values. These results give upper and
lower bounds on the ratio of the unperturbed and perturbed eigenvalues. It
is a small step from here to the bounds in Sect. 2.3 which are multiplicative
bounds on the relative perturbation in the eigenvalues. These bounds are
completely analogout the perturbation bound (1.2). It is only because
we want to state results in terms of norms that we have to continue the
development in Sects. 3, 4 and 5. Notice that Theorem 2.3 is the only new
theorem in this paper — all the other results in this paper may be viewed as
corollaries of Theorem 2.3.

In Sect. 3 we briefly review the connection between majorization and
symmetric norms, which were defined in the the introduction.

In Sect. 4 we take logarithms of the results in Sect. 2 and use the connec-
tion between majorization and symmetric norms to derive a multiplicative
version of the matching bound (1.2) in terms of norms and the relative dis-
tance

rd(a, §) = [log(ar/B)| = |log|a| —log|A] |

between two real numbersandg of the same sign. This relative distance,
while not new, has not been used before in the context of multiplicative
perturbation theory for eigenvalues. As we shall see in Sects. 4 and 6, there
are good reasons for us to use this measure in our study.
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In Sect. 5 we derive a multiplicative version of the matching bound (1.2)
in terms of the relative error

x(a, ) = ﬁ_\/f ~leogl

from the results in Sect. 2. In order to do this we need to prove a few scalar
inequalities in Sect. 5.1. Our multiplicative perturbation bounds improve
and generalize the work of R.-C. Li [12] who has extended many of the
classical eigenvalue perturbation bounds from the additive context to the
multiplicative context. The measure of relative differende, -) has been

used by a number of authors krdthas much better mathematical properties
and consequently the results in this section are harder to prove and are less
clean than the results in the previous section.

In Sect. 6 we compare our results with those in the literature. There are
many ways to state relative perturbation bounds. In this section, we also
argue that the form used in Sect. 2.3, is the “right way” even though it is
less familiar than the norm-wise results stated in Sects. 4 and 5. We end
the section with a list of reasons wind is a better measure of relative
perturbation thary

In Sect. 7 we use the matrix splitting technique to give a proof of
Wielandt’'s min-max theorem. We also show that two natural multiplica-
tive analogs of Wielandt’'s min-max theorem are false.

2. Matrix inequalities
The key ingredients of our proofs in this section are a matrix splitting tech-
nique and the following results of Weyl and Ostrowski:

Lemma 2.1 (Weyl's Inequality) [8, Corollary 4.3.3]et A andE ben x n
Hermitian matrices withZ positive semi-definite. Then

Lemma 2.2 (Ostrowski’s Inequality) [8, Theorem 4.5.9t A be amn x n
Hermitian matrix and letS be ann x n matrix with A,,(S*S) > 1. Then
fori=1,2,...,n,we have

(2.2) IXi(A)] < [Xi(S7AS)),
or equivalently,
Ai(S*AS)
, < /7
@3 PETN@

Here we use the fact that* AS and A have the same inertia and the con-
vention that)/0 = 1 to ensure that the right side ¢2.3) is always positive.
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2.1. Proofs of Lidskii-Mirsky-Wielandt theorems

Letus prove (1.1). We may assume, without loss of generality\if{d) =

0; otherwise, we may replade by E — A\ (E)I which reduces both sides
of (1.1) bykAx(F). Let E = E; + E_ be the usual decomposition &f
into positive and negative parts, i.e.,

Ey = Zmax{(), Xi(E)}ziz; and E_ = Zmln{() Ni(E)yxiz;

i=1

where E = Y " | \j(E)x;z} is a spectral decomposition df. Since

A:(E) = 0 it follows thattrace(E;) = Zle Ai(E), and hence we need
only prove that

Mw

(A4 E) = X\ (A)] < trace(Ey).
]:1

Using Weyl's inequality with the fact thatl + £ < A + E,, we have
Ai;(A+ E) <\, (A+ Ey) and hence

k
> N (A+E) -

j=1 j:l

Mpr

(A4 Ey) =\ (A)]

Using Weyl's inequality again, this time with the fact tiat > 0, we have
that\;(A+ £, ) — A;(A) is nonnegative for each= 1,...,n, and hence

k
D N (A+Ey) - <Z (A+ Ey) — X\i(A)
7j=1
= trace(A + E) — trace(A)
= trace(Ey),

as desired.

Typically one derives the Lidskii-Mirsky-Wielandt bound from Wie-
landt’'s min-max representation E?Zl Ai; (A) [2] [19]. This is consider-
ably more complicated than our approddi.the last section we show that
our technique can be used to prove Wielandt's min-max theorem. Now we
use the same technique to prove a multiplicative analog of (1.1).

! Therecentbook[3] does contain two proofs of Lidskii-Mirsky-Wielandt (called Lidskii's
inequality in [3]) that do not involve Wielandt’'s min-max representation. One uses induc-
tion, the other is somewhat similar to ours, but considerably more complicated. Thompson
and Freede proved a generalization of the Lidskii-Wielandt inequalities (1.1) using rather
elementary techniques and an inductive argument [21]. The fact that their result implies the
Lidskii-Weilandt inequality appears to have been overlooked by many researchers.
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Theorem 2.3 Let A be ann x n Hermitian matrix and letd = S*AS.
Then for any indice$ < i1 < iy < --- < i < nsuch thatAi].(A) 2 0 for
j=1,...,k, we have

ko k
(2.4) H)\n-i-l—i(S*S) < H )\i:(A) < H/\i(S*S)-

Here we use the fact that the number of positivespectively, negative
eigenvalues ofd is not larger than that ofA to ensure that the middle
expression ir{2.4) is always nonnegative.

Proof. Firstassume théf is invertible. LetS have singular value decompo-
sition S = U diag (dy,ds, .. .,d,)V,whered; > dy > --- > d,, > 0 and
U andV are unitary. Since eigenvalues are invariant under unitary similari-
ties we may assume, without loss of generality, hhat V' = I and hence
S = diag (dy,ds, ..., d,). Furthermore, we may assume that= 1; oth-
erwise, we can replace the mat§xoy S/d; which will change all the left,
middle and right quantities in (2.4) by the same multiple, namigfyz*.
(This is where we use the assumption tha(A) # 0 for all 5.)

LetD = diag (dy, ..., dg)®I,_& Thendet (D*D) = [T, Ai(5*9),
and hence we need only to prove

£ (A)
() < det (D*D)

to get the upper bound i{2.4). } .
Using Ostrowski’s inequality with the fact that, (S~ D)*(S~1D)) >
1, we have

>

j=1

k y ~
(2.5) = H W

Using Ostrowski’s inequality again, this time with the fact that D* D) >

1, we havel < % foralli =1,...,n,and hence

b (D*AD) % M(D*AD) -
(2.6) 11 A < ]1;[1 N det(D*D).

j=1 i

Combining (2.5) and (2.6), we get the desired upper bound.
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Now, using the result established in the preceding paragraph, we have

-1
k *
i, (S*AS) S AS)

1175

) S*ASS1)

k
1;[ ! i; (S*AS)
k
=1ve

-1

k
[T 2si-1(5%9)

j=1

Taking the inverse of this inequality, we get the lower bound.

Now consider the singular case. The lower bound is trivially true in this
case. LetS(t) = S + tI with 0 < ¢t < |A| for any nonzero eigenvalue
A of S. ThenS(t) is invertible andim, |, S(t) = S. By the continuity of
eigenvalues and (2.4) in the invertible case, we get the result for the singular
case also. O

One may be tempted to remove the requirement in Theorem 2.3 that
Ai;(A) # 0 and instead use the convention th#@0 = 1. To see that the
resulting statement is not correct just consider the scalar exampte0,

S =2.

We may summarize our proofs by saying that Weyl's qualitative bound
(2.1) together with the linearity of the trace implies the much stronger bound
(1.1), and that Ostrowski's qualitative bound (2.3) together with the multi-
plicativity of the determinant implies the much stronger bound (2.4). See
[16] for another instance where a matrix splitting technique and Weyl's
simple monotonicity result yield much stronger eigenvalue bounds.

