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Abstract

Let B(H) be the algebra of bounded linear operator acting on a Hilbert space H (over the
complex or real field). Characterization is given to A1, . . . , Ak ∈ B(H) such that for any unitary

operators U1, . . . , Uk,
∑k

j=1 U∗
j AjUj is always in a special class S of operators such as normal

operators, self-adjoint operators, unitary operators. As corollaries, characterizations are given to
A ∈ B(H) such that complex, real or nonnegative linear combinations of operators in its unitary
orbit U(A) = {U∗AU : U unitary} always lie in S.
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1. Introduction

Let B(H) denote the algebra of bounded linear operators acting on a Hilbert space H over C. If
dimH = n, we identify B(H) with the algebra Mn of n× n complex matrices. Denote by

U(A) = {U∗AU : U∗U = UU∗ = I}

the unitary orbit of A ∈ B(H). Clearly, U(A) contains representations of the same operator under
different orthonormal bases. So, it is useful in the study of the operator A. For instance, it is
of interest to see whether A can be triangularized by an orthonormal basis; if it does, then a
lot of information of A can be obtained from such a representation [12]. For instance, in the
finite dimensional case, the triangular matrix is actually a diagonal (real diagonal) matrix if and
only if A ∈ Mn is normal (Hermitian); furthermore, U(A) is the equivalence class of A under the
equivalence relation (Lie group action) of unitary similarities so that U(A) is a nice differentiable
manifold and has nice geometrical properties; see [1] and its references.

In connection to many branches of pure and applied topics such as algebraic combinatorics,
representation theory, quantum computing and quantum control, there is considerable interest in
studying the properties of operators from the sum (or nonnegative linear combinations) of two or
more unitary orbits; for example, see [3, 10] and their references. For A1, . . . , Ak ∈ B(H), let

k∑
j=1

U(Aj) =


k∑

j=1

Xj : Xj ∈ U(Aj), j = 1, . . . , k

 .

Research of Li was partially supported by an NSF grant and the William and Mary Plumeri Award. He is an
honorary professor of the University of Hong Kong.

1



2 CHI-KWONG LI AND YIU-TUNG POON

In the finite dimensional case, researchers determined the ranks, determinants, eigenvalues and

singular values of matrices in
∑k

j=1 U(Aj); see [8, 9, 11, 13] and their references. When A1, . . . , Ak ∈
Mn are self-adjoint, researchers determined all n-tuples of real numbers that can be the eigenvalues

of matrices in
∑k

j=1 U(Aj), and extended the result to compact self-adjoint operators A1, . . . , Ak ∈
B(H); see [2, 3, 4, 6, 7] and their references.

In this paper, we characterize A1, . . . , Ak ∈ B(H) such that
∑k

j=1 U(Aj) is a subset of a certain

special class of operators such as the normal operators, self-adjoint operators, positive semidefinite
operators, unitary operators, or scalar operators. A key step of our proofs is to characterize

A1, . . . , Ak such that
∑k

j=1 U(Aj) is a subset of normal operators. This is done in Section 2. We

then characterize A1, . . . , Ak ∈ B(H) such that
∑k

j=1 U(Aj) contains only special operators in

Sections 3 and 4. In Section 5, we characterize A ∈ B(H) such that complex, real or nonnegative
linear combinations of operators in U(A) have special structure.

In our study, we also consider real Hilbert spaces H. In such case, a self-adjoint operator
A ∈ B(H) satisfying 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ H is also called a symmetric operator; and
a skew-adjoint operator A ∈ B(H) satisfying 〈Ax, y〉 = −〈x,Ay〉 is also called a skew-symmetric
operator. Unitary operators and unitary orbits are also referred to as orthogonal operators and
orthogonal orbits.

If H is complex and finite dimensional, then we can use the Schur triangularization theorem for
Mn to give a different proof of the main result. However, for real or infinite dimensional cases, the
Schur triangularization theorem does not hold. We will give a unified proof that covers all cases.

2. Normal Operators

In this section, we prove the main theorem of our paper. It is worth mentioning that our proofs
rely on the basic fact that A ∈ B(H) is normal if and only if ‖Ax‖ = ‖A∗x‖ for all x ∈ H. Deeper
results such as the spectral decomposition of normal operators are not used (and do not seem to
be useful).

