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Let Q andR be the fields of rational and real numbers respectively. Recall that a real numberr is
algebraic over the rationalsif there is a polynomialp with coefficients inQ that hasr as a root, i.e.,
that hasp(r) = 0. Any college freshman can understand that idea, but things get more challenging when
one asks about arithmetic with algebraic numbers. For example, being the roots ofx2− 3 andx2− 20
respectively, the real numbersr1 =

√
3 ands1 = 2

√
5 are certainly algebraic over the rationals, but what

about the numbersr1 + s1, r1s1 and r1
s1

? As it happens, all three are algebraic over the rationals. For

example,r1+s1 is a root ofx4−46x2+289. But how was that polynomial constructed, and what rational-
coefficient-polynomials haver1s1 and r1

s1
as roots? Students who take a second modern algebra course will

learn to use field extension theory to show that the required polynomials must exist. They will learn that
wheneverr ands 6= 0 are algebraic overQ, then the fieldQ(r,s) is an extension ofQ of finite degree with
the consequence thatr +s, rs and r

s are indeed algebraic overQ (see [2, 3, 7]). However, one would hope
that students would encounter more elementary solutions for such basic arithmetic questions. Furthermore,
one might want to know how to construct rational-coefficient polynomials that haver +s, rs and r

s as roots
and thereby obtain bounds on the minimum degrees of such polynomials.

The goal of this classroom note is to show how techniques accessible to students by the end of their
first linear algebra course can answer all of these questions. Our hope is that modern algebra instructors
will see such constructions as a source of student projects that tie together ideas from linear algebra and
modern algebra, and as a way to study the field of algebraic numbers earlier in the usual modern algebra
sequence.

We do not claim that our approach is new: the 1996 articles [5] and [1] included the same ideas.
However, for some reason, these earlier articles have not led to wide-spread changes in the way textbook
authors present the arithmetic of algebraic numbers. Therefore we believe that it is worth raising the ideas
again.

Lemma: Supposer ands are real numbers that are algebraic overQ with s 6= 0. Thenr +s, rs and r
s are

also algebraic overQ.

Proof: Our proof uses the ideas of characteristic polynomials, eigenvalues, and eigenvectors, all of which
are in the typical first linear algebra course. We also need two other ideas, namely the companion matrix of
a polynomial and the Kronecker product, that typically appear in more advanced linear algebra texts (for
example, see [4, 6]). Even though companion matrices and Kronecker products are not yet standard fare in
beginning linear algebra courses, students from such courses can easily verify their necessary properties,
described below.

1. Supposep(x) = xn+an−1xn−1+ · · ·+a0 is a given a monic polynomial. LetA be then×n
matrix with 1 in the(1,2), . . . ,(n− 1,n) positions, the last row equals−[a0,a1, · · · ,an−1],
and all other entries zero. ThenA is the known as thecompanion matrixof p(x) and sat-
isfies p(x) = det(xI−A). Moreover, if A is invertible, i.e.,a0 6= 0, thenA−1 has 1 in the
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(2,1), . . . ,(n,n−1) positions, the first row equals−[a1, . . . ,an−1,1]/a0, and all other entries
zero. For example, ifp(x) = x3 +a2x2 +a1x+a0 with a0 6= 0, then

A =

 0 1 0
0 0 1
−a0 −a1 −a2

 and A−1 =

−a1/a0 −a2/a0 −1/a0

1 0 0
0 1 0

 .

2. If A is n× p and B is m× q, we can define theKronecker productof A and B as A⊗
B = (ai j B)1≤i≤n,1≤ j≤p. Moreover, if the dimensions are compatible, then(A⊗B)(C⊗D) =
(AC)⊗ (BD). In fact, in our application, we only use the special case whenn= p, m= q, C is
p×1 andD is q×1.

Using those two ideas we sketch the proof of our lemma and invite students to check the details.
Supposer ands are algebraic numbers that are roots of the rational polynomialsp(x) = xn +an−1xn−1 +
· · ·+a0 andq(x) = xm+bm−1xm−1+ · · ·+b0, respectively. LetA andB be the companion matrices ofp(x)
andq(x). ThenAu= ru for someu∈ Rn andBv= svfor somev∈ Rn, and we have

(A⊗ Im+ In⊗B)(u⊗v) = (r +s)(u⊗v), and(A⊗B)(u⊗v) = (rs)(u⊗v).

Thus,r + s andrs are algebraic and the characteristic polynomial ofA⊗ Im+ In⊗B and ofA⊗B have
them as roots.

To complete the proof, we note thatr
s = r ∗ 1

s so that it will be enough to show that1
s is algebraic over

Q. We may assume thatp(x) = xn + · · ·+ a0 with a0 6= 0; otherwise, we replacep(x) by p(x)/xk for a
suitable positive integerk. ThenA−1 exists. By (1),A−1 is a rational matrix. Now, 1/s is a root of the
characteristic polynomial ofA−1, and hence is algebraic. The proof is now complete.2

Corollary : Suppose thatr and s 6= 0 are roots of rational-coefficient-polynomials of degreesm and n
respectively. Thenr +s, rs and r

s are roots of rational-coefficient polynomials of degreemn. 2

Remark: There is an even easier proof that1
s is an algebraic number provideds 6= 0 is a root of the

polynomialanxn + an−1xn−1 + · · ·+ a1x+ a0: simply consider the polynomial obtained by reversing the
coefficient order ofp, i.e., considerq(x) = a0xn +a1xn−1 + · · ·+an−1x+an, and verify thatq(s) = 0.

Modern algebra courses generalize the notion of an algebraic number overQ when studying field
extensions. Recall that for a subfieldK of a field L, an elementr ∈ L is algebraic overK if there is a
polynomialp∈K[x] havingr as a root. The techniques in the Lemma and Corollary above may be applied,
verbatim, to elementsr ands 6= 0 in the fieldL that are algebraic over the subfieldK. Second, observe that
the arguments above also show that the set of algebraic integers is a ring, where by analgebraic integer
we mean any complex number that is a root of somemonicpolynomial withintegercoefficients.

In closing, the authors would like to thank the referee whose comments greatly improved an earlier
version of this paper.
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