To conclude this section, we remark that Theorem 2.3 provides some
basic inequalities relating the eigenvalues$bf.S and A. Similar to many
other results in matrix inequalities, once some basic inequalities are available
one can use the theory of majorization on real vectors to obtain a whole
family of inequalities (e.g., see [9,15]). In fact, since we have a product
inequality we may take positive powers of all the terms and obtain new
inequalities. For example, in the development in Sect. 5 it is convenient to
take the square root of the inequality of (2.11), but we could have equally
well taken another power and obtained a different perturbation bound.

2.2. Related Lidskii-Mirsky-Wielandt inequalities

The inequalities (2.4) appear to be new for Hermitian matrices. In the special
case that is positive semi-definite (2.4) is equivalent to the singular value
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inequalities
oy, (A2S)

(2.7) H1 AT Hal
which is a special case of a more general family of inequalities [20] (or
see [9, (3.3.53)] for the result without proof). The inequalities (2.7) were
first proved by Gelfand and Naimark [7] (or see [3, Theorem Il1.4.5] or [9,
(3.3.52))).

Theorem 2.3 implies similar multiplicative inequalities for singular val-
ues, generalized eigenvalues, and generalized singular values.

Since the positive singular values of@anx n matrix A are the nonnega-
tive square roots of the nonzero eigenvalues Af or A* A, two applications
of (2.4) yield

Corollary 2.4 Let A be anm x n matrix with g positive singular values.
Supposeé ism x mandT isn x n. Then

k
S
(28) Ham+1—i(S)an+1 z < H O

i=1

k
AT < T o:(S)ou(T)

i=1
for any set of indice$ < i; < --- < <gq.

Proof. We shall prove the upper bound only since the lower bound can be
proved in the same way. We have used the upper bound in (2.4) for the two
inequalities below.

b a? (SAT) i, (SATT* A*S*) A, (ATT*A¥)

j[[l (;ZJ(A) - ]1;[1 N, (ATT*A%) X, (AA%)
o Tor N (ATT*A%)
< ]Hl Xi(SS )jH1 )
i, (T* A* AT)
i Sl o
J=1 J=1 J
<[ [[ri(T 1)
j=1 j=1
k k
=[S [
j=1 j=1

This is the square of the upper bounda

Notice that whenn # n, the pairing of the singular values §fandT
in the upper and lower bounds is not the same.
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Corollary 2.5 Consider the generalized eigenvalue problems

A1 —MAy = STHS;—\S3H3S;, and Ay —\Ay = S;H,S;—\S;HoS;
where theH’s and H’s are positive definite and; is invertible. Let
their eigenvalues ba; and :\i. Let /| = Hfl/QﬁIlel/Q and letFy =
H 2y 1/2 . Then

k

k 3 k
A
2.9) [ nsr—iE)Anpr—i(F2) < [[ 52 < [T NED)N(F)
i=1 j=1"" i=1

for any set of indice$ < iy < --- < i, <gq.
Corollary 2.6 Consider the pairs ofi x n matrices(B, B2) = (G154,
G2S2) and (Bl, Bg) (Glsl, GQSQ) where the’s and G’s and at least

one of theS’s is nonsingular. Let their generalized singular valuesdye
andg;,i=1,...,n. Then

k
H Ont1-i(G1GT ) oni1-i(G2G3 )

=1

A
—-
2|2

<
Il
—_
~
<)

(2.10) 0i(G1G1 )oi(G2G3 )

IN

s
I
—

for any set of indice$ <i; < --- <1, <gq.

2.3. Multiplicative matching bounds

In Theorem 2.3 we gave a multiplicative analog of (1.1). In this subsection
we give a multiplicative analog of (1.2) that follows easily from Theorem
2.3. There are also matching bounds that follow from the results in the
previous subsection.

Corollary 2.7 Let A be ann x n Hermitian matrix and letd = S*AS
whereS is a invertible matrix. Using the fact that* AS and A have the
same inertia and the convention thigtd = 1, we have

k P k
i (A) i (A) 5
(2.11) max{ T < || (9
]Hl Ay (A)" Ay (A) jHl ’
for any indicesl < i1 <io < --- < i < n, where

(2.12) 1i(S) = max{o.;)(S), 0,3 (5)},

wherer is a permutation such that > --- > n,.
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Proof. Let the indiced; < --- < I, be indices fromi; < --- < i for
which -
)‘ij ({1) < )‘ij (A)
A (A) T i (4)
Letm; < --- < my, be the remaining indices from < --- < i;. Then,
using the upper bound in (2.4) to bound the first product and the lower bound
in (2.4) to bound the second, we have

ﬁmax A, (A) N, (A)
| Al ﬁAmJ
Am. (A)
Jj=1 J
1
§H/\j(5* H)‘n—i-l g
j=1

k1
< [ max{x;(575),A;1(5*9)}

j=1

ko
x L maxfAni—5(578), A3, ;(579)})
j=1

The final inequality follows from the definition of thg’s—the penultimate
line is the product ok of then,’s, while in the last line we have the product
of the largesk of then;'s. O

The bound (2.11) is the multiplicative analog of (1.2). The usg afiay
seem rather unnatural because its definition is awkward, but in fagt’'the
are entirely analogous to the singular values of a Hermitian that appear on
the right hand side of (1.2). To see this note that we could define the singular
values of aHermitian matrix £ by

0i(E) = max{\;)(E), =) (E)},

where the permutation is such thato;(E) > --- > o0,(FE). Another
analogy between thg's and singular values is that the singular values of a
general matrixn x n matrix X may be defined as the largesin{m, n}
eigenvalues of the Jordan-Wielandt matrix

(v 0)
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Then;'s corresponding to an x n invertible matrixS may be defined as
the largest: singular values of the matrix

(0 s)

The Jordan-Wielandt matrix has proved useful in studying singular values,
perhaps thi2n x 2n matrix will be useful in studying the;’s.

We feel that (2.11) is the right analog of (1.2), and we shall discuss this in
Sect. 6.2. One can use it to derive other matching bounds. In the next section,
we shall derive one such bound that generalizes results in the literature.

One can prove a similar perturbation bound for singular values, gener-
alized eigenvalues and generalized singular values. The results are straight
forward and so we will only give the result for singular values. We shall
assume thatr = n in order to simplify the notation.

Corollary 2.8 LetA, S andT ben x n matrices. Assume thatand7" are
invertible. Then

oy, (SAT) O'Z]

(2.13) Hmax{ ORENC } Hm

for any set of indice$ <i; < --- < i < ¢, where
i :maX{UT(i)(S)UT(z)( ), 0 T( )(S) 7(1)(T)}a

wherer is a permutation such that, > --- > n,.
Note that
k k
I 7 < TTim(S)m(T)]
=1 =1

The ideaof usingnax{«/f, 5/a} as the measure of the relative distance
from o to 8 (whena and3 have the same sign) has been suggested before.
For example, Olver [18] proposes

|log(a/B)| = log max{a/f, 5/a}
as the appropriate measure because it is a metric and it interacts with mul-
tiplication and division more neatly than, s&yy — 3)/«|.
The quantitymax{x, z~'} is the maximum ofr and its multiplicative
inverse is the multiplicative analog of

|z| = max{z, —x},
the (additive) absolute value. This multiplicative absolute value occurs in
many places in this paper, especially in Sect. 5. Perhaps the presentation

and the analogy with the additive case would have been clearer if we had
defined a symbol to denote this multiplicative absolute value, say

|z = max{z,z "'}
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3. Majorization and norms

In this section, we briefly review the aspects of majorization and symmetric
norms that we shall use in the next two sections.

Recall that for two vectors,y € R™, we say thayy weakly majorizes
z (denoted byr <., y) if the sum of thek largest entries af is not larger
than that ofy for k = 1, ..., n. If in addition the sum of all the entries of
x is equal to that ofy then we say thay majorizesz. See [15] for further
information on majorization and numerous applications.

The theory of majorization greatly simplifies our proofs because there
are many functions that preserve weak majorization. The notation of ma-
jorization simplifies also the presentation of our results. For example, the
fundamental additive perturbation bound for eigenvalues of Hermitian ma-
trices (1.1) can be stated simply as

(3.1) (Ni(A+ E) = Xi(A)img <w (Ni(E))i=-

The family of inequalities (1.1) states that (3.1) is a weak majorization.
However, consideration of the trace shows that (3.1) is actually a majoriza-
tion.

There is anintimate connection between symmetric norms and majoriza-
tion. Itis summarized in the following lemma. See e.g., [8, Theorem 7.4.45]
for the usual proof of this fact or [11] for a new approach.

