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Abstract

Let B(X) be the algebra of all bounded linear operators on the Banach space X, and let
N (X) be the set of nilpotent operators in B(X). Suppose φ : B(X) → B(X) is a surjective map
such that A,B ∈ B(X) satisfy AB ∈ N (X) if and only if φ(A)φ(B) ∈ N (X). If X is infinite
dimensional, then there exists a map f : B(X) → C \ {0} such that one of the following holds:

(a) There is a bijective bounded linear or conjugate-linear operator S : X → X such that φ
has the form A 7→ S[f(A)A]S−1.

(b) The space X is reflexive, and there exists a bijective bounded linear or conjugate-linear
operator S : X ′ → X such that φ has the form A 7→ S[f(A)A′]S−1.

If X has dimension n with 3 ≤ n <∞, and B(X) is identified with the algebra Mn of n× n
complex matrices, then there exist a map f : Mn → C \ {0}, a field automorphism ξ : C → C,
and an invertible S ∈Mn such that φ has one of the following forms:

A = [aij ] 7→ f(A)S[ξ(aij)]S−1 or A = [aij ] 7→ f(A)S[ξ(aij)]tS−1,

where At denotes the transpose of A.
The results are extended to the product of more than two operators and to other types of

products on B(X) including the Jordan triple product A ∗B = ABA. Furthermore, the results
in the finite dimensional case are used to characterize surjective maps on matrices preserving
the spectral radius of products of matrices.
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1 Introduction

Let B(X) be the algebra of all bounded linear operators on the Banach space X, and let N (X) be
the subset of all nilpotent operators. We are interested in determining the structure of surjective
maps φ : B(X) → B(X) having the property that for every pair A,B ∈ B(X),

AB ∈ N (X) ⇐⇒ φ(A)φ(B) ∈ N (X).

There has been considerable interest in studying maps on operators or matrices mapping the set
of nilpotents into or onto itself, and maps on operators or matrices preserving the spectral radius
or the spectrum of operators or matrices. We call such maps nilpotent preservers, spectral radius
preservers, and spectrum preservers, respectively. The structure of linear nilpotent preservers was
described in [2] and [13]. In the finite dimensional case the assumption of preserving nilpotents can
be reformulated as the assumption of preserving matrices with the zero spectral radius. So, from
the structural result for linear nilpotent preservers we get immediately the general form of linear
spectral radius preservers on matrix algebras. In the infinite dimensional case the situation is more
complicated because of many quasinilpotents that are not nilpotents (see [3]).

If X has dimension n with n < ∞, then B(X) is identified with the algebra Mn of n × n

complex matrices, and N (X) becomes the set Nn of nilpotent matrices in Mn. In [7] (see also [8]),
multiplicative maps on matrices leaving invariant various functions and subsets of matrices were
characterized. In particular, it was shown that a nonzero multiplicative map on Mn mapping the
set of nilpotent matrices into itself has the form A 7→ SAξS

−1 for some invertible matrix S and
some field endomorphism ξ of C. Here, Aξ denotes the matrix obtained from A by applying ξ

entrywise.

Clearly, maps on matrices preserving nilpotent matrices or the spectral radius can be quite
arbitrary on individual matrices. Hence, if one does not impose any algebraic condition like linearity,
additivity, or multiplicativity on preservers of nilpotents or spectral radius, one needs to include
some related conditions connecting different matrices in order to get a reasonable structural result.
In [1], surjective maps φ on the algebra of all n×n complex matrices preserving the spectral radius
of a difference of matrices were characterized.

Motivated by problems concerning local automorphisms Molnár [11, 12] studied maps preserving
the spectrum of operator or matrix products (for related results see [5, 6]). If the spectrum of matrix
products is preserved, then in particular, the nilpotency of matrix products is preserved.

In this paper, we determine the structure of surjective maps φ : B(X) → B(X) preserving the
nilpotency of operator products. Specifically, our results describe the structure of surjective maps
φ : B(X) → B(X) such that for any A1, . . . , Ak ∈ B(X)

A1 ∗ · · · ∗Ak ∈ N (X) ⇐⇒ φ(A1) ∗ · · · ∗ φ(Ak) ∈ N (X)

for various types of products including the usual product A1 ∗ · · · ∗Ak = A1 · · ·Ak and the Jordan
triple product A1 ∗A2 = A1A2A1.

In Section 2, we present the results for the usual product and the Jordan triple product of two
operators. Extension of the results to other types of products are presented in Section 3.

We conclude this section by fixing some notation. For every nonzero x ∈ X and f ∈ X ′ the
symbol x⊗ f stands for the rank one bounded linear operator on X defined by (x⊗ f)y = f(y)x,
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y ∈ X. Note that every rank one element of B(X) can be written in this way. The rank one
operator x⊗ f is nilpotent if and only if f(x) = 0. It is an idempotent if and only if f(x) = 1. Let
x ⊗ f and y ⊗ g be two rank one operators. We will write x ⊗ f ∼ y ⊗ g if x and y are linearly
dependent or f and g are linearly dependent.

Let U be any vector space. Denote by [u] the subspace (of dimension 0 or 1) spanned by u ∈ U ,
and denote by PU the projective space over U , i.e.,

PU = {[u] : u ∈ U \ {0}}.

Let C∗ be the set of all nonzero complex numbers. For A = [aij ] ∈Mn, let At be the transpose

of A. Also let A = [aij ] and A∗ = A
t. The spectral radius of A will be denoted by ρ(A).

2 The usual product and the Jordan triple product of two opera-
tors

In this section, we always assume that A ∗B = AB or A ∗B = ABA. Let us first present the main
theorems.

Theorem 2.1 Let X be an infinite dimensional Banach space. Then a surjective map φ : B(X) →
B(X) satisfies

A ∗B ∈ N (X) ⇐⇒ φ(A) ∗ φ(B) ∈ N (X), A,B ∈ B(X), (1)

if and only if

(a) there is a bijective bounded linear or conjugate-linear operator S : X → X such that φ has
the form A 7→ S[f(A)A]S−1, or

(b) the space X is reflexive, and there exists a bijective bounded linear or conjugate-linear operator
S : X ′ → X such that φ has the form A 7→ S[f(A)A′]S−1,

where f : B(X) → C∗ is a map such that for every nonzero A ∈ B(X) the map λ 7→ λf(λA) is
surjective on C.