In our discussion, we say that A ∈ B(H) is essentially self-adjoint if there are α, γ ∈ C with
|γ| = 1 such that αI + γA is self-adjoint. If F = R, we say that A ∈ B(H) is essentially skew-
symmetric if there is α, γ ∈ R with |γ| = 1 such that αI + γA is skew-symmetric.

Theorem 2.1. Let A1, . . . , Ak ∈ B(H), where H is a Hilbert space over F = C or R. Then every

operator in
∑k

j=1 U(Aj) is normal if and only if one of the following holds.

(1) One of the operators A1, . . . , Ak is normal, and the rest are scalar operators.
(2) There are α1, . . . , αk, γ ∈ F with |γ| = 1, and self-adjoint operators H1, . . . ,Hk ∈ B(H)

such that Aj = αjI + γHj for j = 1, . . . , k.
(3) F = R, there are skew-symmetric operators G1, . . . , Gk ∈ B(H) and α1, . . . , αk ∈ R such

that Aj = αjI + Gj for j = 1, . . . , k.

Proof. The implication (⇐) is clear. We consider the converse.
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First we consider the case when k = 2. For notational convenience, let (A1, A2) = (A,B).
Suppose U∗AU + V ∗BV is normal for any unitary U, V ∈ B(H). Assume that condition (1) of
Theorem 1 does not hold. Then neither A nor B can be a scalar operator. We show that (2) or (3)
must hold.

Suppose dimH = 2. In the complex case, there are unitary U, V ∈ M2 such that

U∗AU = αI + γ

(
0 a1

a2 0

)
and V ∗BV = βI + γ

(
0 b1

b2 0

)
such that |γ| = 1, a1 ≥ a2 ≥ 0 and b1 ≥ |b2| ≥ 0; see [5, Theorem 1.3.4]. Since U∗AU + V ∗BV is
normal, we see that

a1 + b1 = |a2 + b2| ≤ a2 + |b2| ≤ a1 + b1.

It follows that (a1, b1) = (a2, b2), and condition (2) holds.
In the real case, let U, V ∈ M2 be orthogonal such that U∗(A∗+A)U have equal diagonal entries,

and V ∗(B∗ + B)V have equal diagonal entries. Then

U∗AU = αI +
(

0 a1

a2 0

)
and B = βI +

(
0 b1

b2 0

)
for some α, β ∈ R. We may assume that a1 ≥ |a2| and b1 ≥ |b2|. Otherwise, adjust U (respectively,
V ) by switching its rows, or multiplying its first column by −1. Since U∗AU + V ∗BV is normal,
we see that

a1 + b1 = |a2 + b2| ≤ |a2|+ |b2| ≤ a1 + b1.

Again, we see that (a1, b1) = ±(a2, b2) Thus condition (2) or (3) holds.

Suppose dimH > 2. Since A is not a scalar operator, there is a unit vector u ∈ H such that Au

is not a multiple of u. Suppose Au = a11u + a21û for a unit vector û ∈ u⊥. By a suitable choice of
orthonormal basis and identifying A with its operator matrix, we may assume that

A =
(

a11 f
x A22

)
such that f = (a12, a13, 0, 0, . . . ) and x = (a21, 0, 0, . . . )t. In the complex case, we may replace
(A,B) by (γA, γB) for a suitable complex unit γ and assume that a12a21 ≥ 0. Replace A by U∗AU

with U = [µ]⊕ I such that a21µ = |a21| > 0. So, we may assume that

1) a21 > 0 and a12 ≥ 0 if F = C, and 2) a21 > 0 if F = R.

For a unitary U ∈ B(H), let

(2.1) U∗BU =
(

b11 g
y B22

)
.

We claim that one of the following holds.
a) F = C and for all unitary U ∈ B(H), g = y∗ in (2.1).
b) F = R, a12 > 0 and for all unitary U ∈ B(H), g = y∗ in (2.1).
c) F = R, a12 < 0, and for all unitary U ∈ B(H), g = −y∗ in (2.1).
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Once the claim is established, we can show that (2) or (3) in Theorem 2.1 follows from a), b) or
c) as follows.

Suppose a) or b) holds. Then for every unitary operator U ∈ B(H), U∗BU − U∗B∗U has the

form
(

c 0
0 C22

)
. It follows that (B −B∗)u is a multiple of u for any unit vector u ∈ H, and hence

C = B − B∗ is a scalar operator. So, if a) holds, then B = ibI + K for a self-adjoint K. Now,
interchanging the roles of A and B, we see that A = iaI + H for a self-adjoint H. The result for
the complex case follows.