Lemma 3.1 Letz,y € R’ Then
T <wlY

if and only if
[zl < [lyll
for all symmetric normg - || onR".

In view of this result we can equivalently state results in terms of weak
majorization of vectors or in terms of norm inequalities. We shall do the
latter as it is the standard approach in numerical linear algebra.

In the context of the perturbation of singular values of rectangular ma-
trices one needs to consider norms on spaces of different sizes. (The reader
who is not interested in the strongest possible result in the rectangular case
may assume that, = n and skip the technicalities in this paragraph.) We
shall use the following natural convention. Given < n, the symmetric
norm|| - || onR™ induces a norm o™ by

2l = max (s,

|
(That is, ||| is the largest norm of any vector consistingrafof the n
components of. It is easy to show that the maximum is obtained when
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one chooses the largest components ofc.) Consequently, a symmetric
norm onR™ induces a unitarily invariant norml - ||| on the space af x n
matrices. Note that the resulting unitarily invariant norm is not what one
might at first expect. For example,|if- || is the Euclidean norm d&?, and

we taken = 4 then symmetric norm induced @& is the square root of

the sum of the squares of the two largest elements of the 4-vector and the
unitarily invariant norm it induced on the space of shy, 4 matrices is

X1 = (o3 (X) + 03(X)"?,
and not the Frobenius norm on the spacé ef 4 matrices:
11X [lle = (o3(X) + 03(X) + 03(X) + o5 (X)),

Never-the-less, itistrue thAtX ||| < |||X|||r and thisis sufficientto deduce
(5.11) from (5.10).

It is easy to prove the following natural lemma on the norm induced on
R™ by || - || onR™ for m < n.

Lemma 3.2 Letm < n be positive integers. Lét- || be a symmetric norm
onR™ and letx = (z1,...,x,) € R™ Then for any indices; < --- < i,

1Czi) 7l < 1) -

4. Perturbation bounds using| log(a/3)|

One can completely avoid the complications of the next section by using

rd(a, §) = [log(ar/B)| = |log|a| —log|A] |

as the measure of the relative distance between real numlzrd 5 with
the same sign. In fact, i = a6 for somed > 0, then

rd(a, 3) = |logd].

As we shall see in the following discussion, if a matAxs perturbed to a
matrix B = AS, then the norm of the matrixg | S|, where|S| = (5*S)'/2,
plays an important role in deriving perturbation bounds. In some sense, this
can be viewed as a generalization of the scalar case. Also, noticeltisat
a metric, unlikey. The idea of usingd(-, -) as the measure of the relative
distance fromx to 8 (whena andg have the same sign) has been suggested
before. For example, Olver [18] proposes it as the appropriate measure
because it is a metric and it interacts with multiplication and division more
neatly than, say{« — 3)/al.

Since the results are so straight forward we shall give the proofs of the
first two results only. They contain all the elements essential to the other
proofs.
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Proposition 4.1 LetA andA = S* AS ben x n Hermitian matrices, where

S is invertible. Let)\; and Mi, i = 1,2,...,n be the eigenvalues of and
A. Then B n
(4.1) (T1og(n/A)1 ) = (1o A(S™S) )T,y

Let| - || be any symmetric norm and ¢t ||| be the corresponding unitarily
invariant norm. Then

(4.2) 11 tog(Xs/Aa) )iyl < [[[1og(S*S)II-

Proof. Taking logarithms of the multiplicative perturbation bound (2.11)
gives the majorization (4.1). By Lemma 3.1 this majorization is equivalent
to the corresponding norm inequality for all symmetric norms:

101 og(Xi/A0)| Jizall < [1(log(Ai(S5*9)) Jiall.

Now using functional calculus and the correspondence between symmetric
norms and unitarily invariant norms (1.3) we have

| (Ai(log $*8))iy (| = |II log(S5™5) ],
which combined with the previous inequality gives us (4.2)1

Notice how straightforwardly Proposition 4.1 follows from the multi-
plicative bounds in Sect. 2 and a standard majorization result involving
symmetric norms. Compare this with the proof of Proposition 5.3 the corre-
sponding result in Sect. 5 which depends on the preliminary result Lemma
5.1.

Proposition 4.2 Let A and A bem x n and have singular values; and
&;, respectively. Suppose thdt= SAT whereS andT are invertible. Let
|| - || be any symmetric norm symmetric norm®h (¢ = min{m, n}) and
let||| - ||| be the corresponding unitarily invariant norm. Then

(4.3) [|(Ilog(0i/a:) i Il < %{ [ 1og(S*S)[| + [[[log (T T[] } -

Sincelog(S*S) = 2log|S| we could have eliminated the factor bf2
in (4.3) at the cost of replacing*S and7™*T by |S| and|T'|.

Proof. LetA = S A, have singular values. Thenusing the fact thatd(-, )
is a metricfor the first inequality, the triangle inequality for the second, and
Lemma 3.2 for the third, we have

I(|log(i /i) )iy | = Il(|log(ei/&s) + log(6i/a:) )i |
< [[(|1og(i/64)| + |log(6:/:)])i
< [[([log(o:/6:) )iyl + [1(|1og(64/F:) )i Il
< [|([log(i/a3) )i [l + [I(|log (/i) )iz l-
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Now we need only bound the effect Sfon the singular values od and
that of " on the singular values &f A separately. Each of these can be done
by appealing to Proposition 4.1. FSr

quaoM&»>?1v:§H(bg<Aj§Z§fﬂn>>n

=1

1 *
< Sllltog 575 |l

Using the same argument férand adding the bounds gives (4.3)10

Notice how much simpler the proof of Proposition 4.2 is than the proof of
the corresponding result expressed in termg efCorollary 5.5. Corollary
5.5 is proved from scratch, via the intermediate result Proposition 5.4, and
the technical results Lemmata 5.1 and 5.2. We were not able to easily deduce
it from Proposition 5.3 — the result in terms gffor Hermitian matrices.
R.-C. Li was able to deduce his singular value result from his eigenvalue
result together with the weak triangle inequality fpri.e. (5.4), but his
bound is weaker than ours.

When analyzing the accuracy of Jacobi’s method [4, 17] applied to graded
positive definite matrices one has a positive definite matrix writteA as
C*HC which one perturbs tol = C*HC and one would like relative
perturbation bounds on the eigenvalues in termaéf = H — H and H
rather thanA A and A. Since

Xi(A) = o2(H'?0),

and . .
XNi(A) = o2(HY?HY?)HY?(0).

Proposition 4.2 now yields

Proposition 4.3 LetA = C* HC'andA = C* HC ben x n positive definite
matrices with eigenvalues, A;. Then for any symmetric norfpn || on R”
and the corresponding unitarily invariant norfj - |||

(4.4) I(1og(Xe/A) i || < [[[log HY2HE ||,
or equivalently

(4.5) I(1Tog(Xe/Aa) )izt || < [l log(I + E)]]|
whereE = H-'2AHH1/2,

To see that the right hand side is indeed unchanged when the rdies of
and H are reversed notice that the eigenvaluesfof'/2H /2 are the
inverses of those off —'/2HH~1/2.
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Proposition 4.4 Consider the generalized eigenvalue problems
Al—/\AQ S1H1S1 )\SQHQSQ, and Al—)\AQ S1H151 )\SS.FIQSQ

where theH’s and H's are positive definite and at least one of thgs is
invertible. Let|| - || be any symmetric norm dR™ and let||| - ||| be the
corresponding unitarily invariant norm. Then

[(log(\i/A))E)]| < ||| log(Hy /2 HyHy V)|
(4.6) +|||log(Hy 7 HaHY )|,

or equivalently,
4.7 [ (log(\i/X))ia |l < 5 [Hllog(HEl)lll+|I\log(I+Ez)III]

whereE; = Hi_l/zAHiHZ._l/?.

The bound (4.6), which expresses the perturbation multiplicatively, is
perhaps more natural than (4.7) which expresses the perturbation additively.
In the rest of the paper we shall express perturbations additively as that is
what is usually done in numerical linear algebra, but all of our perturbations
could be expressed multiplicatively also.

