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Abstract
Let A and B be rectangular matrices. Then A is orthogonal to B if

|A+uB| > ||A]| for every scalar p.

Some approximation theory and convexity results on matrices are used to study orthogonality

of matrices and answer an open problem of Bhatia and Semrl].

1 Introduction

Let (F™** || -||) be a normed matrix space over F = R or C. Suppose A, B € F"*" we say
that A is orthogonal to B (in the Birkhoff-James sense [4]) if

|A+ pBl > ||A] for every p € F.

The above condition can be interpreted in the context of approximation theory as follows.
Suppose A € F™*" is not in the linear subspace W spanned by the matrix B € F™*". Then
the zero matrix is the best approximation to A among all matrices in W. In this note, we use
some approximation theory and convexity results in matrix spaces to study orthogonality of
matrices. Qur results cover and extend those of other authors [1, 5].

We collect some preliminary results in Section 2, and use them to characterize matrix
pairs which are orthogonal with respect to Schatten p-norms in Section 3. In the last section,
we study orthogonal matrix pairs with respect to operator norms and give a counter-example
to a conjecture of Bhatia and Semrl [1].

We always assume that F™*" is equipped with the inner product (A, B) = tr (AB*).
This includes the special case when F"*! = F” and (z,y) = tr (zy*) = y*z. Denote by
{e1,...,€,} the standard basis for F*  and {E\1, E1a, ..., E;.,} the standard basis for F™*".
Let U,(F) be the unitary or orthogonal group depending on F = C or R.

For notational convenience, we always consider m xn matrix with m < n in our discussion;
the case m > n can be treated similarly. For A € F™*" denote by s1(A) > -+ > s,(A)
the singular values of A, which are the nonnegative square roots of the eigenvalues of the
matrix AA*. We always use the fact that every matrix A € F™*" has a singular value

decomposition, viz., A = U*(X"., s;(A)E,;)V for some U € U, (F) and V € U, (F).
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2 Preliminary Results
Let || - || be a norm on F™*". The dual norm of || - || is defined by
117 = max{|(X, V)] : [Y] <1}.

We have the following result, which is a special case of the general theorem of Singer in [9,

p.170].

Proposition 2.1 Let || - || be a norm on F™*". Suppose A, B € F™*" are such that A is
not a multiple of B. Then

|A+uB| > Al forallpcF

if and only if there exist h extreme points Fy, ..., F, € F™*" of the unit ball {Y € F™*" .
IV||P < 1} in the dual space (F™ " || - ||P) with h < 3 in the complez case and h < 2 in the

real case, and positive numbers ty,..., t, with t; + --- +t, = 1 such that
h
th(Fj7B):0 and (F5.A) =All, j=1,....% (1)
7=1

The numerical range of a matrix A € F"*" is defined by
W(A)={z"Az: 2 € F"| 2"z =1},
which has been studied extensively, see [3, Chapter 1]. We have the following result.

Proposition 2.2 Let A € F**". Then W(A) is convez.

Proof. For the complex case, see [3, Chapter 1]. For the real case, note that W(A) can
be viewed as the image of the unit sphere in R™ under the continuous map = — z*Ax. Since
the unit sphere in R™ is a compact connected set, the set W(A) is a closed interval. O

3 The Schatten p-Norms

Suppose 1 < p < co. The Schatten p-norm of A € F™*" is defined by

5(4) = 4 {5 s} 1< p< oo
max{s;(4): 1 <j<m} ifp=oo.

We refer the readers to [7] for basic properties of the Schatten p-norms. Here we characterize
A € F™*" which are orthogonal to a given matrix B € F™*" with respect to the Schatten
p-norms. We shall use the basic fact that the dual space of (F™*" S,) is (F™*",S,), where



1/p+1/q = 1. Moreover, F' € F™*" is an extreme point of the unit norm ball of (F™*" S,)
if and only if

(i) p=1 and F = zy* for some unit vectors z € F™ and y € F”;

(ii) 1 < p < oo and S,(F) = 1;

(iii) p= o0 and FF* = I,.

In [1] (see also [5]) the authors obtained results for complex square matrices with p > 1
and partial results for p = 1 by different methods.

Theorem 3.1 Let A, B € F*", where m < n. The following conditions are equivalent.
(a) Soo(A+ uB) > Sx(A)  forallp €F.

(b) There exist unit vectors x € F™ and y € F" such that S (A) = 2*Ay and 2*By = 0,
=1,

equivalently, there is a unit vector y € F* such that So(A) (Ay) and (Ay, By) = 0.

(c) For any U € F™* with orthonormal columns that form a basis for the eigenspace of
AA* corresponding to the largest eigenvalue, and V = A*U/S,(A) € F*™* we have

Y

0 W(UBV) o 0€W(U*BAU).

Proof. To prove the theorem, we use Proposition 2.1 with || - | = S, and the fact that
(Fm™*nSy) is the dual space of (F™*", Sy).