If b) holds, then B is a symmetric operator. Now, interchanging the roles of A and B, we see
that A is a symmetric operator.

Suppose c) holds. Then for every unitary operator U ∈ B(H), U∗BU + U∗B∗U has the form(
c 0
0 C22

)
. It follows that (B + B∗)u is a multiple of u for any unit vector u ∈ H, and hence

C = B + B∗ is a scalar operator. Hence, B = bI + K for a skew-symmetric operator K. Now,
interchanging the roles of A and B, we see that A = aI + H for a skew-symmetric operator H.

Hence, (2) or (3) holds once the claim is established. Now, we turn to the proof of conditions
a), b) or c).

For a unitary U ∈ B(H), let U∗BU =
(

b11 g
y B22

)
. If y = 0, then let u be the first column

of U . For every unitary operator V on u⊥, since A + (1⊕ V )∗ U∗BU (1⊕ V ) is normal, we have
‖x‖ = ‖f∗ + V ∗g∗‖. Therefore, g = 0 and a), b) or c) holds.

If y 6= 0, we may assume that g = (b12, b13, 0, 0, . . . ) and y = (b21, 0, 0, . . . )t, where b21 > 0. Let
V = [1] ⊕W ∗ ⊕ I ∈ B(H) be unitary, where W ∈ M2 is unitary. Since A + V ∗U∗BUV is always
normal,

‖(a21, 0)∗ + W (b21, 0)∗‖ = ‖(a12, a13)∗ + W (b12, b13)∗‖.
Hence,

|a12|2 + |a13|2 + |b12|2 + |b13|2 − |a21|2 − |b21|2

= 2Re[(a21, 0)W (b21, 0)∗ − (a12, a13)W (b12, b13)∗]

= 2Re trW [(b21, 0)∗(a21, 0)− (b12, b13)∗(a12, a13)].

Since this is true for all unitary W ∈ M2, we see that

(b21, 0)∗(a21, 0) = (b12, b13)∗(a12, a13)

and
|a12|2 + |a13|2 + |b12|2 + |b13|2 = |a21|2 + |b21|2.

From the first inequality, we have

b12a12 = b21a21 and a13 = b13 = 0.

We are going to show that

(2.2) (a21 − |a12|)(b21 − |b12|) = 0 .
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In the complex case, a12a21 ≥ 0 and b21 > 0, we see that b12 > 0 and a12 > 0. This would lead
to (a21, b21) = (a12, b12) if F = C. Hence, a) holds.

In the real case, we see that a12b12 = b21a21 > 0, and hence (a21, b21) = ±(a12, b12). Thus, b) or
c) holds.

To prove (2.2), suppose (a21 − |a12|)(b21 − |b12|) > 0. If a12 > |a21| and b12 > |b21|, then since
A + B is normal,

|a12 + b12| = a21 + b21 > |a12|+ |b12| ≥ |a12 + b12|,
a contradiction.

Similarly, we can get a contradiction if |a12| < a21 and |b12| < b21.

Suppose (a21 − |a12|)(b21 − |b12|) < 0. Let V =
(

0 1
ε 0

)
⊕ I ∈ B(H), where b12ε = |b12|. Since

A + V ∗BV is normal,
|a12|+ b21 = a21 + |b12|,

which contradicts the assumption that (a21 − |a12|)(b21 − |b12|) < 0.

By the above arguments, the proof for the case k = 2 is complete.

Let k > 2, and A1, . . . , Ak ∈ B(H). If there is at most one non-scalar operators among A1, . . . , Ak,
then condition (1) holds. Suppose there are at least two non-scalar operators, say, A1 and A2. We
can apply the result for k = 2 to (A1, A2) to conclude that A1, A2 satisfy condition (2) or (3). If
there is j > 3 such that Aj is not a scalar, then we can apply the result for k = 2 to (A1, A2), (A1, Aj)
and (A2, Aj) and conclude that A1, A2, Aj satisfy condition (2) or (3). Since this is true for any
non-scalar operator Aj for j > 3, we see that A1, . . . , Ak satisfy (2) or (3). �

The following corollaries are immediate.

Corollary 2.2. Let A1, . . . , Ak ∈ B(H). Then every operator in
∑k

j=1 U(Aj) is normal if and only

if every nonnegative (or real) linear combination of operators in U(A1) ∪ · · · ∪ U(Ak) is normal.