Proposition 4.5 Consider the pairs of. x n matrices(B1, Ba) = (G151,
G252) and (Bl, BQ) (Glsl, GQSQ) where the(’s and G’s and at least
one of theS’s are nonsingular. Let the generalized singular valuesshe
andg;, i =1,...,n. Let| - || be any symmetric norm dR"™ and let||| - |||
be the corresponding unitarily invariant norm. LBf = AG;(G;)~!. Then

I(x(01,61); -+, x(on, an)) || < [[[log [T + Ex| |||
(4.8) +[|[log |1 + Eal |]-
5. Perturbation bounds usingx

For nonzero real numbertsand with o3 > 0, define

Bl _la—p

and definey(0,0) = 0. The functiony is a measure of relative separation.
Notice thaty(max{x,z~'},1) = x(x, 1) for any scalaw > 0.

In this section, we combine the multiplicative bounds in Sect. 2 with the
theory of majorization to obtain perturbation bounds in termg tifat im-
prove a number of results in the multiplicative perturbation theory literature.
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5.1. Some scalar inequalities fgr

First, we establish some inequalities fprwhich allow us to derive ma-
jorizations in terms ofy from the the product majorizations of Sect. 2 (or
equivalently log majorizations like (5.1)).

Lemma 5.1 Letx andy be positiven vectors such that ,

(log max{z1,z7'}, ..., logmax{z,, z;'})
(5.1 <w (logmax{yi, yfl}, ..., logmax{y,, v, '}).
Then
(|lex — 1/21]y ooy |20 — 1/an|)
(5.2) <w (v = 1/wls -5 lyn — 1/ynl)-
Consequently, for any symmetric norm
[(lz1 = /21, s |l2n — 12|
(5.3) <y = 1/yals -5 lyn — 1yalll-

Proof. Since the functiory(t) = e’ — e~! is convex and increasing on
[0, 00), we have

(g9(log max{xy, xl_l}), ..., g(log max{z,, z,'}))
<w (g(log max{yi, yfl}), ..., g(log max{y,,y, '1))

by a result of Schur (e.g., see [15, Chapter 3,C.1]). This is the desired ma-
jorization since
g(logmax{t,t™'}) = |t — 7|
for any positive numbet.
By Lemma 3.1 this majorization implies the inequality (5.3

Letr, s be positive numbers. One might hope that the relative separation
between s andl is at most the sum of the relative separation betwesmd
1 and the relative separation betweeandrs. That is

X(?“S, 1) < X(T7 1) + X(?"S,T) = X(T7 1) + X(37 1)'

Unfortunately this inequality is true if and only(if — 1)(s — 1) < 0. When
dealing with multiplicative perturbation bounds that contain two multiplica-
tive perturbations, for example, the perturbation of singular values when one
allows multiplicative perturbations on both sides, one would like to bound
quantities likey(rs, 1) in terms of a function of and a function ok. One

way is to use the approach of R.-C. Li, [12, Lemma 6.1]:

54 s x(r, 1) +x(s,1)
o4 R VN

Another is the following lemma.
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Lemmab5.2 Letr,s > 0. Then

(55) X(rs, 1) < 3 [x(%, 1) + (%, 1)

The inequality (5.4) is an equality if and only if at least one-@nds
is 1, the inequality (5.5) is an equality if and onlyrif= s. Thus neither is
uniformly stronger than the other. In the limit asinds approach, which
is when one will usually use these bounds they are about the same.

A third way to deal with the problem is to decide to boupd,/rs, 1)
instead ofy(rs, 1). If we do this, then we can use Lemma 5.2 to conclude
that

x(Vrs, 1) < x(r, 1) + x(s,1).

Proof of Lemma 5.2Nithout loss of generality we may assume that both
ands are greater than or equal to 1. Since if they are not, replace those that
are less than one by their inverses. This can only increase the left hand side,
but will leave the right hand side unchanged.

Now, without loss of generality we may assume that s. Now regard
s as fixed and- as variable. When = s (5.5) is as equality. One can easily
check that

d% %(X(TQa 1) +x(s%,1)) = x(rs, 1)

is positive when ever > s. This ensures that the inequality (5.5) holds, and
indeed that it is a strict inequality unless=s. O

5.2. Perturbation bounds

We are now ready to derive normwise perturbation bounds in terms of
from the results in Sect. 2.

In numerical linear algebra one often states perturbation bounds in terms
of the norm of the perturbing matrix (or some function of the matrix), rather
than in terms of the singular values of the perturbing matrix. For this reason
we state the bounds in this section in terms of the norm of the perturbing
matrix. We could have equivalently stated them as weak majorizations (see
for example (5.6)) or as a norm bound in terms of the singular values of the
perturbing matrix (see for example (5.7)). In the interests of brevity we have
given these different forms in Proposition 5.3 only.

Proposition 5.3 LetA andfl = S§*AS ben x n Hermitian matrices, where
S is invertible. Let\; and \;, i = 1,2,...,n be the eigenvalues of and
A. Then

(XM A1), - X An)) <w (X(A1(S9), 1), .., x(An(S*S), 1)).
(5.6)
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Consequently, for any symmetric norm,

H(X()\la 5\l)a R X()\n, 5\n))H
(57) < H(X(AI(S*S)71)ﬂaX(An(S*S)71))H

Equivalently, for any symmetric north- || and corresponding unitarily
invariant norm|| - |||

(5.8) IO A - Xy Aa)) < IIS™ = S]]

In particular

D x(aA) < I18* = S|
=1
and B
Jmax (A, &) < [[15" = 57 e

Proof. SinceS is invertible,4 andA have the same inertia. Lety € R"be

such thate; = 1/ Xi(A4)/Xi(A) with the convention thal/0 = 1, andy; =
0i(S),fori =1,...,n. Taking square root of (2.11) in Corollary 2.7, we see
thatthe hypothesis of Lemma5.1 holds. The first two inequalities now follow

easily from Lemma 5.1 and the equalityo, 5) = ’\/a/ﬁ - \/ﬂ/a‘.

Notice that the two unnumbered inequalities are just special cases of
(5.8) and the left hand sides of (5.7) and (5.8) are the same. To establish the
proposition we need only show that the right hand side of (5.7) is the same
as that of (5.8). To see this note that the right hand side of (5.7) is the norm
of the vector whoséth component is

KOS 1) = [VATES) - A1 (5°8)] = lo(s) — o 51
LetS = UXV* be a singular value decomposition®f Then
S*—sl=v(E-xhHhur
has singular values
loi(S) —a; 1(S)], i=1,...,n.

Thus the vector(o;(S* — S71))%, is just a permutation of the vector
(x(A\i(S*S),1)), and consequently they have the same norm.

An n x n matrix S is unitary if and only if the eigenvalues &*S
are all 1, or equivalently if and only §* = S~!. The relative distance be-
tween\;(S*S) andlis x(\;(S*S), 1). Thus (5.7) and (5.8) are the pleasing
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statement that, in any symmetric norm, the relative perturbation in the eigen-
values ofA caused by the congruenSds bounded by the relative distance
from S to the set of unitary matrices.

Notice that in the proof of Proposition 5.3 we took the square root of the
multiplicative inequality (2.11). We could have taken some other positive
power and obtained another inequality. In fact, we could have stgitid a
power version of all our results in this section but we found the additional
generality to be useful only in the context of Corollary 5.5.

Now we turn to singular values of possibly rectangular matrices. Propo-
sition 5.4 is the strongest possible result in the rectangular case, but it is
not at all satisfactory. Firstly the definition of thés is rather complicated,
especially in the rectangular case. Secondly, it would be nice to separate the
effect of S andT on the right hand side. We give a number of bounds that
do not involvep and that do separate the effectsandT" in Corollary
5.5. Readers may wish to omit the next technical result and skip straight to
Corollary 5.5.