Suppose (a) holds. By Proposition 2.1, there exist extreme points F; = z;y7 € F™"
of the unit ball of (F™*" S;) with 1 < j < h, and some positive constants ty,...,t, with
t14 -+ tp =1 so that (Fj, A) = So(A4) for j =1,...,h, and (Z;‘:l t;F;,B) = 0. By our
assumption on U, for each j = 1,..., h, there is a unit vector v; € F* so that z; = Uv;, and

y; = Vw;. Thus,

Pl

h
0= (th Z U*BV Jvj,
7=1

which is an element in the convex hull of W(U*BV), equivalently, 0 € W(U*BV) by
Proposition 2.2. By the fact that A*U = S, (A)V, we see 0 € W(U*BV) if and only if
0 € W(U*BA*U). Hence, condition (c) holds.

If (c) holds, and v € F* is a unit vector such that 0 = v*U*BA*Uv, then z = Uv and
y = A*x/S(A) are the unit vectors satisfying (b).

If (b) holds, then Fy = zy* € F™*" is an extreme point of the unit ball of (F™*" §);
see (1). So condition (1) holds with A = 1. By Proposition 2.1, condition (a) holds. .

Note that condition (b) in the above theorem looks simpler than (c) as it does not depend
on the construction of a basis for the eigenspace of AA*. Nonetheless, in practice, it is easier

to check condition (c) by studying W(U*BA*U).



Theorem 3.2 Let 1 < p < oo, m < n. Suppose A, B € F™*" where A = HX for some
positive semi-definite H € F™*™ and X € F™*" with XX* = I,,,. Then

Sp(A+uB) > S,(A) forall pe F

zf and only if for any U € Uy (F) and V € U, (F) satisfying UAV* = 371, s;(A)Ej; we have
{U*(Z S](A)p_lEjj)VB*} = 0, equivalently, tr (HP~' X B*) = 0.

Proof. The theorem readily follows from Proposition 2.1 and the fact that if U € U, (F)
and V' € V,(F) are such that A = U*(X7., a;E;;)V with a; > --+ > ap > 0, then F =

AU (ST a” EJ])V with

J=1%3
m 1/q m 1/q m 1/q
N = {Zagp—l)q} _ {Z“]]D‘(l_l/p)q} _ {Zai;‘}
7=1 7=1 7=1

is the unique extreme point of the dual norm ball in the dual space of (F™*" S,) satisfying

(F, A) = 5,(A). 0
Theorem 3.3 Let A, B € F"™*", where m < n. The following conditions are equivalent.
(a) S1(A+ pB) > Si1(A)  forallp € F.
(b) There exists F € F™*" such that Soo(F) < 1, tr (AF*) = S51(A) and tr (BF*) = 0.

(c) For any U € U, (F) and V € U,(F) satisfying UAV* =Y | s;(A)E,;, we have

7=1

and |tr (B11)| < S1(B22),

UBV*: (Bll BlZ)

By By
where By is k X k with k = rank (A4), and by convention S1(Bx) =0 if m = k.

Proof. Suppose (a) holds. By Proposition 2.1 and (iii), there exist extreme points
Fi, ..., Fy, € F™X" satisfying F;F; = I,, where 1 < h < 3, and positive constants #y,...,,

with t; + -+ + ¢, = 1 such that Si(A) = (F},A) for j = 1,...,h, and (Z?:l t;F;,B) = 0.
Then condition (b) holds with F' = E;‘:l t;F;

Suppose (b) holds. Let U € U, (F) and V' € U,(F) satisfy A = U*(X7L, s;(A)Ej;)V.
Furthermore, assume that rank (A) = k. Since tr (AF*) = 51(A), we see that

. (L 0
v =(y @)

where So(G) < 1. Thus,

_ w _ By By I, 0\~
0=u(BF) =t [(le a) (o G)]



implies that
|tr (Bi1)| = [tr (By2G™)| < S1(Ba2),

i.e., condition (c) holds.

Finally, if (c) holds with k& = m, then F' = U*(XL, E;;)V is an extreme point of the
unit ball of (F™*" S satisfying (F,A) = Si(A) and (Fy,B) = 0. By Proposition 2.1,
condition (a) holds. If (¢) holds with & < m, then by a result of Thompson [10] (see also [6]),
there exists G € Fm=8)x(n=k) och that So(G) <1 and 0 = tr(By1) + tr (B22G*). Suppose
G = HX for some positive semi-definite H and X € F(m—k)x(n—Fk) satisfying X X* = I, _¢.
Let Gy = (H + im)X, Gy=(H - im)X, and Fy, Fy, € F™*" be such that

. (L 0 o
UF]V_<O Gj) for j = 1,2.

Then F;F} = I, (Fj,A) = $1(A4) and ((Fy + F2)/2, B) = 0. By Proposition 2.1, condition
(a) holds. .