Corollary 2.3. Let H be a complex Hilbert space, and let A1, . . . , Ak ∈ B(H). The following
conditions are equivalent.

(a) Any complex linear combination of operators in U(A1) ∪ · · · ∪ U(Ak) is normal.
(b) Any complex linear combination of operators in U(A1) ∪ · · · ∪ U(Ak) is a scalar operator.
(c) Each Aj is scalar operator.

Proof. The implications (c) ⇒ (b) ⇒ (a) are clear. Suppose (a) holds. Assume one of the
operator Aj is non-scalar. Then there are unitary U, V such that U∗AjU +V ∗(iAj)V is not normal
by Theorem 2.1. Thus, we have (a) ⇒ (c). �

3. Self-Adjoint and Skew-Self-Adjoint Operators

Using the result in Section 2, we have the following.

Proposition 3.1. Let A1, . . . , Ak ∈ B(H). The following conditions are equivalent.
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(a) Every operator in
∑k

j=1 U(Aj) is essentially self-adjoint.

(b) All real linear combinations of operators in U(A1) · · · U(Ak) are essentially self-adjoint op-
erators.

(c) Either
(c.1) one of the operators A1, . . . , Ak is essentially self-adjoint, and the rest are scalar
operators, or
(c.2) there exist self-adjoint operators H1, . . . ,Hk ∈ B(H) and α1, . . . , αk, γ ∈ F with |γ| = 1
such that Aj = αjI + γHj for j = 1, . . . , k.

Proof. The implications (c) ⇒ (b) ⇒ (a) are clear.

Suppose (a) holds. That is,
∑k

j=1 U(Aj) is a subset of self-adjoint operators. Then one of the

conditions (1) – (3) of Theorem 1 holds. Clearly, condition (3) should be ruled out. If (1) holds,
we get condition (c.1); if (2) holds, we get condition (c.2). �

Proposition 3.2. Let A1, . . . , Ak ∈ B(H). The following conditions are equivalent.

(a) Every operator in
∑k

j=1 U(Aj) is positive semidefinite.

(b) Either
(b.1) one of the operators A1, . . . , Ak is essentially self-adjoint of the form αI + H with
H = H∗, and the rest are scalar operators summing up to βI such that α + β + inf σ(H) is
a nonnegative real number, or
(b.2) There are α1, . . . , αk ∈ F and γ ∈ R with |γ| = 1, and self-adjoint operators

H1, . . . ,Hk ∈ B(H) such that Aj = αjI + γHj for j = 1, . . . , k, and
∑k

j=1(αj + inf σ(γHj))

is a nonnegative real number.

Proof. Let W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1} be the numerical range of A ∈ B(H). It is
well known and not hard to show that W (αI + βA) = α + βW (A), and for a self-adjoint operator
H ∈ B(H) the closure of W (H) = [m,M ], where m = inf σ(H) and M = supσ(A). Thus,〈Bx, x〉 : x ∈ H, ‖x‖ = 1, B ∈

k∑
j=1

U(Aj)

 =
k∑

j=1

W (Aj).

The implication (b) ⇒ (a) is clear. Suppose (a) holds. That is, every operator in
∑k

j=1 U(Aj)

is positive semidefinite. Furthermore, assume that (b.1) does not hold. By Proposition 3.1, there
are self-adjoint operators H1, . . . ,Hk ∈ B(H) and α1, . . . , αk, γ ∈ F with |γ| = 1 such that Aj =
αjI + γHj for j = 1, . . . , k. We may assume that H1 is non-scalar. Note that〈Bx, x〉 : x ∈ H, ‖x‖ = 1, B ∈

k∑
j=1

U(Aj)

 =
k∑

j=1

αj + γ

 k∑
j=1

W (Hj)

 ⊂ [0,∞).
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Since H1 is non-scalar, W (H1) contains at least 2 points, and hence γ ∈ R. Furthermore, we have

inf

γw : w ∈
k∑

j=1

W (Hj)

 =
k∑

j=1

inf {r : r ∈ W (γHj)} =
k∑

j=1

inf σ(γHj).

By the fact that γ ∈ R and each Hj is self-adjoint, we see that condition (b.2) holds. �

The following corollary is immediate.