Proposition 5.4 Let A and A bem x n with singular values; > --- > o,
andg, > --- > g4, respectively, wherg = min{m,n}. Suppose that
A = SAT whereS andT are invertible. Letp, ..., p, consist of the first
q1terms,0 < ¢; < g, of the decreasing sequen{z@(S)aj(T)}?:1 and the
first ¢ — g1 terms of the increasing sequen{)gn,jﬂ(S)an,j+1(T)}g:1
so that they numbers

max{pi,pi_l}, i1=1,...,q,
are the largesy of the2¢q numbers

Uz(s)al(T)7 izla"')Qa

and

o L (S (T, i=1,...,q.

m—1 n—i

Then

(5.9)  (x(o1,61)s---,x(0g,5¢)) <w (x(p1,1)s- -, X(pg: 1)),

and for any symmetric norm

[(x(01,61),- - x(0g, 5 < [[(x(p151)s -+, x(pg, )|

An alternative way to defing, andp;’s is the following. Letg; be the
largest integer between 1 anduch that

max{og, (5)og (T), (04, (5)og (T)~"}
> max{om—q,+1(5)0n—q,+1(T); (Om—g,+1(5)Tn—g, 41 (T))il}'
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If there is no such integer then sgt= 0. Now fori = 1,..., ¢, define
_ Joi(S)ai(T) if i <aq,
Pe= Y Ome gy —iy(S)0n_(q—1y(T)  otherwise

Inany event, one can check thatif= n then we may takg; = o;(S)o;(T)
— a considerable simplification!

Proof of Proposition 5.4SinceS andT are invertible,A and A have the

same rank, i.e., the same number of nonzero singular values, &t R"

be such that; = /G;/o; with the convention that/0 = 1, andy; = /p,,

fori = 1,...,n. Suppose thé& largest entries of arex;, ... Ty, and
wlw wherezza > 1foralll < a < ky,z;, < 1foralll <b < ko,

andk; +k:2 = k. Taking the square root of (2.8) in Corollary 2.4, we see that
5:1 x;, IS not larger than the product of the fifstterms of the sequence

{1(S)o1(T)}i_, and H’;; m;bl is not larger than the product of the re-

ciprocal of the first; terms of the sequender,,—;+1(5)on— ]H(T)}{1

By the construction ap;’s, we see that the hypothesis of Lemma 5. 1 holds.

Using Lemma 5.1 and the equaligyf«, 5) = ‘\/a/ - \/ﬁ/a‘, we get
(5.9). O

Corollary 5.5 LetA and A bem x n with singular valuegr; > --- > g,
andg; > --- > &, respectively, wherg = min{m,n}. Suppose that
A = SAT whereS and T are invertible. Let| - || be and any symmetric
norm onR? and let||| - ||| be the corresponding unitarily invariant on the
matrix space of the appropriate dimension. Then,

||(X(O'1,5'1), s 7X(O-Q’5q))“
(5.10) < 3llIS* =S~ + gllT* =TI,

and in particular

q 1/2
B 1 " B 1 " _
(5.1) (Zx%oi,oi)) < 5llls™ =57l + SNT* =TI,
i=1
and

(5.12) H}&X x(0i,Gi)

1111

1 1
~||s* — st T —T7|o-
<5 llz+ 511 Il
Furthermore, for any positive we have

I(x (e, 1), - -, x(og, o) < 5 ||||S|”—|S\‘p||!

1 _
(5.13) ST =171
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If T is unitary then
(5.14)  Ix(oi,5)ll < NlOc(oa(S), DI = (I [S1M2 = ||
We define the matrix absolute value in the usual way:
1X| = (X*X)1/2,

When it is applicable the inequality (5.14) is slightly stronger than (5.11).
One may wonder whether, when bdifandT" are merely nonsingular, it is
true that

(5.15) [Ix(ow, )l < I 1S1"2 = [S|7 |||+ || [T]"/2 = [T|72].

To see that it is not true one need look no further than the scalar example,
A =1,5 =T = 2. This is just a manifestation of the fact thatrs, 1) <
x(r, 1) + x(s,1) ifand only if (r — 1)(s — 1) < 0. Itis true that

[ 1812 = 1SI7Y2]1 + 1112 — [T~
— sl 1S1Y2 = IS|72 2] || T2 — [T |=1/2]]]2

l[x(0i,00)|] < N

provided that the denominator is positive. Singe, 1) < %X(rZ, 1), we
have

_ L ox _
(5.16) 11812 = IS|72 ] < 5111 8% = 574

so this bound is slightly stronger than R.-C. Li’'s bound [12, Theorem 4.1].
Alternatively, one could apply (5.13) with = 1/2 and obtain the valid
bound

IX(Vai, VG < IISIYZ = 1SI72 )+ (1] T2 = 1774 2]]):

The bound (5.13) is perhaps a little hard to interpret because of the matrix
absolute value. However, it is useful. We've seen one applicationpwith
1/2inthe previous display; the bound (5.10) is just (5.13) with 1;and in

the context of the generalized eigenvalue problem we will see an application
with p = 2.

Proof of Corollary 5.5.First we deduce (5.10) from (5.9). We know that
pi = 05,(S)oy, (T), for eachi = 1,...,¢, and that the indiceg, ..., j,
are distinct as are the indicés, . . ., k,. That is, each singular value 6f
and each singular value @foccurs at most once in the definition of thés.

By Lemma 5.2 we have

X(pis1) < 5 {103,(8) = o ()] + o (T) = o3 (D)1}
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Using this entry-wise inequality for the first inequality below, the triangle
inequality for the second, and Lemma 3.2 for the third, we have

| (x(pis 1)) |

< 115 {103:(8) = 07,(8)| + low,(T) — o (D) DL

< 5 {104(8) = o3 (SN | + 11 (0 (T) — o3 (T 1}
< L{10(8) = o7 (Sl + on(D) — o7 (T )
=S ST T T )

To prove (5.13) take thg/2 power of (2.8), instead of the square root
as we did in Proposition 5.4, and prove the corresponding generalization of
Proposition 5.4. Then use the proof of (5.10) above to deduce (5.1B).

We may apply the majorization result Lemma 5.1 to the singular value
bound (2.8), without taking square roots to obtain:

Proposition 5.6 LetA = C*HC andA = C* HC ben x n positive definite
matrices with eigenvalues;, \;. Let E = H~Y2AH H~Y2. Then for
any symmetric nornj - || on R™ and the corresponding unitarily invariant
norm f[ - ||

G.17) (A A1) X O, M) < BT + E) 2]
and in particular

n

(5.18) SO N) < B+ E) 2|
=1

and

(5.19) max x(Ai, i) < (|E(+E)72]e.

Now let us consider multiplicative perturbation bounds for the general-
ized eigenvalue and singular value problems. The conditions here are the
same as those in [12] and are somewhat more restrictive than those for the
standard eigenvalue and singular value problems.

Proposition 5.7 Consider the generalized eigenvalue problems

A1—NAy = STH ST —A\S3HS5, and Aj—AAy = STH ST —\S3HyS3
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where theH’s and H’s and at least one of thé’s is invertible. Let|| - ||
be any symmetric norm d&" and let||| - ||| be the corresponding unitarily
invariant norm. Then

[0 Al < % [I[(I+E1) — (I +E)™ Y|
(5.20) I+ B) — (T + Bo) ]
and
10N VA < BT + B2
5-21) | Eo(I + E2) 2.
Furthermore

|E1(I + E)~Y2||| + ||| B2(I + Eo) =2
— sEL(I + B0~ 12|z [||E2(I + E2)~1/2|]2’

1Oc(Xs X))ia []] < !

(5.22)
provided that the denominator is positive.

The last bound (5.22) is the the generalization of [12, Theorem 7.1] to all
unitarily invariant norms. We could of course have stated the special cases
of (5.22) corresponding to the Frobenius norm and the 2-norm explicitly.
Note that R.-C. Li weakened the result slightly by replading;||| by

1B LA
VL Il A 2

so as to avoid the use d&; in the final bound. The first two bounds are
somewhat cleaner than the last.

Neither of (5.20) and (5.22) is always stronger than the othéf; K= 0
andFE, # 0then, by (5.16), (5.22) is stronger. On the other hand, in the limit
as the denominator approaches 0 in (5.22), the bound (5.20) is stronger.

Proof. Without loss of generality, is invertible? Following R.-C. Li [12,
Section 7], the eigenvalues of the unperturbed pencil are the same as the
eigenvalues of the matrix

Hy'Y285+St H, 8,85V H,

2 |f S, is singular thenS; must be invertible. Lek; andji; be the eigenvalues of the
pencilsA; — AA;. A — AA;. Then, if we definey(co, 00) = 0, x (i, fis) = x(Ai, Ai),
and so the left hand side of (5.20) is unchanged by reversing the rolés afid A,. One
can check that the right hand side is not changed either, and so it is sufficient to prove the
result with A, and A, reversed.
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which are the same as the squares of the singular values of the matrix
B =H,"?s;*stH?.