Next, we state our main result for the finite dimensional case. Note that the identity function
and the complex conjugation λ 7→ λ are continuous automorphisms of the complex field. It is
known that there exist non-continuous automorphisms of the complex field [9]. If ξ : C → C is an
automorphism of the complex field and A ∈ Mn then we denote by Aξ the matrix obtained from
A by applying ξ entrywise, Aξ = [aij ]ξ = [ξ(aij)].

Theorem 2.2 Let n ≥ 3. Then a surjective map φ : Mn →Mn satisfies

A ∗B ∈ Nn ⇐⇒ φ(A) ∗ φ(B) ∈ Nn, A,B ∈Mn,

if and only if φ has the form

(a) A 7→ f(A)SAξS
−1 or (b) A 7→ f(A)SAt

ξS
−1,

where ξ : C → C is a field automorphism, S ∈ Mn is an invertible matrix, and f : Mn → C∗ is a
map such that for every nonzero A ∈Mn the map λ 7→ ξ(λ)f(λA) is surjective on C.
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Using Theorem 2.2 we can characterize maps preserving the spectral radius of A ∗B on Mn.

Corollary 2.3 Let n ≥ 3. A surjective map φ : Mn →Mn satisfies

ρ(A ∗B) = ρ(φ(A) ∗ φ(B)), A,B ∈Mn,

if and only if φ has one of the following forms:

(a) A 7→ f(A)SAS−1, (b) A 7→ f(A)SAS−1,

(c) A 7→ f(A)SAtS−1, (d) A 7→ f(A)SA∗S−1,

where S ∈Mn is an invertible matrix, and f : Mn → {z ∈ C : |z| = 1} is a map such that for any
nonzero A ∈Mn the map λ 7→ λf(λA) is surjective on C.

We establish some preliminary results in the next subsection, and give the proofs of the above
theorems and corollary in another subsection.

2.1 Preliminary results

Let X have dimension at least three. Consider a surjective map φ : B(X) → B(X) such that
for every pair A,B ∈ B(X) the product AB is nilpotent if and only if φ(A)φ(B) is nilpotent.
Obviously, A ∈ B(X) is nilpotent if and only if A2 is. Thus, φ(N (X)) = N (X). Next, observe
that φ(0) = 0 and φ(A) 6= 0 for every nonzero A ∈ B(X). This follows from the simple fact that
for every A ∈ B(X) the following two statements are equivalent:

• A = 0,

• AT is nilpotent for every T ∈ B(X).

Further, we have φ(λI) ∈ C∗I for every λ ∈ C∗. Moreover, if φ(A) = µI for some µ ∈ C∗,
then A is a nonzero scalar operator, i.e., A = δI for some δ ∈ C∗. This is a consequence of the
observation that for every nonzero A ∈ B(X) the following two statements are equivalent:

• A is a scalar operator,

• AN is nilpotent for every N ∈ N (X).

Let A,B ∈ B(X) be any nonzero operators. We will show that A and B are linearly dependent
if and only if φ(A) and φ(B) are linearly dependent. To check this we have to show that for every
pair of nonzero operators A,B ∈ B(X) the following two statements are equivalent:

• A and B are linearly dependent,

• for every T ∈ B(X) the operator AT is nilpotent if and only if BT is nilpotent.

We will show even more. Namely, these two statements are equivalent to

• for every T ∈ B(X) the operator AT is nilpotent whenever BT is nilpotent.
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Clearly, the first condition implies the second one, and the second one implies the third one. So,
assume that for every T ∈ B(X) we have BT ∈ N (X) ⇒ AT ∈ N (X). Set T = x ⊗ f to observe
that for every pair x ∈ X, f ∈ X ′, we have f(Bx) = 0 ⇒ f(Ax) = 0. It follows that for every
x ∈ X the vector Ax belongs to the linear span of Bx. By [4, Theorem 2.3], either A and B are
linearly dependent, or they are both of rank one with the same image. In the first case we are
done, while in the second case we have A = u ⊗ g and B = u ⊗ k for some nonzero u ∈ X and
some nonzero g, k ∈ X ′. We must prove that g and k are linearly dependent. Assume the contrary.
Then we can find x ∈ X such that g(x) = 1 and k(x) = 0. Choose f ∈ X ′ with f(u) = 1. Then
f(Bx) = 0 and f(Ax) = 1, a contradiction.

Hence, φ induces a bijective map Φ : PB(X) → PB(X) defined by

Φ([A]) = [φ(A)], A ∈ B(X) \ {0}.

Let A and B be again nonzero operators in B(X). We will now consider the following condition

for every N ∈ N (X) we have AN ∈ N (X) ⇒ BN ∈ N (X). (2)

In studying this condition we will need the following lemma.

Lemma 2.4 Let T, S ∈ B(X). Assume that for every x ∈ X the vector Tx belongs to the linear
span of x and Sx. Then T = λI + µS for some λ, µ ∈ C.

Proof. Assume first that the operators T , S, and I are linearly dependent. Then αT+βS+γI =
0 for some scalars α, β, and γ that are not all zero. If α 6= 0, then T is a linear combination of
S and I, as desired. In the case when α = 0, we have β 6= 0. Thus, S is a scalar operator. This
further yields that Tx belongs to the linear span of x for every x ∈ X. It follows that T = λI for
some λ ∈ C and we are done.

In order to complete the proof we have to show that the assumption that T , S, and I are
linearly independent leads to a contradiction. Assume that they are linearly independent. Because
dimX ≥ 3, the identity has rank at least 3. With this observation and the assumptions on T, S, I,
we can apply [10, Theorem 2.4] to conclude that there exist α, β, γ ∈ C such that

αT + βS + γI = R = x⊗ f

for some rank one operator R ∈ B(X).
First, consider the case when α 6= 0. Then T is a linear combination of S, I, and x ⊗ f . It

follows that (x⊗ f)z = f(z)x belongs to the linear span of z and Sz for every z ∈ X. We will show
that for every u ∈ X the vectors u, Su, x are linearly dependent. Assume the contrary. Then we
can find u ∈ X such that u, Su, x are linearly independent. If f(u) 6= 0, then f(u)x does not belong
to the linear span of u and Su, a contradiction. Hence, f(u) = 0. Choose v ∈ X with f(v) 6= 0.
Applying [4, Lemma 2.1] we can find a nonzero µ ∈ C such that S(u + µv), u + µv, x are linearly
independent. But now f(u+ µv) 6= 0 and we arrive at a contradiction in the same way as above.