Corollary 3.3. Let A1, . . . , Ak ∈ B(H). Then every operator in
∑k

j=1 U(Aj) is a scalar operator

if and only if Aj is a scalar operator for each j = 1, . . . , k.

Proposition 3.4. Suppose F = R and A1, . . . , Ak ∈ B(H). The following conditions are equivalent.

(a) Every operator in
∑k

j=1 U(Aj) is essentially skew-symmetric.

(b) All real linear combinations of operators in U(A1)∪· · ·∪U(Ak) is essentially skew-symmetric.
(c) Either

(c.1) one of the operators A1, . . . , Ak is essentially skew-symmetric, and the rest are scalar
operators, or
(c.2) there are α1, . . . , αk, γ ∈ F with |γ| = 1, and skew-symmetric operators G1, . . . , Gk ∈
B(H) such that Aj = αjI + γGj for j = 1, . . . , k.

Proof. Similar to that of Proposition 3.1. �

4. Unitary operators

An operator A ∈ B(H) is essentially unitary if there is α, γ ∈ C with γ 6= 0 such that αI + γA

is unitary. Clearly, A is essentially unitary if and only if A is normal with its spectrum lying in a
circle.

Theorem 4.1. Let A1, . . . , Ak ∈ B(H). Then all operators in
∑k

j=1 U(Aj) are essentially unitary

if and only if one of the following conditions holds.

(a) One of the operators A1, . . . , Ak is essentially unitary and the other operators are scalar
operators.

(b) dimH = 2, and there exists γ ∈ C with |γ| = 1 such that γ(Aj − (trAj)I2/2) is self-ajoint
for all j = 1, . . . , k.

(c) F = R, dimH = 2, and Aj − (trAj)I2/2 is skew-symmetric for all j = 1, . . . , k.

Proof. If (a), (b) or (c) holds, then clearly every A ∈
∑k

j=1 U(Aj) is essentially unitary.

Conversely, if all operators in
∑k

j=1 U(Aj) are essentially unitary, then one of the conditions (1)

– (3) of Theorem 2.1 holds.
If condition (1) of Theorem 2.1 holds, then the non-scalar operator among A1, . . . , Ak is clearly

essentially unitary.
Suppose condition (2) of Theorem 2.1 holds. If dimH = 2, then condition (b) holds.
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Claim Suppose dimH > 2. It is impossible to have two nonscalar operators, say, A1 and A2,
among A1, . . . , Ak.

Assume our claim is not true. By Corollary 3.3, there are unitary operators U2, . . . , Uk and

γ ∈ F with |γ| = 1 such that A = A1 = αI + γH1 and B =
∑k

j=2 U∗
j AjUj = βI + γH2, where H1

and H2 are non-scalar self-adjoint operators. We may replace (A1, . . . , Ak) by (A1, . . . , Ak)/γ and
assume that γ = 1. We may further replace (A,B) by (A− αI, B − βI) and assume that A = H1

and B = H2 are both self-adjoint. For any unitary X, Y ∈ B(H), since the self-adjoint operator
X∗AX +Y ∗BY is essentially unitary, its spectrum always have at most two distinct real values. By
Corollary 3.3, there are unitary U such that A + U∗BU is non-scalar and has eigenvalues c1 > c2.
We may replace (A,B) by 2(A− cI,B)/(c1 − c2) so that T = A + U∗BU has eigenvalues 1 > −1,
and is unitary.

Since A + U∗BU is essentially self-adjoint and also essentially unitary, its spectrum is a subset
of the intersection of the real line and a circle. Since A+U∗BU is non-scalar, its spectrum consists
of two distinct points. Thus, A+U∗BU = µ1IH1 ⊕µ2IH2 , where H is an orthogonal sum H1⊕H2.
Hence A and B have operator matrices(

A11 A12

A∗12 A22

)
and

(
µ1IH1 −A11 −A12

−A∗12 µ2IH2 −A22

)
.

Now, let V = IH1 ⊕−IH2 . Then A + V ∗BV has operator matrix(
µ1IH1 2A12

2A∗12 µ2IH2

)
.