In the same way the eigenvalues of the perturbed pencil are the squares of
the singular values of the matrix

B=H,"?s;*StH* = SBT
where 3 3
S=Hy"?H)? and T =H, 0>
Notice that|T|?> = T*T = I + F; and thatS|> = (5*S)™! = I + E».
Now apply (5.13) withp = 2 we get
10 X))
= [ (x(a7, 57)i20)l

1 _ -
SUILITE = [T+ 111181 = 1ST7211D)

A

= % (I + E1) = (I + B+ 11T+ E2) = (1 + B2) ]

which is (5.20). Applying (5.13) witlh = 1/2 and manipulating the result-
ing expression gives (5.21).

To deduce (5.22) one combines the scalar inequality (5.4) with the ma-
jorization
(5.23) (X(02,52)1y <w (X(02(S)o?(T), 1)y

In particular, from (5.4) we have

) s V(02(5), 1) + x(62(S), 1)
M Bl D) < 70 8)  02(8), Dx (02(S). 1)
C Joil8) — oy {(S)] + |ou(T) — o7 1(T)
1= (1/8) - o) — o (8)lon(T) — o7 1(T)]
03(8) — 07 ()] + |ox(T) — 07 (T)]
<1/ 18— SLIT =1
= 1 (03(8) — o7 (8)| + lou(T) — o7 (T

Now using (5.23) for the first inequality and the component-wise bound on

x(02(8)c2(T), 1) that we have just derived for the second inequality we

have

1Oc(Ai

A

i))izlll
(x(0?,57))i
(X (@7 (S)? (1), 1))l

|
< [[(x(o;
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<A (j0:(S) = a7 1(S)| + 0a(T) — o7 H(T) il
<Al (loi(S) = a7 (S lll] (0:(T) — o7 H(T)iall)
=y(ls* = s7HI| + " =T~ H|I)
= (I S] = ISITHI+ T = 1T HID.
Now note thalT'| = (T*T)'/? = (I + E;)"/2. Substituting foi S| and|T|
and manipulating the resulting expression yields the desired bound (5.22).

O
Now let us consider the generalized singular value problem.

Proposition 5.8 Consider the pairs of. x n matrices(B, By) = (G151,

GoSy) and (By, By) = (G151, G25,) where theG’s and G’s and at least
one of theS’s is nonsingular. Let the generalized singular valuesrband
gi,i=1,...,n. Let| - || be any symmetric norm dR" and let||| - ||| be
the corresponding unitarily invariant norm. Lé; = AG;(G;)~!. Then

(x(o1,61), ..., x(0g,7¢)) || < %HI(IﬂLEl)* —({+B)7 Y|

(5.24) T+ By = (T B) 7,

and in particular

—_

q 1/2
<Z XQ(Uz‘ﬁz‘)) < ST+ E)” =+ En)Hle
=1

1
(5.25) +§|H(I+E2)*—(I+Ez)‘1IHF,
and

. 1 _
igllanx(%Ui) < S+ EB1)" = (I + En) 112

(5.26) 3l + By = (T + B

Inthe case that eithdf, or 5 is 0 one can strengthenthe result (5.24) just
as (5.14) is a strengthening of (5.10), the only problem is that the resulting
right hand side rather cumbersome.

Proof. As in the previous result, without loss of generalityis invertible.

The the generalized singular values of the first pair are just the singular
values ofB = G1S152‘1G2‘1 and those of the second pair are the singular
values of B = (I + F;)B(I + E»)~'. The inequalities now follow from
Corollary 5.5. O

One can also apply these ideas to the relative perturbation of eigenvalues
of matrices that are known to have positive eigenvalues.
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Proposition5.9 Let A = X diag(\,...,A,) X' and A =
Xdiag(A1, ..., A\) X 1. Suppose thatl = DA. Then

(XA Ao X s An)) < KX X) (x(01,1), -+ X (00, 1),
whereo; = 0;(X ' DX). Consequently for any symmetric norm
IO A - X s M) < R(XTEX) [ (X(01, 1), -+ x (0, D)]I-
Proof. Let B = X~!DX. Then
A= (X"1X)"'BAXIX).

Since both/ and A are positive definite their eigenvalues are the same as
their singular values. Thus, from (2.4) we have

k
Hli X!
i=1

One can derive the majorization result from this using a technique very
similar to Lemma 5.1. O

V‘yl

k
(5.27) H/@ (X' X) o1 H

We have not provided all the details in the proof of Proposition 5.9 (nor
have we stated the result in its most general form, des; D; ADy). Our
main point is that it is possible, using our methods, to prove a Lidskii-
Wielandt type bound for diagonalizable matrices with real eigenvalues.
Whether our bound (5.27) is good depends on whetharX —!) is small
(as it will be in the limit ag| D — I|| — 0). The norm on the right hand side
of (5.27) is bounded, at least approximately, by

H(XilX)H(X(Ul(D - I), 1)7 cee 7X<Un(D - I)v 1)”

sinceX 'DX =T+ X"YD-1)X.

6. Comparison with other research

First we compare our results with those in the literature. Then we compare
our techniques and our approach with those in the literature and argue that
our purely multiplicative result (Corollary 2.7) is the fundamental result and
although it uses less familiar notation its use simplifies and strengthens the
results based on it. Finally we compare the different measures of relative
error.
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6.1. Comparison of results

There are numerous papers with relative error bounds for eigenvalues and
singular values — see [10]. The results due to R.-C. Li in [12] are the most
general to date so, for the most part, we will confine our comparison to them.
First, one is usually interested in perturbation bounds when the pertur-
bation is fairly small. In that case little is lost in taking first order approxi-
mations. One can check that in any given context all the applicable bounds
in this paper (both those in terms pfand those in terms dllog(«/3)|) as
well as R.-C. Li's in [12] are the same to first order. Thus the differences
in the results are mainly a matter of the generality of the bound and the
simplicity of the statement and the proof of the bound.
Our perturbation bounds are considerably more general being for all
symmetric norms while those in [12] are only for the two norms

n 1/2
(6.1) loo(x) = max{|z1],..., |zn|}, and zz(x):{zxz} .
=1

That is, our results are multiplicative analogs of the more general Lidskii-
Wielandt perturbation bound while those in [12] are multiplicative analogs
of the Lidskii-Weyl (forl..) and Wielandt-Hoffman (fok) inequalities. The
techniques in [12] do however extend to normal and (even diagonalizable)
matrices and to analyzing the perturbation of invariant subspaces.

In the following, we illustrate how our results in Sect. 3, expressed in
terms of y improve those in [12] in various cases. The technical report
[14], which is an earlier version of [12], contains more results and slightly
stronger results that those in [12], but our results are also improvements over
the corresponding results in [14].

First, whenA = A* is positive definite, the results in [12, Theorem 3.1,
part 2] are exactly the same as our Proposition 5.3 restricted to the two norms
in (6.1).

Second, whel = A* is indefinite, [14, Equation (7.4)] is

sy, ) < (151N - 5573

while our result (5.7) is

iEnaX X()\i75\i> < H|Sil - 5*|H27

=1,....,n

which is stronger because

1187 = S*lll2 = [[[S71(T = SSM)ll2 < 1S ][I = SS*|ll2-
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Third, the Wielandt-Hoffman type bound for possibly indefinite Hermi-
tian matrices in [12, Theorem 3.1, part 1] states that i Hermitian and
A = S*AS there is a permutation such that

Zn: i = hw) Zn:(l —0i(9))*+ Zn:(l —oi($)7)’
NN T Z i=1 Z |

i=1 () i=1

This inequality, and the additional fact that the permutatiaan be taken
to be the identity follows from our result:

P = A2 s (A — A)?
7~< - ~
2 A2 4 2 —g 2\,

i=1

The first and third inequalities are easily verified because the individual
summand satisfy the same inequalities. The second inequality is the square
of our bound (5.8) in the case of the notm

Note that in general, our bounds and proofs are the same in both the
positive definite and the general Hermitian case, whereas in [12] the results
in the indefinite case are weaker. Note also, that our bound (5.8) is stronger
than the Wielandt Hoffman bound [13, Corollary 2.1] even though the latter
contains an additional condition which may be hard to verify.

