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Abstract

It is shown that two induced norms are the same if and only if the corresponding norm
numerical ranges or radii are the same, which in turn is equivalent to the vector states and
mixed states arising from the norms being the same. The proofs depend on an auxiliary
result of independent interest which concerns when two closed convex sets in a topological
vector space are multiples of each other.

Keywords: Induced norms, vector states, mixed states, norm numerical ranges.
AMS(MOS) subject classification: 47A12, 47A30, 15A60.

1 Introduction

Let IF be the complex field C or the real field IR, and let X be a vector space over IF equipped
with the norm ν. The induced operator norm on the space B(X) of bounded linear operators
on X is defined as

‖A‖ = sup{ν(Ax) : x ∈ X, ν(x) ≤ 1},

the dual norm ν∗ on the dual space X∗ of X is defined by

ν∗(f) = sup{|f(x)| : x ∈ X, ν(x) ≤ 1},

and the dual norm ‖ · ‖∗ on the dual space B(X)∗ is defined by

‖F‖∗ = sup{|F (A)| : A ∈ B(X), ‖A‖ ≤ 1}.

For each (x, f) ∈ X × X∗, denote by x ⊗ f the rank one operator in B(X) such that

(x⊗f)(y) = f(y)x for any y ∈ X. Then the set of vector states and the set of (mixed) states
are, respectively,

V = {x⊗ f ∈ X×X∗ : f(x) = ν∗(f)ν(x) = 1},

and
S = {F ∈ B(X)∗ : ‖F‖∗ = F (I) = 1}.
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We shall identify V with a subset of S by defining (x ⊗ f)(A) = f(Ax) for all A ∈ B(X)
and x ⊗ f ∈ X ×X∗. Associated with ν, via V and S, are two norm numerical ranges of
A ∈ B(X): the spatial numerical range

W (A) = {f(Ax) : x⊗ f ∈ V},

and the algebraic numerical range

V (A) = {F (A) : F ∈ S}.

When X = Cn and ν is the `2 norm, W (A) = V (A) is the classical numerical range of A;

see [1, 2, 3, 4] for the background. It is known (see [2, Theorem 3, p. 83]) that V (A) is the

closure of the convex hull of W (A), i.e.,

V (A) = coW (A).

In view of this, both of these numerical ranges have the same associated norm numerical
radius, namely,

r(A) = sup{|µ| : µ ∈ W (A)} = sup{|µ| : µ ∈ V (A)},

which (if IF = C) is a norm on B(X) such that

e−1‖A‖ ≤ r(A) ≤ ‖A‖ for all A ∈ B(X);

see [2, p. 34].

Suppose (X, ν1) and (X, ν2) are normed spaces, where ν1 and ν2 are multiples of each

other. It is easy to verify that they have the same induced norms on B(X), and the numerical

ranges (radii) and (vector) states are always the same. The purpose of this note is to show
that the converse is also true. A key step in our proof is the following.

Theorem 1 Let ν1 and ν2 be two norms on X. Let Vi be the set of vector states correspond-
ing to the norm νi for i = 1, 2. Then ν1 and ν2 are multiples of each other if and only if for
every nonzero x ∈ X there exists f ∈ X∗ such that x⊗ f ∈ V1 ∩ V2.

In Theorem 1, we require only the existence of f ∈ X∗ (with respect to both ν∗1 and ν∗2)
for any nonzero x ∈ X so that x ⊗ f ∈ V1 ∩ V2 to conclude that ν1 and ν2 are multiples
of each other. In other words, we do not assume a priori that the two norms ν1 and ν2 are
equivalent. From Theorem 1, we can obtain the next theorem concerning two norms on X
that give rise to the same numerical ranges (radii) or (vector) states in B(X). In order to

be able to compare the numerical ranges (radii) and (vector) states with respect to the two

norms, we require B(X) to be the same with respect to either of the two operator norms,

i.e., ‖ · ‖1 and ‖ · ‖2 are equivalent. One readily checks that this condition holds if and only

if ν1 and ν2 are equivalent [6].