Since A + V ∗BV is essentially unitary, there is ν ∈ F such that A + V ∗BV − νIH is a multiple of
a unitary operator. It follows that both

|µ1 − ν|2IH1 + 4A12A
∗
12 and 4A∗12A12 + |µ2 − ν|2IH2

are scalar operators. Hence, we may assume that H1 = H2 and A12 is a multiple of a unitary. We
may further assume that A12 is a scalar operator. We can clearly do that if A12 = 0. Suppose
A12 6= 0. Let X = ‖A12‖−1A12 ⊕ IH1 . Then X is unitary such that

X∗AX =
(

Ã11 ‖A12‖I
‖A21‖I A22

)
and X∗BX =

(
B̃11 −‖A12‖I

−‖A21‖I B22

)
,

where Ã11 + B̃11 = µ1I. We may replace (A,B) by (X∗AX, X∗BX) and assume that X = IH.

Then (Ã11, B̃11) = (A11, B11).
Next, we show that A11 and B11 are scalar operators. Assume that it is not true. Then the

spectrum of A11 has at least two elements. We consider two cases.
If A11 has two distinct eigenvalues, say a1 > a2, then we may assume that A11 = diag (a1, a2)⊕A0.

Since A11 + B11 = µ1IH1 , we see that B = diag (b1, b2)⊕B0 with b1 < b2. Then there is a unitary
V ∈ M2 such that

C0 = diag (a1, a2) + V ∗diag (b1, b2)V =
(

a1 + b1 cos2 t + b2 sin2 t (b1 − b2) cos t sin t
(b1 − b2) cos t sin t a2 + b2 cos2 t + b1 sin2 t

)
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has two distinct eigenvalues different from µ1. Let X = V ⊕ I ∈ B(H1), and X̃ = X ⊕X. Then
the self-adjoint operator

A + X̃∗BX̃ = C0 ⊕ (A0 + B0)⊕ C̃2

has at least three different eigenvalues and is not essentially unitary.
Suppose A11 has one or no eigenvalue. Let a1 and a2 be the supremum and infimum of the

set S obtained from σ(A11) by removing the eigenvalue if it exists. Then there are mutually
orthonormal sequences {un : n ≥ 1} and {vn : n ≥ 1} in H1 such that ‖A11un − a1un‖ → 0 and
‖A11vn−a2vn‖ → 0. Since A11+B11 = µ1IH1 , we have ‖B11un−b1un‖ → 0 and ‖B11vn−b2vn‖ → 0
with (b1, b2) = (µ1−a1, µ1−a2). Let X ∈ B(H1) be unitary such that Xu3n = u3n, Xu3n+1 = v3n+1,
and Xv3n+2 = u3n+2 for n ≥ 1. Then

‖(A11 + X∗B11X)u3n − (a1 + b1)u3n‖ → 0, ‖(A11 + X∗B11X)u3n+1 − (a1 + b2)u3n+1‖ → 0,

and
‖(A11 + X∗B11X)v3n+2 − (a2 + b1)v3n+2‖ → 0.

Thus, the self-adjoint operator A + X∗BX has at least three distinct elements a1 + b2 > a1 + b1 >

a2 + b1 in the spectrum, and is not essentially unitary.
Similarly, we can prove that A22 and B22 are scalar operator. Thus,

A =
(

a1IH1 ‖A12‖IH1

‖A12‖IH1 a2IH1

)
has discrete spectrum {α1, α2}. Similarly, B has discrete spectrum {β1, β2}. But then one can easily
construct unitary X ∈ B(H) such that A+X∗BX has distinct eigenvalues α1 +β1, α1 +β2, α2 +β2,
so that the self-adjoint operator A + X∗BX is not essentially unitary.

Now, suppose condition (3) of Theorem 2.1 holds. If only one of the operators A1, . . . , Ak is
non-scalar, then condition (a) holds. Suppose there are at least two, say, A1 and A2, are non-scalar
operators among A1, . . . , Ak. If dimH = 2, then condition (b) holds.

Claim Assume that dimH > 2. The assumption that A1 and A2 are non-scalar is impossible.

By Corollary 3.3, there are unitary operators U2, . . . , Uk such that A = A1 = αI + G1 and

B =
∑k

j=2 U∗
j AjUj = βI + G2, where G1 and G2 are non-scalar skew-symmetric operators. We

may further replace (A1, A2) by (A1−αI, A2−βI) and assume that A = G1 and B = G2. For any
orthogonal operators X, Y ∈ B(H), the skew-symmetric operator C = X∗AX +Y ∗BY is essentially
orthogonal. So, there exist a, b ∈ R such that

b2I = (C − aI)∗(C − aI) = C∗C − a(C + C∗) + a2I = C∗C + a2I.