Using a slightly different notion of relative error R.-C. Li (see [10, Corol-
lary 5.1]) states that there is a permutatiosuch that

> 2
& ‘)\Z_)\TZ‘ % _
$Z (A“ < [ISlll2 - 118" = 5~ lle-

=1

Our (5.8) implies this result and the fact thatcan be taken to be the
identity. We discuss where this unknown permutation comes from in the
next subsection.

Fourth, if A = SAT the resultin [12, Theorem 4.1] asserts that

1 i * — * —
H(X(Uz‘(A)7Ui(A))1SiSn||§§{|HS = ST+ T =TI},
with

B 32
82— [[[5* = ST l|T* = T[]

v
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if || - || isl2 orl«. By Corollary 5.5, we have the inequality for all symmetric
norms withy = 1. In the next subsection we explain why the fact@rises

in R.-C. Li's bounds. Using similar methods as when comparing eigenvalues
one can show that our singular value bounds are stronger and more general
than those in [12, Theorem 4.2]. We omit the details for the sake of brevity.

Fifth, Proposition 5.6, on graded matrices, is a generalization of [12,
Theorem 3.2, bounds (3.9) and (3.11)] to all symmetric norms. We can also
generalize [12, Theorem 5.5] to all symmetric norms in exactly the same
way.

Sixth, our bounds (5.20) and (5.21) for the generalized eigenvalue prob-
lem are valid for a larger range of perturbations than (5.22), which is the
type of bound obtained in [12, Theorem 7.1].

Finally, our bound for the generalized singular value problem is stronger
than [12, Theorem 7.3] by the same factoabove.

In conclusion, we have generalized all the perturbation bounds in [12]
involving either the (possibly generalized) eigenvalues of Hermitian matri-
ces or the (possibly generalized) singular values of general matrices to all
symmetric norms. Our approach is to first prove a multiplicative majoriza-
tion like those in Sect. 2 and then use the majorization result Lemma 5.1 to
deduce a bound on the norm of the vector of relative perturbations.

6.2. Comparison of techniques

Now we look at the difference between our proof techniques and existing
techniques, and we argue that (2.11) is the correct generalization of additive
perturbation bound (1.2).

The proofs in [12] and rest of the literature are almost entirely at the
matrix level-none use majorization. Our proofs move very quickly from
matrices to scalars, that is, to singular values and eigenvalues.

Our approach to proving the fundamental inequalities

k k
(6.2) Z (A+E) - Z

and its muItipllcatlve analog (2.11)isto deduce them from the much simpler
monotonicity properties of eigenvalues of Hermitian matrices expressed in
Weyl's and Ostrowskii's Inequalities. In this sense our approach is somewhat
similar to most of the other work in this area that is based on min-max char-
acterizations or monotonicity properties of eigenvalues of Hermitian matri-
ces. R.-C. Li's work [12] is different in that it uses a perturbation equation

3 Eisenstat and Ipsen use both monotonicity principles and a perturbation equation in [5],
and using R.-C. Li's technique they do derive a multiplicativeWielandt-Hoffman type bound
for diagonalizable matrices [6, Section 6].
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and then the fact that the permutation matrices are the extreme point of the
doubly stochastic as in the standard proof of the Wielandt-Hoffman theorem.
By using this approach R.-C. Li was able to obtain simultaneous bounds on
all the eigenvalues and thus give the first relative Wielandt-Hoffman type
result. The weakness of this approach is that it just states that “there is a
matching of the\’s and theX\’s” such that the norm of the differences is
small. It does not specify the matching. In the positive definite case one can
use a separate argument to show that the best matching is atih \;
i=1,...,n, thisis not the case in the indefinite case [12, Propositions 2.3
and 2.4 and Remarks 2.1, 2.2 and 2.3]. Our approach shows that in the indef-
inite case, even though the identity permutation may not give the smallest
norm of the differences, the norm of the differences is still smaller than the
right hand side. That is, even though the identity permutation may not be
the best it is good enough.

Let us see why (2.11) is the right analog of (1.2). If we take logarithms
of (2.11) and state the result as a weak majorization we have:

(6.3)  (llog Ai(S™AS) —log Ai(A)])iy <w (Jlog Ai(S™S)[)i_y
while we may state (1.2) as the weak majorization
(6.4) (IXi(A) = Mi(A+ E)])izy <w ([X(E)])iss -

The analogy isimmediate—thus we have a multiplicative analog of the funda-
mental additive perturbation bound for eigenvalues of Hermitian matrices.

One may wonder why we feel that (2.11) is the fundamental result rather
than the weak majorization (5.6) or the equivalent result statement in terms
of norms (5.7). The reason is that (2.11) is stronger than (5.6) and (5.7). One
cannot deduce (2.11) from (5.6) and (5.7). Another way to think of this is
that in Lemma 5.1 (5.1) implies (5.2) but not conversely.

This objection to the relative distangedoes not apply to the relative
distancerd. One canderive (2.11) (or its logarithmic version (6.3)) from
the weak majorization (4.1) which is expressed in termsloflo see this,
observe that since multiplying by ¢ > 0 merely add2logt to each
component of the left hand side and right hand side of (6.3), and so it is
sufficient to prove (6.3) in the case whergS) > 1. However, in this case
the components of the vectors on either side of (4.1) are nonnegative even
without the absolute value sign. That isgif(S) > 1 then (4.1)is (6.3).

Notice also that we do not derive Proposition 5.4 and Corollary 5.5, the
norm-wise form of the relative singular value bound from Proposition 5.3,
the norm-wise form of the relative eigenvalue bound, rather we combine the
singular value bound (2.8) from Sect. 2, and the key Lemma 5.1 that states
that log majorization implies majorization in terms of thie. Another way
to see that the fundamental result for the relative perturbation of singular
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valuesis (2.8) and not Proposition 5.4 is that if we raiseste@andp’s in the
majorization Proposition 5.4 to any positive powgere get the statement

(6.5 (x(o1,61), -, x(0%,67)) <w (X(A1, 1), - x(p}, 1))

This is indeed a valid inequality, but it cannot be deduced from Proposition
5.4 , which is the special case when= 1. It does however follow easily
from the singular value bound (2.8) in Sect. 2—just takegitmepower of
(2.8) and then apply Lemma 5.1 as in the proof of Proposition 5.4. The
inequality (6.5) withp other than 1 is not just a curiosity, we we have used
(6.5) withp = 1/2 andp = 2.

Yet another reason for preferring (2.11) is that it deals very easily with
the case when we have two (or more) multiplicative perturbations. In this
situation the natural way to proceed would be to bound the effect of one
perturbation and then the effect of other and then add the two bounds, and
this is what we do in the proof of Corollary 2.4. However, once we have
a bound in terms of it is much harder to deal with two multiplicative
perturbations since this approach does not work because it is not true that
x(a,c) < x(a,b)+x(b,c)foralla,b,c > 0.0ne has then to resort to using
the more cumbersome inequality

b b
(6.6) N X(af ) + x(b, )
1- gX(% b)X(b7 C)
which is valid whenever the denominator is positive [12, Lemma 6.1]. This
is why R.-C. Li’'s relative Wielandt-Hoffman bound has an extra factor
Y= 32
32 — |5 = STH[|T* = T2
Notice that this factor is 1 if, and only if, one Sfor 7" is unitary. The reason
is that in this case the one that is unitary does not change the singular values

of SAT and so we need only bound the effect of the other. It is no longer a
two step process and so there is no need to use the bound (6.6).

6.3. Which relative distance?

A number of different measures of the relative difference between two num-
bersa andg of the same sign have been proposed in the context of multi-

plicative perturbation bounds for eigenvalues and singular values. We shall
not attempt a survey here, but will argue that

rd(a, §) = |log /| = |log || —log |B] |,

even though it is perhaps less intuitive that some of the others, has the best
mathematical properties in this context:
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1. rd is a metric, and so two step proofs are easier (compare the proofs of
Corollary 5.5 and Proposition 4.2)

. rd is symmetric in its arguments.

3. rd has a connection with the standard (additive) absolute value.

4. As explained in the previous subsection, the weak majorization (4.1) in
terms ofrd implies the fundamental bound (5.3). This is not the case for
the weak majorization (5.6) which is expressed in termg.of

5. Taking powers of the basic inequality (2.11) before applying majoriza-
tion techniques doesn't give hew inequalities, thus there is no question
of which power to use.