Hence, the vectors u, Su, x are linearly dependent for every u ∈ X. Denote by Q the canonical
quotient map of X onto X/[x]. The operators Q = QI and QS are locally linearly dependent, that
is, Qw and QSw are linearly dependent for every w ∈ X. By [4, Theorem 2.3], Q and QS are
linearly dependent. This yields that S = δI+x⊗g for some complex δ and some functional g ∈ X ′.
If g = 0, then S is a scalar operator. This contradicts our assumption that T , S, and I are linearly
independent. So, we are done in this special case. Thus, we will assume from now on that g 6= 0.
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It follows that f(z)x belongs to the linear span of z and g(z)x for every z ∈ X. We will complete
the proof of our first case by showing that g and f are linearly dependent. Indeed, assume for a
moment that we have already proved that R = x ⊗ f = τx ⊗ g for some complex τ . Then R is
a linear combination of S and I, which further yields that T is a linear combination of S and I,
contradicting our assumption that T , S, and I are linearly independent.

Assume on the contrary that f and g are linearly independent. Then we can find v ∈ X linearly
independent of x such that f(v) 6= 0 and g(v) = 0. We know that f(v)x belongs to the linear span
of v and g(v)x = 0. This contradiction completes the proof of our first case.

It remains to consider the case when α = 0. Then clearly, β 6= 0, and therefore, S is a linear
combination of R and I. If S is a scalar operator, we are done. If not, then after replacing S by
ηS − νI for appropriate complex numbers η, ν, we may, and we will assume that S = R = x ⊗ f .
Hence, Tz belongs to the linear span of z and f(z)x for every z ∈ X. In particular, Tz belongs
to the linear span of z for every z from the kernel of f . This yields that the restriction of T to
the kernel of f is a scalar operator. From here we conclude that T = ηI + v ⊗ f for some η ∈ C
and some nonzero v ∈ X. Hence, our assumption now reads as follows: for every z ∈ X the vector
f(z)v belongs to the linear span of z and f(z)x. It follows that v and x are linearly dependent.
But then T = ηI + κx ⊗ f is a linear combination of I and S. This contradiction completes the
proof. �

We are now ready to deal with condition (2). Assume that A and B are nonzero operators such
that for every N ∈ N (X) we have AN ∈ N (X) ⇒ BN ∈ N (X). Take any x ∈ X and f ∈ X ′ with
f(x) = 0. Set N = x ⊗ f . Then the above condition reads as follows. For every pair x ∈ X and
f ∈ X ′ we have

f(x) = 0 and f(Ax) = 0 ⇒ f(Bx) = 0. (3)

Assume that there exists x ∈ X such that Bx does not belong to the linear span of x and Ax.
Then we can find f ∈ X ′ such that f(x) = f(Ax) = 0 and f(Bx) 6= 0, contradicting (3). Hence,
by Lemma 2.4, condition (2) implies that B = λI + µA for some λ, µ ∈ C.

Denote by F1(X) the set of all rank one bounded linear operators on X. We have the following
lemma.

Lemma 2.5 Let N ∈ N (X) and T ∈ F1(X). Assume that N + T ∈ N (X). Then T 2 = 0.

Proof. Let m be a positive integer such that Nm = 0. We can write X as a direct sum of closed
subspaces

X = span {x, y} ⊕ Y

such that the restriction of T to Y is zero operator and the image of T is contained in span {x, y}.
It is enough to show that the restriction of T to the subspace span {x, y} is a square-zero operator.
The linear span of vectors x,Nx, . . . , Nm−1x, y,Ny, . . . , Nm−1y is invariant under both T and
N . The restrictions of these two operators to this finite dimensional space can be identified with
matrices. So, we can calculate their traces. As both N and N + T are nilpotents, the traces of
their restrictions must be zero. By linearity, the trace of the restriction of T is zero. We complete
the proof by recalling the fact that every rank one trace-zero matrix is a square-zero matrix. �

Corollary 2.6 Assume that B ∈ B(X) is of the form scalar plus rank one, that is, B ∈ CI+F1(X).
Then there exists A ∈ CI + F1(X) linearly independent of B such that for every N ∈ N (X) we
have AN ∈ N (X) ⇒ BN ∈ N (X).
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Proof. Let B = R + λI for some λ ∈ C and some R ∈ F1(X). Set A = R + µI, where µ is
a nonzero complex number chosen in such a way that A and B are linearly independent. Choose
further any nilpotent operator N such that AN = µN + RN is nilpotent. Applying Lemma 2.5
we get that RN is nilpotent of rank at most one. If RN 6= 0, then by [13, Proposition 2.1], the
operator N + αRN is nilpotent for every nonzero α ∈ C. Clearly, we have N + αRN ∈ N (X),
α ∈ C, also in the case when RN = 0. We have to show that BN = RN + λN is nilpotent. This
is certainly true when λ = 0. If λ is nonzero, then we observe that BN is nilpotent if and only if
N + 1

λRN is. And this is indeed the case by what we have already proved. �

Lemma 2.7 Let A ∈ B(X), A 6∈ CI. Then the following are equivalent:

• A 6∈ CI + F1(X),

• there exists an idempotent P ∈ B(X) of rank 3 such that PAP is not of the form λP + R,
where λ ∈ C and R ∈ F1(X) ∪ {0}.

Proof. If A is of the form scalar plus rank one then obviously, PAP is of the form scalar times
P plus rank at most one for every idempotent P of rank 3. To prove the nontrivial direction
assume that A 6∈ CI + F1(X). Let us first consider the case that there exists x ∈ X such that
x, Ax, and A2x are linearly independent. Let P be any idempotent of rank 3 whose image is
spanned by x,Ax,A2x. With respect to the direct sum decomposition X = ImP ⊕ KerP the
matrix representations of the operators P and PAP are

P =
[
I 0
0 0

]
and PAP =

[
A1 0
0 0

]
.