It follows that C∗C = (b2 − a2)I, and hence C is always a multiple of an orthogonal operator. We
consider two cases.

Case 1. Suppose dimH = n is finite. Then there are orthogonal matrices X, Y ∈ Mn such that

XtAX = A1 ⊕ · · · ⊕Ap ⊕ 0n−2p and Y tBY = B1 ⊕ · · · ⊕Bq ⊕ 0n−2q,



10 CHI-KWONG LI AND YIU-TUNG POON

where

Aj =
(

0 aj

−aj 0

)
with a1 ≥ · · · ≥ ap > 0

and

Bj =
(

0 bj

−bj 0

)
with b1 ≥ · · · ≥ bq > 0.

Since XtAX + Y tBY is a multiple of an orthogonal matrix, we see that n = 2p = 2q and a1 =
· · · = aq = b1 = · · · = bq. But then if Z is obtained from Y by switching its first two columns, then
XtAX + ZtBZ is not a multiple of an orthogonal operator, which is a contradiction.

Case 2. Suppose dimH is infinite. By Corollary 3.3, we can choose orthogonal operators
X, Y ∈ B(H) so that C = X∗AX + Y ∗BY is non-scalar. Let C∗C = rI. We may replace (A,B)
by (X∗AX, Y ∗BY )/

√
r so that C = A + B is orthogonal. Let x ∈ B(H) be a unit vector. Since

−C = C∗ is acting on a real Hilbert space, we see that

〈Cx, x〉 = 〈x,C∗x〉 = −〈x,Cx〉 = −〈Cx, x〉.

Thus, 〈Cx, x〉 = 0. Since C is orthogonal, Cx = y for some y ∈ x⊥. Note also that x = C∗(Cx) =
C∗y = −Cy. Thus, span {x, y} is a reducing subspace of C. As a result, C can be written as

C1 ⊕ C̃1 where C1 =
(

0 1
−1 0

)
. Now applying the argument to C̃1, we can further decompose C

as C1 ⊕ C1 ⊕ C̃0 so that C̃0 is orthogonal. If Ax = 0 (respectively, Bx = 0) in the first step of the

above decomposition, we should choose a unit vector u ∈ {x, y}⊥ so that Au = v 6= 0 (respectively,
Bu = v 6= 0) in the second step of the decomposition. Let

A =
(

A11 A12

−A∗12 A22

)
and B =

(
B11 −A12

A∗12 B22

)
with A11 + B11 = C1 ⊕ C1 and A22 + B22 = C̃0. We claim that A12 = 0. If it is not the case,
then there are orthogonal operators U, V such that the (1, 1) entry of the operator matrix U∗A12V

equals a 6= 0. Let Z = (U ⊕ V ) ∈ B(H). Then

Z∗CZ = U∗(C1 ⊕ C1)U ⊕ V ∗C̃0V.

Moreover,

Ĉ = Z∗AZ + ([−1]⊕ I)Z∗BZ([−1]⊕ I)

is again a multiple of an orthogonal operator, which can be obtained from Z∗CZ by a rank 2
perturbation because the two operator matrices differ only in the first row and the first column.
Clearly a finite rank perturbation cannot change the Z∗CZ to a different multiple of orthogonal

operator. Thus, Ĉ is itself an orthogonal operator. Recall that the (1, 1) entry of the operator
matrix U∗A12V equals a 6= 0. Comparing the fifth columns of the two operator matrices of Z∗CZ

and Ĉ, we see that the former has length 1 and the latter has length
√

1 + (2a)2, which contradicts

the fact that Ĉ is orthogonal. Now, A11, B11 ∈ M4 are skew-symmetric. By our choice of the

vectors x, y, u, v for decomposing C as C1 ⊕ C1 ⊕ C̃0, we see that neither A11 nor B11 is the zero
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operator. Now, using the result in the finite dimensional case, there are orthogonal R, S ∈ M4 such
that R∗A11R + S∗B11S is not a multiple of an orthogonal matrix. Then

(R⊕ I)∗A(R⊕ I) + (S ⊕ I)∗B(S ⊕ I) = R∗A11R⊕A22 + S∗B11S ⊕B22

is not a multiple of an orthogonal operator, which is a contradiction. �

Corollary 4.2. Let A1, . . . , Ak ∈ B(H). Then every operator in
∑k

j=1 U(Aj) is unitary if and only

if at least k − 1 of the operators A1, . . . , Ak are scalar operators and
∑k

j=1 Aj is unitary.