4 Operator norms, and a problem of Bhatia and Semrl

Let v be a norm on F”, and let || - ||, be the operator norm on F**" induced by v, i.e.,
|A]l, = max{v(Az): 2z € F", v(z) <1}.

The dual norm of v and || - ||, are defined as

vP(x) = max{|(z,y)|: y € F", v(y) <1},

and

147 = max{|(4, B)| : B € ", || B|l, < 1},

respectively. We have the following result.

Proposition 4.1 Let v be a norm on F". Denote by € and EP the set of extreme points of
the unit norm balls of v and V7, respectively. Then A is an extreme point of the unit ball of
|- |2 if and only if A = xy* such that x € EP and y € £.

Proof. Let & p be the set of extreme points of the unit ball By p of || - ||7. Since
1Al = max{|(4,X)| : X € F™", ||X||” <1},

and

Al = max{la Ay| 7 (e) = v(y) = 1
= mas{ltr (Aye") : 0P(2) = uly) = 1}
= max{|(4, zy")| : 7 (x) = v(y) = 1},
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we see that

Epp €S {zy"™: VP (z) = v(y) = 1}.

Ify = (y1+y2)/2, then zy* = (zy] +2y3)/2; if © = (z1+ 22)/2, then 2y* = (z1y™ + x2y™)/2.
Thus,

g||.||§ - {:L‘y* e SD, Yy e 5}

Suppose zy* with z € £P and y € €. If zy* is not an extreme point of By, then it is a

convex combination of other matrices in {uv* : u € P, v € &}, say,
xy* = thxjy;, tyooiytm >0, 84+ 1, =1,
J=1
Let u € EP be such that y*u = 1, and let yiju = pj for yj=1,...,n. Then |u;| <1 and
t t
T = ;cy*u = Etjxjy;u = thujxj.

Since = € &P, it follows that p;z; = = with |u;| = 1 for all j = 1,...,m. By a similar

argument, we see that n;y; = y for some n; with |n;| =1 for all j =1,...,m. Hence

= xy" (D tipmy)-
7=1

Thus, pjn; = 1 and z;y7 = 2y*, which is a contradiction. So, & p = {zy*: = € EP ye &}
as asserted. 0

Using the above result and Proposition 2.1, one readily deduces the following.

Proposition 4.2 Suppose || - ||, is an operator norm on F"*" induced by the vector norm v
on F*. Gien A € F"*" let

V(A ={zy 2 € &P yec& (Azy)=|A|.}.
Then B € F™*" satisfies
|4+ Bl > A, forallucF

if and only if there exist there exist h extreme points x1y, ..., xpyy € V(A) with h < 3 in the

complex case and h < 2 in the real case, and positive numbers ty,...,t, withti+---+t, =1
such that
h
> _ti(B,ajy;) = 0. (2)
J=1
Suppose v is a norm on F” and || - ||, is the corresponding operator norm on F™*".

Consider the following conditions for A, B € F**".



(1) || A+ Bl > |All, for all s € F.

(IT) There exists a vector y € F* with v(y) =1 such that v(Ay) = ||A||, and

v(Ay + pBy) > v(Ay) for all p € F.

In general, we have (II) implies (I). In [1], the authors conjectured that (I) also implies (II).
We use Proposition 4.2 to show that this is not true in general.

Example 4.3 Let || - || be the operator norm on F**" induced by the [, norm with p # 2.
Consider A = A; ©0,,_5 and B =1, ® 0,,_5, where

1 1
a=(1 1)
Define V(A) as in the proof of Proposition 4.2. Clearly, if Z € V(A), then Z = Z; & 0,2
for some Z; = (ayaz)!(biby) such that

(A1, Z1) > [(Ar, uwo™)]

for any u,v € F? with I,(u) = [,(v) = 1, where 1/p+1/q = 1. Tt follows from [8, Proposition
2] that Z; € V(A;) with

1 ’y(l, —1)t(0, 1)} ifp<?2
O)t( ) )77(071)t(17_1)} ifp>2’

where v = 1/1,((1,1)") with r = max{p,q}. Let V(A) = {U; & 0,_2,Uy & 0,_o}, where
V(A1) = {U1,Us}, and let z;,y; € F* satisfy [,(y;) = lo(x;) = 1 and z;y5 = U; @ 0,3 for
Jj =1,2. Then (2) holds with t; = t; = 1/2, and hence condition (I) follows.

Now, if y € F" satisfies [,( Ay) = ||A||, then y = (b1, b2,0,...,0)" € F* and

Ip(Ay) = (A (b1, b2)").

By [8, Proposition 2], we see that

[
(i) p < 2 and (by, by) is a multiple of (1,0) or (0,1), or
(ii) p > 2 and (by,by) is a multiple of (1,1) or (1,—1).

In any case, it is impossible to have
Ip((A1 + pB1)(by,02)") = 1p(As(b1,b2)") for all 1 € F,

and thus (II) cannot hold.
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