Choosing the basis x,Ax,A2x for the subspace ImP we get the following matrix representation of
A1  0 0 µ

1 0 τ
0 1 η

 ,
where µ, τ , and η are some complex numbers. It is then clear that PAP − λP has rank at least 2
for every complex number λ, as desired.

It remains to consider the case when x,Ax,A2x are linearly dependent for every x ∈ X. Then
p(A) = 0 for some complex polynomial of degree at most two. As A is not a scalar plus rank
one operator there exists an idempotent Q of rank 4, such that QAQ has one of the following two
matrix representations:

QAQ =
[
A1 0
0 0

]
,

where

A1 =


λ 0 0 0
0 λ 0 0
0 0 µ 0
0 0 0 µ

 or A1 =


λ 1 0 0
0 λ 0 0
0 0 λ 1
0 0 0 λ

 .
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Here, λ 6= µ. In the first case A1 is similar to
1 0 0 0
0 1

2 0 1
2

0 0 1 0
0 1

2 0 −1
2



λ 0 0 0
0 λ 0 0
0 0 µ 0
0 0 0 µ




1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 −1

 =


λ 0 0 0
0 λ+µ

2 0 λ−µ
2

0 0 µ 0
0 λ−µ

2 0 λ+µ
2

 .
Obviously, the upper left 3× 3 corner is not of the form 3× 3 scalar matrix plus a matrix of rank
at most one. This completes the proof in the first case.

In the second case we observe that A1 is similar to
1 0 0 0
0 1 0 0
0 0 1

2
1
2

0 0 1
2 −1

2



λ 1 0 0
0 λ 0 0
0 0 λ 1
0 0 0 λ




1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 −1

 =


λ 1 0 0
0 λ 0 0
0 0 λ+ 1

2 −1
2

0 0 1
2 λ− 1

2

 .
The same argument as before completes the proof. �

Lemma 2.8 Let C be a non-scalar 3× 3 matrix that is not of the form a scalar matrix plus rank
one matrix. Then C is similar to a matrix of the form ∗ λ λ

∗ −λ −λ
∗ ∗ ∗

 ,
where λ is a nonzero complex number.

Proof. With no loss of generality we may assume that C has the Jordan canonical form. As it
is not a scalar plus rank one it has to be of one of the forms τ 0 0

0 η 0
0 0 ν

 or

 τ 1 0
0 τ 0
0 0 ν

 or

 τ 1 0
0 τ 1
0 0 τ

 ,
where τ , η, and ν are pairwise distinct complex numbers. In the first case we may assume that
η 6= 0, since otherwise we can permute the diagonal elements by a similarity transformation induced
by a permutation matrix. The matrix  τ −η −η

0 η η
0 0 ν


has three different eigenvalues, and is therefore similar to the first of the above matrices. The
matrix  τ −τ −τ

0 τ τ
0 0 ν
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has the desired form when τ 6= 0. The eigenspace corresponding to the eigenvalue τ is one-
dimensional, and therefore, this matrix is similar to the second of the above matrices. In the case
when τ = 0 the second matrix above is  0 1 0

0 0 0
0 0 ν


with ν 6= 0. We complete the proof in this special case by observing that it is similar to 1 1 1

−1 −1 −1
0 0 ν

 .
Indeed, the eigenvalue 0 has algebraic multiplicity two and geometric multiplicity one. We similarly
check that the last of the above matrices is similar to τ −τ −τ

0 τ τ
0 0 τ


when τ 6= 0, and to  2 4 4

−1 −4 −4
0 2 2


when τ = 0. This completes the proof. �

Corollary 2.9 Let B ∈ B(X) be a non-scalar operator. Then the following are equivalent:

• B ∈ CI + F1(X),

• there exists an operator A ∈ B(X) such that A and B are linearly independent and for every
N ∈ N (X) we have AN ∈ N (X) ⇒ BN ∈ N (X).

Proof. One direction is the statement of Corollary 2.6. So, assume that a non-scalar operator
B ∈ B(X) is given and that there exists A ∈ B(X) satisfying the second condition. We already
know that this condition implies that B = λI + µA. We have µ 6= 0. As A and B are linearly
independent, we necessarily have λ 6= 0.

We have to show that B ∈ CI + F1(X). Assume on the contrary that B 6∈ CI + F1(X). Then
A = 1

µB − λ
µI 6∈ CI + F1(X). By the previous two lemmas we know that there exist a direct sum

decomposition X = X1 ⊕ X2 with dimX1 = 3 and a basis of X1 such that with respect to the
chosen direct sum decomposition the operator A has matrix representation

A =
[
A1 A2

A3 A4

]
and the matrix representation of A1 corresponding to the chosen basis is of the form ∗ η η

∗ −η −η
∗ ∗ ∗

 ,
9



where η is a nonzero complex number. Choose

N =
[
N1 0
0 0

]
with N1 =

 0 0 0
1 0 0
0 1 0


and observe that for every T ∈ B(X),

T =
[
T1 T2

T3 T4

]
,

the product TN is nilpotent if and only if T1N1 is nilpotent.
Now, the upper left 3× 3 corners of AN and BN are η η 0

−η −η 0
∗ ∗ 0

 and

 µη µη 0
−µη + λ −µη 0

∗ ∗ 0

 ,
respectively. The second one is not nilpotent (the upper left 2× 2 corner is not of rank one, and is
therefore not nilpotent), while the first one is nilpotent. This contradiction completes the proof. �

Lemma 2.10 Assume that A ∈ CI + F1(X). Then the following are equivalent:

• A ∈ F1(X),

• every C ∈ CI + F1(X) with the property that for every N ∈ N (X) we have AN ∈ N (X) ⇒
CN ∈ N (X) belongs to the linear span of A.