N

In Subsect. 6.2 we argued that one should not express multiplicative
perturbation bounds in terms of norms. However, if one has to use norms,
perhaps it would be best to usé as the measure of relative error and use
the norm bounds in Sect. 4.

7. Remarks and related inequalities

As mentioned in Sect. 2, typically one derives the Lidskii-Mirsky-Wielandt
bound from a result of Wielandt. In this section, we give a proof for the
result of Wielandt using our technique, and show that some other well-
known matrix inequalities also follow readily from our proof. Furthermore,
we give examples showing that it is impossible to get a multiplicative analog
of Wielandt to prove Theorem 5.3.

We shall use{ey,...,e,} to denote the standard basis @f in our
discussion.

Theorem 7.1 [19, Chapter IV, Theorem 4.9]et A be ann x n Hermitian
matrix. For any indiced < i; <is < --- < i < n,

k
(7.2) E Aii(A) = max min tr(Y*AY),
- J W1 CWoC---CWp, yecnXk
‘771 diij:ij chewj7 Y*Y =1}

whereW; C --- C W}, are subspaces di”.

Proof. SupposeA has spectral decomposition;_; A;(A)z;z}. If W; =
span{z1,...,z;} for j =1,... i, then

k
D X (A) = min tr(Y*AY).

Ye;eW;
— fi
J= Y*¥Y=1I}

Thus one can focus on proving that the left side is not less than the right
side of (7.1). To this end, l18¥; C --- C W} be subspaces @". We shall
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show that there exists € C"* satisfyingY'e; € W, andY*Y = I such
thaty-% | \;; (A) > tr (Y*AY).

We prove by induction om. The result is trivial whem = 1. Suppose
n > 2 and we know that the result is true for Hermitian matrices of order
(n — 1). We consider three cases:

@k=1,

(b)ij=jforj=1,...,k

(c) none of (a) or (b) hold.
In all cases, we may replackby

A= Z Aj(A)zjas + A (A) Z ;.

J<ig J2ik

If we can findY € C™** satisfyingYe; € W; andY*Y = I} such that

S5 A, (A) > tr (Y*AY'), then the result will follow from the facts that

SE_ X (A) = Y5 N (A) andtr (Y*AY) > tr (Y*AY).
_ For case (a), letV; have dimension; = p. Since the null space of
A — )\,(A)I has dimensiom — p + 1, there exists a unit vectar € W,
such thatdy = X\,(A)y, and hence\,(A) = y* Ay.

For case (b), let’ € C"*k satisfyYe; € W, andY*Y = I;. Then
there exists am x (n — k) matrix Z such thatly” | Z] is unitary. Since
A > M\(A)I, we have

k ~ ~ ~ ~ ~
Z N(A)=trA—tr (Z* \(A) Z) > tr A —tr (Z7AZ) = tr (Y*AY).
j=1

For case (c), we may assume that= n. Otherwise, we can add the
termsi;, + 1,4, + 2,...,n = i; to the sequence, and enlargé, to get
Wit1, Wiye, ..., untilwe getC™ = ;. Suppose the modified problem is
solved, i.e., we can findt* € C"** satisfyingY'e; € W; andY*Y = I
such thafy"5_) A (A) > tr (Y*AY'). One can writd” = [Y; | Y5] so that
Y; € C"**, Using the fact thatl > \;, (A)I, we have

k k
D X (A) =D N (A) — tr (Yo N, (A)IY?)
Jj=1 J=1
> tr (Y¥AY) — tr (Y5 AY,) = tr (Y] AY7).

(The rest of the proof uses the idea of Wielandt and the results of the
special cases we developed. We present it for the sake of completeness.)

Now supposé;, = n. Since case (a) does not hold, there exists a largest
integer? such thati, + 1 < iy41. Letiy = p, igr1 = ¢, and letlV be an
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(n — 1) dimensional subspace {&i* containingi¥;, and the eigenvectors
zj,j =p+2,...,n. DefineW; = W;nWforj = 1,..., k. Let B be the
compression of the matritonW ,i.e.,.B = Z* AZ forsomeZ € C*(n—1)
with Z*Z = I,_1 and the columns of spanW/. By construction, the
n —p — 1 smallest eigenvalues df are the same as that 8f By induction
assumption, we can find € C"~1** such thatve; € W;, Y*Y = I,
and

Ai;(B)+ > Ai,(B) > tr (Y*BY).

4 n—1
=1 j=g—1

J
LetY = ZY € C"**. ThenYe; € W, forj = 1,...,k, Y*Y = I, and
tr (Y*AY') = tr (Y*BY'). The proof is done if we can show that

k l n—1
(7.2) DA (A) =D XN B) + ) A(B).

j=1 j=1 j=q-1
To this end, note thak"—) | A (B) = 31 Aj(A) = S5, Ai, (4)
by construction, and forj = 1,...,¢, \;,(B) can be viewed as
min{y*Ay : y € V;}, whereV} is thei;-dimensional subspace "
containingZzy, ..., Z¥;;, wherezy, . .., ¥;, are the eigenvectors &f cor-

responding to the eigenvaluas(B), ..., \;; (B). By the special case (b),
we have\; (A) > A\;;(B). Thus (7.2) follows. O

We note the proofs of the special cases (a) and (b) are very short, and
one can actually deduce several well-known matrix inequalities from them.

First, ifone considers am—1) x (n—1) principal submatrix3 of A, and
appliesthe result of case (a)lig,, which is spanned by the eigenvectordof
corresponding to thé largest eigenvalues, then we havg A) > A\ (B)
Applying the result to—A and —B, we see that\;(B) > Axt1(A) for
k=1,...,n— 1. The result is the Cauchy interlacing theorem.

Second, if one applies the result of case (djig which is spanned by
standard basis vectors, then we see that the sum df diagonal entries of
A'is not larger tharﬁ?zl Aj(A) forall k =1,...,n. Clearly, the equality
holds wherk = n by the trace condition. This is the well-known fact that
the eigenvalues of a Hermitian matrix majorize its diagonal entries.

For positive semi-definite matrices, we have the following multiplicative
analog of Theorem 7.1 due to Hoffman.

Theorem 7.2 [1, 2.16] Let A be ann x n positive semi-definite matrix.
For any indicesl < iy <o < --- < i < n,

k

7.3) [[X;(4) = max min  det(Y*AY),
. J W1 CWoC---CWy, yecnXxk
j_l diij:ij YejEWj* Y*Y=I}
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wherelW; C --- C Wy, are subspaces @t”.

One may wonder whether we can extend Theorem 7.2 to Hermitian
matrices by replacing]_, A;, (A) by [ [T}, Ai,(4)| anddet (Y*AY') by
|det (Y*AY)|. Unfortunately, as shown by the following example, the re-
sulting statement is false.

Example 7.3Let A = diag(3,—1,—2,—3). Then
3
[]2i(4) = 6 < 12 = det(diag(3, -2, —3)).
=1

If Ais positive semidefinite thek;(A) = 0;(A), and we may regard 7.2
as a statement about singular values. We do have the following representation
of the product of thé largest singular values of general and normal matrices.

Theorem 7.4 Let A be ann x n matrix, and letl < k& < n. Suppose; = j
forj=1,2,...,k Then

max min |det (X*AY)|,
U1CU2C--CUy, X,Yecrnxk
dim Uj:ij XejGUj, YejEWj
WiCWaoC---CWy X*X=Y*Y=I,
dim Wj:ij

k
79| o, (A)| =
j=1

If Ais normal, then

k

(7.5) |[]oi,(A)] = max min |det(Y*AY)).
. J WiCWaC---CWp, yecnXk
Jj=1 dimWj=ij  ye;eW;, Y*Y=I

The following example shows that Theorem 7.1 is false without the
conditioni; = j.
Example 7.5Let A be the Hermitian matridiag(1,1, —1,—1). Then for
i1 = 3, we havers(A) = 1. However, for any subspaé®; with dim W, =
3, the compression o on W7 is indefinite. Thus we can find a unit vector
y such thaty* Ay = 0. It follows that

min |y"Ay| =0,
y*y=1
and it is also clear that for any other 3 dimensional subspace

min |y*Az| = 0.
z€Uq,yeW
y*y=z%*z=1

AcknowledgementThanks are due to the referees for their comments that helped improve
the presentation.
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