Theorem 2 Suppose ν1 and ν2 are equivalent norms on X. Let Vi, Sj, rj, Wj, and Vj be the

set of vector states, the set of states, the numerical radius, and the two types of numerical
ranges corresponding to the norm νi for i = 1, 2. The following are equivalent:
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(a) ν1 and ν2 are multiples of each other.

(b) S1 = S2.

(c) V1 = V2.

(d) V1(A) = V2(A) for all A ∈ B(X).

(e) W1(A) = W2(A) for all A ∈ B(X).

(f) r1(A) = r2(A) for all A ∈ B(X).

2 Auxiliary Results and Proofs of Theorems

Theorem 1 follows from the following more general result.

Theorem 3 Let K1 and K2 be closed convex sets of a topological vector space X over IF.
Suppose for each nonzero x ∈ X there exist fx ∈ X∗, µ1(x), µ2(x) > 0 such that µi(x)x ∈ Ki

and
fx(µi(x)x) ≥ fx(y) for all y ∈ Ki,

for i = 1, 2. Then K1 and K2 are multiples of each other.

Theorem 3 essentially says that if two closed convex sets in a TVS share a common
support functional in each direction, then the two sets are multiples of each other. Its proof

depends on the following lemmas about convex sets in IR2. The first lemma says that if two

compact convex sets in IR2 share a common support functional in each direction, then they
actually have the same set of support functionals; the second lemma says that the boundary

of a compact convex set in IR2 is uniquely determined (up to a multiple) by the slopes of its
support lines. It is not hard to see that these two lemmas combined give rise to the special

case of Theorem 3 when the TVS is IR2. It turns out that we can also deduce the general
case from the two lemmas.

Lemma 4 Let B1 and B2 be two closed convex subsets of IR2. For each nonzero x ∈ IR2,
and for i = 1, 2, define

Vi(x) = {y ∈ IR2 : ∃µi = µi(x) > 0 such that µix ∈ Bi and ytµix ≥ ytw for all w ∈ Bi}.

Suppose V1(x) ∩ V2(x) 6= ∅ for all x 6= 0. Then V1(x) = V2(x) for all x 6= 0.

Proof. The hypothesis
V1(x) ∩ V2(x) 6= ∅ ∀x 6= 0 (1)

is equivalent to the existence of support lines to B1 and B2 at µ1x and µ2x, respectively,
with the same slope. (In particular, this implies that the origin lies in B1 ∩ B2.) Thus, the
lemma’s conclusion holds if and only if in each direction the two sets of support lines to B1

and B2 have the same slopes.
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Fix an angle φ ∈ [0, 2π). By rotating both B1 and B2, we may suppose without loss of

generality that φ = 3π/2. For all θ in a sufficiently small interval I containing 3π/2 we can
define

f−(θ) = min{m : y = mx+ b is a support line for B1 in the direction θ},

f+(θ) = max{m : y = mx+ b is a support line for B1 in the direction θ},

and similarly we define g−(θ), g+(θ) in terms of support lines for B2. By the properties of

convex functions [5, Theorem 24.1], both functions are increasing, f− is left continuous, and

f+ is right continuous. Moreover, if ψ < θ we have f−(ψ) ≤ f+(ψ) ≤ f−(θ).

For directions θ ∈ I, the condition (1) is equivalent to

[f−(θ), f+(θ)] ∩ [g−(θ), g+(θ)] 6= ∅ ∀ θ ∈ I. (2)

Fix θ ∈ I. We claim g−(θ) ≥ f−(θ). Suppose not. Then g−(θ) < f−(θ), so by the left

continuity of f−, there is some ψ < θ such that g−(θ) < f−(ψ) ≤ f−(θ). Thus g+(ψ) ≤
g−(θ) < f−(ψ), contradicting (2). A similar argument shows that g+(θ) ≤ f+(θ), so we have

[g−(θ), g+(θ)] ⊂ [f−(θ), f+(θ)] ∀ θ ∈ I.