Proof. Assume that A is of rank one and that an operator C ∈ CI + F1(X) has the property
that for every N ∈ N (X) we have AN ∈ N (X) ⇒ CN ∈ N (X). Then we know that C = αI +βA
with β 6= 0. We have to show that α = 0. Assume on the contrary that α 6= 0. We can find a
direct sum decomposition of X, X = X1 ⊕X2, with dimX1 = 3, and a basis of X1 such that the
corresponding matrix representation of A is

A =
[
A1 0
0 0

]
,

where either

A1 =

λ 0 0
0 0 0
0 0 0

 with λ 6= 0, or A1 =

 0 1 0
0 0 0
0 0 0

 .
Set

N =
[
N1 0
0 0

]
with N1 =

 0 2 −2
0 −1 1
1 1 1

 .
Clearly, N ∈ N (X). Obviously, both products AN and CN have nonzero entries only in the upper
left 3× 3 corner. It is easy to see that this corner of AN is nilpotent. The upper left 3× 3 corner
of CN is either  0 2(α+ βλ) −2(α+ βλ)

0 −α α
α α α

 or

 0 2α− β −2α+ β
0 −α α
α α α

 .
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Let δ be any complex number. Then 0 δ −δ
0 −α α
α α α

2

=

−δα −2δα 0
α2 2α2 0
α2 δα −δα+ 2α2

 .
Set first δ = 2(α + βλ) and then δ = 2α − β. In both cases we have −δα + 2α2 6= 0. So, none of
the above two matrices is nilpotent. Thus, CN 6∈ N (X), a contradiction.

To prove the converse assume that A = αI + R, where R is a rank one operator and α is a
nonzero complex number. Set C = α

2 I +R. Then C does not belong to the linear span of A. But
if N is any nilpotent such that AN = αN +RN is nilpotent, then by Lemma 2.5, the operator RN
is nilpotent. Hence, by [13, Proposition 2.1], αN +2RN is nilpotent, which further yields that CN
is nilpotent. This completes the proof. �

Lemma 2.11 Let A1 and A2 be linearly independent rank one operators. Then the following are
equivalent:

• A1 ∼ A2,

• there exists a rank one operator B such that B is linearly independent of A1, B is linearly
independent of A2, and for every T ∈ B(X) we have AiT ∈ N (X), i = 1, 2, ⇒ BT ∈ N (X).

Proof. Let A1 = x ⊗ f and A2 = y ⊗ g. If A1 ∼ A2, then y = λx or g = λf for some nonzero
complex number λ. We will consider only the second possibility. After absorbing the constant in
the tensor product we may assume that A2 = y ⊗ f . Define B to be B = A1 + A2. Since A1 and
A2 are linearly independent, B is linearly independent of Ai, i = 1, 2. If AiT ∈ N (X), i = 1, 2,
then f(Tx) = f(Ty) = 0. This yields that f(T (x+ y)) = 0, or equivalently, BT ∈ N (X).

To prove the other direction assume that A1 = x⊗f and A2 = y⊗g are rank one operators such
that x and y as well as f and g are linearly independent. Suppose also that there exists B = u⊗ k
satisfying the second condition. We will show that k is a linear combination of f and g. Assume
on the contrary that this is not the case. Then we can find a vector z ∈ X such that k(z) 6= 0,
while f(z) = g(z) = 0. We can further find T ∈ B(X) such that Tu 6= 0 and all vectors Tx, Ty, Tu
belong to the linear span of z. This implies that f(Tx) = g(Ty) = 0 and k(Tu) 6= 0, which gives
AiT ∈ N (X), i = 1, 2, but BT 6∈ N (X), a contradiction. In a similar way we show that u is a linear
combination of x and y. Hence, B = (λx+µy)⊗ (αf +βg). Let η and ν be any complex numbers.
As f and g are linearly independent we can find w1 ∈ X such that f(w1) = 0 and g(w1) = η, and
w2 ∈ X such that f(w2) = ν and g(w2) = 0. Since x and y are linearly independent we can further
find T ∈ B(X) satisfying Tx = w1 and Ty = w2. Then f(Tx) = 0 = g(Ty), and thus,

0 = k(Tu) = (αf + βg)(λTx+ µTy) = αµν + βλη.

It follows that αµ = βλ = 0, which further yields that B is a multiple of either A1, or A2, a
contradiction. �

We say that two rank one idempotents P and Q are orthogonal if PQ = QP = 0.

Lemma 2.12 Let P and Q, P 6= Q, be rank one idempotents. Then the following are equivalent:

• P and Q are orthogonal,
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• there exist rank one nilpotents M and N such that P ∼ N , P ∼ M , Q ∼ N , Q ∼ M , and
N 6∼M .

Proof. Let P = x⊗f and Q = y⊗g be orthogonal rank one idempotents. Then f(x) = g(y) = 1
and f(y) = g(x) = 0. Set N = x⊗ g and M = y ⊗ f . It is easy to verify that the second condition
is satisfied.

So, assume now that there exist M and N satisfying the second condition. Let P = x ⊗ f for
some x ∈ X and f ∈ X ′ with f(x) = 1. Then either N = x ⊗ g for some nonzero g ∈ X ′ with
g(x) = 0, or N = z⊗ f for some nonzero z ∈ X with f(z) = 0. We will consider only the first case.
Because M ∼ P and N 6∼ M we have necessarily M = y ⊗ f for some nonzero y ∈ X satisfying
f(y) = 0. From f(x) = 1 and g(x) = f(y) = 0 we conclude that x and y are linearly independent
and f and g are linearly independent. Because Q is an idempotent and Q ∼ N and Q ∼M we have
either Q = P , or Q = τy ⊗ g for some τ ∈ C∗. The first possibility cannot occur, and therefore,
PQ = QP = 0. �

Lemma 2.13 Let A,B ∈ B(X)\{0} and assume that for every idempotent P of rank one we have
AP ∈ N (X) if and only if BP ∈ N (X). Then A and B are linearly dependent.

Proof. Let x ∈ X be any vector. If Ax and Bx are linearly independent, then at least one
of them, say Ax, is linearly independent of x. But then we can find f ∈ X ′ such that f(x) = 1,
f(Ax) = 0, and f(Bx) 6= 0. As a consequence, Ax ⊗ f ∈ N (X), while Bx ⊗ f 6∈ N (X), a
contradiction. So, for every x ∈ X the vectors Ax and Bx are linearly dependent. By [4, Theorem
2.3], either the operators A and B are linearly dependent, or there exists a nonzero y ∈ X such
that A = y⊗f and B = y⊗g for some linearly independent functionals f and g. In the second case
there exists u ∈ X such that f(u) = 1 and g(u) = 0. We can further find a functional k ∈ X ′ with
k(u) = 1 and k(y) 6= 0. Set P = u⊗ k. Then AP = y ⊗ k 6∈ N (X), while BP = 0, a contradiction.