Corollary 4.3. Let A1, . . . , Ak ∈ B(H). Then every (nonnegative, real or complex) linear combi-
nation of operators in U(Aj) are multiple of unitaries if and only if one of the following conditions
holds.

(a) All operators A1, . . . , Ak are scalar.
(b) dimH = 2 and there is γ ∈ F with |γ| = 1 such that γAj is a trace zero matrix for each j.
(c) F = R, dimH = 2 and each Aj is skew-symmetric for each j.

5. Sum of operators from a single unitary orbit

We can use the results in the previous sections to characterize A ∈ B(H) such that the nonneg-
ative (or real) linear combinations of operators in U(A) have special structure.

Proposition 5.1. Suppose H is a complex Hilbert space. Then A ∈ B(H) is essentially self-adjoint
if and only if any one of the following equivalent conditions holds.

(a) There is a positive integer k ≥ 2 such that the sum of any k operators in U(A) is normal.
(b) There is a positive integer k ≥ 2 such that the sum of any k operators in U(A) is essentially

self-adjoint.
(c) Any nonnegative (or real) linear combinations of operators in U(A) is essentially self-

adjoint.

Proposition 5.2. Let H be a real or complex Hilbert space and A ∈ B(H). Then the following
conditions are equivalent.

(a) There is a positive integer k ≥ 2 such that the sum of any k operators in U(A) is a multiple
of a unitary operator.

(b) Any (real or complex) linear combination of operators in U(A) is a multiple of a unitary
operator.

(c) Either A is a scalar operator or (dimH, trA,AA∗ −A∗A) = (2, 0, 02).
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Proposition 5.3. Suppose H is a real Hilbert space. Let A ∈ B(H) be a non-scalar operator, and
let k ≥ 2 be a positive integer.

(a) The operator A is essentially symmetric or essentially skew-symmetric if and only if the
sum of any k operators in U(A) is normal.

(b) The operator A is essentially symmetric if and only if the sum of any k operators in U(A)
is essentially symmetric. Equivalently, any nonnegative (or real) linear combination of
operators in U(A) is essentially symmetric.

(c) The operator A is essentially skew-symmetric if and only if the sum of any k operators in
U(A) is essentially skew-symmetric. Equivalently, any nonnegative (or real) linear combi-
nation of operators in U(A) is essentially skew-symmetric.

References

[1] M.D. Choi, C.K. Li and Y.T. Poon, Some convexity features associated with unitary orbits, Canad. J. Math

55 (2003), 91-111.

[2] S. Friedland, Finite and infinite dimensional generalizations of Klyachko’s theorem, Linear Algebra Appl.

319 (2000) 3-22.

[3] W. Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. math. Soc.

37 (2000), 209-249.

[4] W. Fulton, Eigenvalues of majorized Hermitian matrices and Littlewood-Richardson coefficients, Linear

Algebra Appl. 319 (2000), 23-36.

[5] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.

[6] A.A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. 4 (1998),

419-445.

[7] A.A. Klyachko, Random walks on symmetric spaces and inequalities for matrix spectra, Linear Algebra

Appl. 319 (2000) 37-59.

[8] C.K. Li, Y.T. Poon and N.K. Sze, Ranks and determinants of the sum of matrices from unitary orbits,

Linear and Multilinear Algebra 56 (2008), 105-130.

[9] C.K. Li, Y.T. Poon and N.S. Sze, Eigenvalues of the sum of matrices from unitary similarity orbits, SIAM

J. Matrix Analysis Appl. 30 (2008), 560-581.

[10] M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge, New York,

2000.

[11] L. O’Shea and R. Sjamaar, Moment maps and Riemannian symmetric pairs, Math. Ann. 317 (2000), 415-

457.

[12] H. Radjavi and P. Rosenthal, Simultaneous Triangularization, Universitext, Springer-Verlag, New York,

2000.

[13] H. Wielandt, On eigenvalues of sums of normal matrices, Pacific J. Math. 5 (1955), 633-638.

Department of Mathematics, College of William & Mary, Williamsburg, VA 23185

E-mail address: ckli@math.wm.edu

Department of Mathematics, Iowa State University, Ames, IA 50051

E-mail address: ytpoon@iastate.edu