Reversing the roles of f and g gives the reverse inclusion, so [f−(θ), f+(θ)] = [g−(θ), g+(θ)]

for all θ ∈ I, and in particular, [f−(φ), f+(φ)] = [g−(φ), g+(φ)]. Thus the support lines for
B1 and B2 in the direction φ have the same slopes; since φ was arbitrary, we conclude that
V1(x) = V2(x) for all x 6= 0. 2

Lemma 5 Let B ⊂ IR2 be a compact convex set containing the origin in its interior. Let

r = r(θ) be the polar curve whose graph is the boundary ∂B. Then the function log r2

is left- and right-differentiable at every angle θ, and its one-sided derivatives are uniquely
determined by the slopes of the support lines of B.

Proof. Let y = f(x) be the Cartesian curve whose graph is the lower portion of ∂B.
Then f is a convex function, and hence left- and right-differentiable everywhere. Writing
(x0, y0) for (0, f(0)) and r0 for r(0), where θ measures the angle counter-clockwise from the
negative y-axis, we have

(r2)′+(0) = lim
θ→0+

r2 − r2
0

θ

= lim
θ→0+

r sin θ

θ

[
(x+ x0) + (y + y0)

y − y0

x− x0

]
= r0(2y0f

′
+(0))

= −2r2
0f

′
+(0)

where we have used the continuity of r(θ) and the right-differentiability of f(x) in the

penultimate equality. The same argument shows (r2)′−(0) = −2r2
0f

′
−(0).
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Let Bθ be the set obtained by rotating B by an angle θ clockwise about the origin.
Let m−(θ) (respectively m+(θ)) be the minimal (respectively, maximal) slope of any line of

support to Bθ at the intersection zθ of Bθ and the negative y-axis. (Both m−(θ) and m+(θ)

are finite since Bθ cannot have a vertical line of support at zθ.) By considering the rotated

set Bθ, it follows that (r2)′±(θ) = −2r2m±(θ), and in particular, (log r2)′±(θ) = −2m±(θ) for

all angles θ, as desired. 2

Proof of Theorem 3. We may assume that IF = IR since X may be viewed as a real
linear space. We must show that µ1(x)/µ2(x) is a constant independent of x ∈ X. By way
of contradiction, suppose these ratios differ at two vectors x and y in X. Let M be a two
dimensional real linear subspace of X containing x and y, and let Bi = Ki ∩M. Clearly B1

and B2 are closed and convex; moreover, if z ∈ M, we have, by assumption, the existence
of f ∈ X∗, µ1, µ2 > 0 such that µiz ∈ Ki and f(µiz) ≥ f(w) for all w ∈ Ki. In particular,

f |M(µiz) ≥ f(w) for all w ∈ Bi; since any linear functional on M is realized by the inner
product with a vector in M, B1 and B2 satisfy the hypotheses of Lemma 4. Thus, the slopes
of the supporting lines for B1 and B2 are the same. But by Lemma 5, the slopes of the
supporting lines determine a compact convex set up to a scalar multiple, so B1 and B2 are
scalar multiples of one another, contradicting µ1(x)/µ2(x) 6= µ1(y)/µ2(y). 2

Proof of Theorem 1. The implication (⇒) is clear. For the converse, let Ki be the unit
norm ball of νi for i = 1, 2. Let x ∈ X be nonzero. By assumption, there is some f ∈ X∗

such that x⊗ f ∈ V1 ∩ V2, that is,

f(x) = ν∗i (f)νi(x) = 1 for i = 1, 2.

Setting µi(x) = 1/νi(x) gives

f(µi(x)x) = ν∗i (f) = sup
y∈Ki

f(y) for i = 1, 2,

so Theorem 3 applies. 2

Proof of Theorem 2. (a)⇒(b): Clear.

(b)⇒(c): Assume (b). Let R be the set of functionals in B(X)∗ of the form x ⊗ f . It
suffices to show Vj = Sj ∩R for j = 1, 2. To avoid clutter, we suppress the subscript j.