�

2.2 Proofs of the theorems and corollary

We continue to assume that X is a Banach space with dimX ≥ 3 and φ : B(X) → B(X) is a
surjective map satisfying (1). Clearly, A ∈ B(X) is nilpotent if and only if A2 or A3 is. Thus,
φ(N (X)) = N (X). Note that for any A,B ∈ B(X), ABA ∈ N (X) if and only if A2B ∈ N (X). So
condition (1) can be described as

ArB ∈ N (X) ⇐⇒ φ(A)rφ(B) ∈ N (X), A,B ∈ B(X),

where r = 1 or 2.
To prove our theorems we establish the following proposition, which is of independent interest

and will be used in the next section as well.

Proposition 2.14 Suppose S is a subset of B(X) containing the sets CI + F1(X) and CI. Let
φ : B(X) → B(X) and ψ : S → S be surjective maps satisfying φ(N (X)) = N (X), ψ(N (X)∩S) =
N (X) ∩ S and

AB ∈ N (X) ⇐⇒ ψ(A)φ(B) ∈ N (X), (A,B) ∈ S × B(X).

Then φ satisfies (a)-(b) in Theorems 2.1 or 2.2, and ψ has the form A 7→ g(A)φ(A) for some
C∗-valued map g on S.
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Proof. Suppose ψ : S → S and φ : B(X) → B(X) are surjective maps such that φ(N (X)) =
N (X), ψ(N (X) ∩ S) = N (X) ∩ S, and for any (A,B) ∈ S × B(X), AB ∈ N (X) if and only if
ψ(A)φ(B) ∈ N (X). Using the observations in the beginning of subsection 2.1, we can show that
ψ maps the set of nonzero operators onto itself, and maps the set of nonzero scalar operators onto
itself; two nonzero operators are linearly independent if and only if their ψ-images are linearly
independent. By Corollaries 2.6 and 2.9, ψ maps the set of all scalar plus rank one operators onto
itself. It then follows from Lemma 2.10 that ψ maps the set of rank one operators onto itself. We
know that a rank one operator is nilpotent if and only if its ψ-image is. For every non-nilpotent
rank one operator R there exists exactly one idempotent P that belongs to the linear span of R.
Thus, ψ induces in a natural way a bijective map Ψ from the set of all rank one idempotents onto
itself. Moreover, by Lemmas 2.11 and 2.12, this map preserves orthogonality in both directions,
that is, two idempotents P and Q are orthogonal if and only if Ψ(P ) and Ψ(Q) are.

Consider the infinite dimensional case. By [14, Theorem 2.4], either there exists a bounded
invertible linear or conjugate-linear operator S : X → X such that

Ψ(P ) = SPS−1

for every rank one idempotent P , or X is reflexive and there exists a bounded invertible linear or
conjugate-linear operator S : X ′ → X such that

Ψ(P ) = SP ′S−1

for every rank one idempotent P . Let us consider just the second case. We will show that for
every A ∈ B(X) there exists a nonzero scalar λ such that φ(A) = λSA′S−1. Let A ∈ B(X) be any
operator. For every rank one idempotent P we have

SA′S−1 SP ′S−1 ∈ N (X) ⇐⇒ PA ∈ N (X) ⇐⇒ ψ(P )φ(A) ∈ N (X)

⇐⇒ SP ′S−1φ(A) ∈ N (X) ⇐⇒ φ(A)SP ′S−1 ∈ N (X).

The map B 7→ SB′S−1 is an anti-automorphism of B(X) mapping the set of all rank one idempo-
tents onto itself. Thus, for every rank one idempotent Q we have

SA′S−1Q ∈ N (X) ⇐⇒ φ(A)Q ∈ N (X).

The desired conclusion follows now directly from Lemma 2.13. Once φ is known, we can interchange
the role of ψ and φ, and show that ψ has the same desired form by Lemma 2.13.

In the finite dimensional case we apply [14, Theorem 2.3] to conclude that there exist a nonsin-
gular matrix S ∈Mn and an automorphism ξ of the complex field such that either

Ψ(P ) = SPξS
−1

for every rank one idempotent matrix P , or

Ψ(P ) = SP t
ξS

−1

for every rank one idempotent matrix P . Now we complete the proof as in the infinite dimensional
case. �
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Proof of Theorems 2.1 and 2.2. The sufficiency parts are clear. Applying Proposition 2.14 with
ψ = φ, we obtain the result if φ satisfies (1) for A ∗B = AB.

Suppose φ : B(X) → B(X) is a surjective map satisfying (1) for A ∗B = ABA. Note that ABA
is nilpotent if and only if A2B is so. Thus, we may assume that φ satisfies

A2B ∈ N (X) ⇐⇒ φ(A)2φ(B) ∈ N (X), A,B ∈ B(X). (4)

Define an equivalence relation on B(X) by A ≈ C if [A2] = [C2]. Then A ≈ C if and only if the
following condition holds.

• For every T ∈ B(X), A2T is nilpotent if and only if C2T is nilpotent.

By (4), we see that A ≈ C if and only if φ(A) ≈ φ(C).
Let

B2(X) = {T 2 : T ∈ B(X)}.

Note that CI +F1(X) ⊆ B2(X) as dim(X) ≥ 3. Let R∪ {0} be a set of distinct representatives of
the equivalence relation ≈ on B(X). Then every nonzero T ∈ B2(X) has a unique representation of
the form T = aA2 with (a,A) ∈ C∗×R, and every (a,A) ∈ C∗×R gives rise to a nonzero element
T = aA2 ∈ B2(X).

Define ψ : B2(X) → B2(X) such that ψ(0) = 0 and ψ(aA2) = aφ(A)2 for any (a,A) ∈ C∗ ×R.
Then ψ is surjective. To see this, let T = B2 6= 0 with B ∈ B(X). Then B 6≈ 0. Since φ is
surjective, there is C ∈ B(X) such that φ(C) = B. Note that B 6≈ 0 implies C 6≈ 0. So, A ≈ C

for some A ∈ R and hence φ(A) ≈ φ(C) = B. Thus, T = B2 = aφ(A)2 for some a ∈ C∗ such that
ψ(aA2) = aφ(A)2 = T .

Evidently, we have ψ(N (X) ∩ B2(X)) = N (X) ∩ B2(X). Since

[φ(A)2] = [ψ(A2)] for any nonzero A ∈ B(X),

condition (4) implies that

AB ∈ N (X) ⇐⇒ ψ(A)φ(B) ∈ N (X), (A,B) ∈ B2(X)× B(X).

Thus, the result follows from Proposition 2.14. �

Proof of Corollary 2.3. We consider only the case for the Jordan triple product. The proof for the
usual product is similar and simpler. Because the map φ preserves the spectral radius of products
of matrices, it preserves the nilpotency of products of matrices. Thus, we can apply Theorem 2.2.
After composing φ with a similarity transformation and the transposition, if necessary, we may,
and we will assume that the map φ is of the form

A 7→ f(A)Aξ, A ∈Mn,

for some C∗-valued map f on Mn and some automorphism ξ of C. In particular, φ(In) = λIn

for some nonzero complex number λ. Since 1 = ρ(I3
n) = ρ(φ(In)3), we have |λ| = 1. After

multiplying φ by λ−1 we may assume with no loss of generality that φ(In) = In. It follows that
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ρ(A) = ρ(φ(A)) = ρ(f(A)Aξ) for every A ∈ Mn. Hence, if A is not nilpotent, then Aξ is not
nilpotent as well and in this case

|f(A)| = ρ(A)
ρ(Aξ)

.

By this fact and the assumption that ρ(ABA) = ρ(φ(A)φ(B)φ(A)) we get

ρ(ABA)
ρ((ABA)ξ)

=
ρ(A)ρ(B)ρ(A)
ρ(Aξ)ρ(Bξ)ρ(Aξ)

for every pair of matrices A,B such that none of A, B, and ABA is nilpotent. Indeed,

ρ(ABA) = ρ(f(A)Aξf(B)Bξf(A)Aξ) = |f(A)| |f(B)| |f(A)|ρ((ABA)ξ)

=
ρ(A)
ρ(Aξ)

ρ(B)
ρ(Bξ)

ρ(A)
ρ(Aξ)

ρ((ABA)ξ).

Choose A = E11 + (λ− µ)E12 and B = µE11 + E21 with λ, µ 6= 0 to get

|λ|
|ξ(λ)|

=
|µ|
|ξ(µ)|

,

which yields the existence of a complex constant c such that |ξ(λ)| = c|λ|, λ ∈ C. It is well-
known that every bounded automorphism of the complex field is either the identity, or the complex
conjugation. Thus, φ has the form

A 7→ f(A)A or A 7→ f(A)A

on Mn. It is now trivial to complete the proof. �

3 Extension to other types of products

In this section, we extend the results in Section 2 to other types of products on B(X). We introduce
the following definition.

Definition 3.1 Let k ≥ 2 be a positive integer, and let (i1, . . . , im) be a sequence with terms chosen
from {1, . . . , k}. Define a product of k operators A1, . . . , Ak ∈ B(X) by

A1 ∗ · · · ∗Ak = Ai1Ai2 · · ·Aim .

We have the following result.

Theorem 3.2 Let X be an infinite dimensional Banach space, and consider a product defined as
in Definition 3.1 such that there is a term ip in the sequence (i1, . . . , im) different from all other
terms. Then a surjective map φ : B(X) → B(X) satisfies

A1 ∗ · · · ∗Ak ∈ N (X) ⇐⇒ φ(A1) ∗ · · · ∗ φ(Ak) ∈ N (X), A1, . . . , Ak ∈ B(X),

if and only if
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(a) there is a bijective bounded linear or conjugate-linear operator S : X → X such that φ has
the form A 7→ S[f(A)A]S−1, or

(b) the space X is reflexive, (ip+1, . . . , im, i1, . . . , ip−1) = (ip−1, . . . , i1, im, . . . , ip+1), and there
exists a bijective bounded linear or conjugate-linear operator S : X ′ → X such that φ has the
form A 7→ S[f(A)A′]S−1,

where f : B(X) → C∗ is a map such that for every nonzero A ∈ B(X) the map λ 7→ λf(λA) is
surjective on C.

The assumption that there is ip appearing only once in the terms of the sequence (i1, . . . , im) is
clearly necessary. For instance, if A ∗ B = A2B2, then any map φ : B(X) → B(X) which permute
the elements in T = {C ∈ B(X) : C2 = 0} and fix all elements in B(X) \ T will be a surjective
map satisfying A ∗B ∈ N (X) ⇐⇒ φ(A) ∗ φ(B) ∈ N (X).

We have the following result for the finite dimensional case.

Theorem 3.3 Let n ≥ 3. Consider a product on Mn defined as in Definition 3.1 such that there
is a term ip in (i1, . . . , im) different from all other terms and there is another term iq appearing at
most n− 1 times in (i1, . . . , im). Then a surjective map φ : Mn →Mn satisfies

A1 ∗ · · · ∗Ak ∈ Nn ⇐⇒ φ(A1) ∗ · · · ∗ φ(Ak) ∈ Nn, A1, . . . , Ak ∈Mn,

if and only if

(a) φ has the form A 7→ f(A)SAξS
−1, or

(b) (ip+1, . . . , im, i1, . . . , ip−1) = (ip−1, . . . , i1, im, . . . , ip+1) and φ has the form A 7→ f(A)SAt
ξS

−1,

where ξ : C → C is a field automorphism, S ∈ Mn is an invertible matrix, and f : Mn → C∗ such
that for every nonzero A ∈Mn the map λ 7→ ξ(λ)f(λA) is surjective on C.

Similar to the infinite dimensional case, the assumption of the existence of ip appearing once
in the terms of (i1, . . . , im) is necessary. However, it is unclear whether the assumption on iq is
essential. Nonetheless, these assumptions will be trivially satisfied if we consider the usual product
A1 ∗ · · · ∗Ak = A1 · · ·Ak and the Jordan triple product A1 ∗A2 = A1A2A1.

Similar to Corollary 2.3, we can prove the following result about the spectral radius of products.