That V ⊆ S ∩ R is clear. For the reverse inclusion, suppose x ⊗ f ∈ S, so ‖x ⊗ f‖∗ =

1 = (x⊗ f)(I) = f(x). Given ε > 0, choose y ∈ X and g ∈ X∗ such that ν(y) = 1 = ν∗(g),

f(y) > (1− ε)ν∗(f), and g(x) = ν(x). Then ‖y ⊗ g‖ ≤ ν(y)ν∗(g) = 1; so

1 = ‖x⊗ f‖∗ = sup{|f(Ax)| : ‖A‖ ≤ 1} ≥ |f(g(x)y)| > (1− ε)ν∗(f)ν(x).

Since ε is arbitrary, we have ν∗(f)ν(x) ≤ 1. On the other hand,

1 = |f(x)| ≤ ν∗(f)ν(x),
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so f(x) = 1 = ν∗(f)ν(x); that is, x⊗ f ∈ V as desired.

(c)⇒(a): Immediate from Theorem 1.

(a)⇒(d), (e): Clear.

(d), (e)⇒(f): Clear.

(f)⇒(a): We prove the contrapositive. Suppose that ν1 and ν2 are not multiples of each
other. Then there is a two-dimensional subspace M ⊂ X on which the restrictions of ν1 and
ν2 are not multiples of each other. By Theorem 1 there exists z ∈ M such that

there is no f ∈ M∗ such that z ⊗ f ∈ U1 ∩ U2, (3)

where Ui is the set of vector states for µi = νi|M. By re-scaling the unit norm balls Bi of νi

(since this doesn’t affect the vector states) we may suppose z = (0,−1) and ν1(z) = ν2(z) = 1.

Using the definitions for f±(θ), g±(θ) in the proof of Lemma 4, we note (3) is equivalent to

[f−(3π/2), f+(3π/2)] ∩ [g−(3π/2), g+(3π/2)] = ∅.

Without loss of generality suppose

f−(3π/2) > g+(3π/2). (4)

Claim. There exists x ∈ ∂B1 in the third quadrant and y ∈ ∂B2 in the fourth quadrant
such that

(i) y lies on a support line to B1 at x, and

(ii) a support line to B2 at y separates x from B2.

Via the usual correspondence between vectors and functionals on IR2, let f (respectively

g) be the functional corresponding to the normal of the support line in (i) (respectively

(ii)) whose inner product with x (respectively y) is 1. It follows that A = x ⊗ f ∈ U1 and
y ⊗ g ∈ U2. By the Hahn-Banach Theorem, we can extend f and g to functionals on all of
X such that x⊗ f ∈ V1 and y ⊗ g ∈ V2. Since

r1(A) ≤ ‖A‖1 ≤ ν1(x)ν
∗
1(f) = 1

and r1(A) ≥ (x⊗ f)(A) = 1, we have r1(A) = 1. On the other hand,

r2(A) ≥ (y ⊗ g)(x⊗ f) = g(x)f(y) > 1,

where the final inequality follows from the claim. Hence the two numerical radii are different,
as desired.

It remains to prove the claim, so we suppose it is false and derive a contradiction. Let
x = x(θ) denote the unique intersection of the boundary of B1 and the ray emanating from
the origin in the direction θ. Denote the intersection of the support line to B1 at x with
minimal slope f−(θ) and the boundary of B2 by y = y(θ). (By (4) and the properties of

convex curves, such an intersection exists for θ sufficiently close to 3π/2.) Let φ denote the
direction of y. Since the claim is supposed false, every support line to B2 at y must have
slope greater than f−(θ); in particular,

g+(φ) ≥ f−(θ).
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Let θ approach 3π/2 from below, so φ approaches 3π/2 from above. The left continuity of

f− and the right continuity of g+ imply g+(3π/2) ≥ f−(3π/2), contradicting (4). 2
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