Corollary 3.4 Let n ≥ 3. Consider a product on Mn satisfying the hypothesis of Theorem 3.3. A
surjective map φ : Mn →Mn satisfies

ρ(A1 ∗ · · · ∗Ak) = ρ(φ(A1) ∗ · · · ∗ φ(Ak)), A1, . . . , Ak ∈Mn,

if and only if φ has one of the following holds:

(a) φ has the form

A 7→ f(A)SAS−1 or A 7→ f(A)SAS−1;

(b) (ip+1, . . . , im, i1, . . . , ip−1) = (ip−1, . . . , i1, im, . . . , ip+1) and φ has the form

A 7→ f(A)SAtS−1 or A 7→ f(A)SA∗S−1;
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where S ∈Mn is an invertible matrix, and f : Mn → {z ∈ C : |z| = 1} is a map such that for any
nonzero A ∈Mn the map λ 7→ λf(λA) is surjective on C.

Proof of Theorems 3.2 and 3.3. The sufficiency parts are clear. Assume that φ is surjective
and preserves nilpotency of the product A1 ∗ · · · ∗Ak. We may set Aip = B and all other Aij = A.
Then φ preserves nilpotency of A ∗ B = AuBAv for some nonnegative integers u and v such that
u + v = m − 1. Clearly, AuBAv is nilpotent if and only if Au+vB is nilpotent. Thus, φ preserves
the nilpotency of the product A ∗B = ArB with r = u+ v.

In the finite dimensional case, we will show that φ preserves the nilpotency of the product
A ∗ B = ArB for some integer r less than n. Our claim holds if u + v < n. Assume that it is not
the case. We note that φ sends the set of (nonzero) scalar matrices onto itself. This follows from
the observation that for any nonzero B ∈Mn, the following two statements are equivalent.

• B is a scalar matrix,

• BT u+v is nilpotent if and only if T is nilpotent.

Clearly, if B is a scalar matrix, then the second statement holds trivially. If B is not a scalar matrix,
then there is an invertible R ∈Mn such that RBR−1 = [bij ] with b11 = 0. Let T = RE11R

−1 be a
rank one idempotent. Then BT u+v is a nilpotent of rank at most one. But T 6∈ Nn.

Since φ sends the set of scalar matrices onto itself, we can choose Aip = B, Aiq = A and Aij = In

for other ij , and conclude that φ will preserve the nilpotency of the product A ∗B = ArB where r
is the number of times that iq appears in {i1, . . . , im} and is less than n.

Consequently, φ satisfies the following.

ArB ∈ N (X) ⇐⇒ φ(A)rφ(B) ∈ N (X), A,B ∈ B(X). (5)

Now we use the same idea as in the proof of Theorems 2.1 and 2.2, namely, determine a subset R of
B(X) so that every nonzero element in Br(X) = {T r : T ∈ B(X)} admits a unique representation
aAr with (a,A) ∈ C∗ ×R, and define the surjective map ψ : Br(X) → Br(X) such that ψ(0) = 0
and ψ(aAr) = aφ(A)r for (a,A) ∈ C∗ ×R. Then (5) implies that

AB ∈ N (X) ⇐⇒ ψ(A)φ(B) ∈ N (X), (A,B) ∈ Br(X)× B(X).

Since r < dim(X), Br(X) contains CI + F1(X). Thus, Proposition 2.14 applies with S = Br(X).

It remains to show that

(ip+1, . . . , im, i1, . . . , ip−1) = (ip−1, . . . , i1, im, . . . , ip+1)

if φ has the form (b) in Theorem 3.2 or 3.3.
Consider the finite dimensional case. After composing φ with the map A 7→ f(A)−1A and

A 7→ Aξ−1 , we may assume that the map φ has the form A 7→ SAtS−1. As φ(Ai1) · · ·φ(Aim) =

S(At
i1
· · ·At

im
)S−1, we have

Ai1 · · ·Aim ∈ Nn ⇐⇒ Aim · · ·Ai1 ∈ Nn.

Evidently, the result holds for k = 2. Suppose k ≥ 3. Note that we may assume ip = im
as Ai1 · · ·Aim is nilpotent if and only if Aip+1 · · ·AimAi1 · · ·Aip is so. Thus, we need to show
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(i1, . . . , im−1) = (im−1, . . . , i1). Assume the contrary, and let t be the smallest integer such that
it 6= im−t.

Let U and V be matrices of the form[
U1 0
0 I

]
and

[
V1 0
0 I

]
with U1 =

[
λ 0
0 1

]
and V1 =

[
1 1
0 1

]
for some nonzero λ. Take Ait = U and Aij = V for all ij 6= it and ij 6= im. Then

Ait · · ·Aim−t = Ud1V e1 · · ·UdpV ep

for some positive d1, . . . , dp, e1, . . . , ep. Note that

Ud1
1 V e1

1 · · ·Udp

1 V
ep

1 =
[
λd1+···+dp f(λ)

0 1

]
and V

ep

1 U
dp

1 · · ·V e1
1 Ud1

1 =
[
λd1+···+dp g(λ)

0 1

]
,

where f and g are polynomials in λ with degree d1 + · · ·+ dp and d2 + · · ·+ dp, respectively. Thus,
there is a nonzero λ such that f(λ) 6= g(λ). Let s = d1 + · · ·+ dp and

W =
[
W1 0
0 0

]
with W1 =

[
−f(λ) 0
λs 0

]
.

Suppose

P = Ai1 · · ·Ait−1 = Aim−1 · · ·Aim−t+1 and Q = Aim−t+1 · · ·Aim−1 = Ait−1 · · ·Ai1

and let Aim = Q−1WP−1. Then Ai1 · · ·Aim and Aim · · ·Ai1 equal

P

[
Ud1

1 V e1
1 · · ·Udp

1 V
ep

1 W1 0
0 0

]
P−1 and Q−1

[
W1V

ep

1 U
dp

1 · · ·V e1
1 Ud1

1 0
0 0

]
Q,

where

Ud1
1 V e1

1 · · ·Udp

1 V
ep

1 W1 =
[

0 0
λs 0

]
and W1V

ep

1 U
ep

1 · · ·V e1
1 Ud1

1 =
[
−λsf(λ) −f(λ)g(λ)
λ2s λsg(λ)

]
,

respectively. Note that Ai1 · · ·Aim is nilpotent while Aim · · ·Ai1 is not, which contradicts our
assumption. Hence, we must have (i1, . . . , im−1) = (im−1, . . . , i1).

One can easily adapt the proof of the finite dimensional case to the infinite dimensional case to
get the desired conclusion. �
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