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1 Introduction

Consider a set P of permutation matrices of order n. What is the smallest integer m such
that P can be partitioned into subsets P1,P2, . . . ,Pm such that

∑
{P : P ∈ Pi}, (i = 1, 2, . . . ,m)

are (0,1)-matrices? Let G(P) be a graph with vertex set P with an edge joining two per-

mutation matrices P, Q ∈ P provided P and Q have a 1 in common (that is, a 1 in the

same position). The integer m equals the chromatic number χ(G(P)). Natural sets P of

permutation matrices arise by choosing A = [aij] to be a (0, 1)-matrix and

P = PA = {P : P ≤ A, P is a permutation matrix}. (1)

(Here the inequality P ≤ A is interpreted entrywise.) In this case the sets Pi in the partition
must satisfy ∑

{P : P ∈ Pi} ≤ A.

A more restrictive problem requires that

∑
{P : P ∈ Pi} = A (i = 1, 2, . . . ,m). (2)

If (2) holds, then ∑
{P : P ∈ PA} = mA,

and we say that PA has a perfect partition. The cardinality of the set PA equals the permanent
of A defined, as usual, by:

per(A) =
∑

(i1,i2,...,in)∈Sn

a1i1a2i2 · · · anin ,

where the summation is over the symmetric group Sn of all permutations of {1, 2, . . . , n}.
Suppose that PA has a perfect partition. Then there are two consequences for the struc-

ture of A. First, there is an integer k such that all row and column sums of A equal k, and
this integer k satisfies the equation per(A) = mk. Second, a perfect partition implies that
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each 1 of A belongs to m permutation matrices P ≤ A, and hence, where A(i, j) denotes the
submatrix of A obtained by deleting row i and column j, that

perA(i, j) = m if aij = 1,

that is, the permanental minors of the 1’s of A all equal the same constant m.
Let GA = G(PA). Since the chromatic number of GA equals the minimal number of

independent sets into which PA can be partitioned, we have

χ(GA) ≥ per(A)

α(GA)
, (3)

where α(GA) is the maximal size of an independent set of GA. We can have equality in (3)

only if α(GA)|per(A). If PA has a perfect partition, then the integer m in (2) equals χ(GA).

Since χ(GA) is an integer, (3) implies that

χ(GA) ≥
⌈
per(A)

α(GA)

⌉
. (4)

By a theorem of Folkman and Fulkerson [2] (see also Theorem 6.4.3 in [1]), the indepen-

dence number α(GA) equals

min

{
sum(Akl)

k + l − n
: k + l > n

}

where the minimum is taken over all pairs of integers k and l with n < k + l ≤ 2n and k× l
submatrices Akl of A, and sum(Akl) is the sum of the entries of Akl.

There is a geometrical interpretation of the perfect partition problem. Recall that a
necessary condition for the existence of a perfect partition for PA is that the sum of matrices
in PA is a multiple of A. Thus, the average of PA, which can also be viewed as the centroid
of the convex hull of PA, has the form γA. Clearly, every element in PA is an extreme
point of the convex hull of PA. (To see this, note that every element X in PA has the same

Frobenius norm (trace XX t)1/2 and therefore cannot be written as a convex combination of

the others.) If A has row sums and column sums all equal to k, then one needs at least k

elements in PA whose average (regarded as the centroid of the convex hull of the k elements)
is equal to γA; if the desired partition is a partition of PA in k-element sets, then each of
them has the same average as that of PA.

In the subsequent discussion, let Jn be the n × n matrix of all 1’s. In the next section
we consider perfect partitions of Sn = PJn (where we now regard Sn as the set of n × n

permutation matrices) and the alternating group An of all n× n even permutation matrices

(permutation matrices with determinant equal to 1). In Section 3, we consider the set
Dn = PJn−In of n × n derangement permutation matrices; we present some partial results
and open problems. Additional open questions are discussed in the final section.
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2 Partitioning Sn and An

We have α(Jn) = n and per(Jn) = n!, and it is easy to show that
∑

X∈Sn
X = (n − 1)!Jn.

Can we partition Sn into (n − 1)! subsets so that the sum of the matrices in each subset is
Jn? The answer is affirmative.

Proposition 2.1 The set Sn = PJn is a disjoint union of (n− 1)! subsets such that the sum
of the matrices in each subset is Jn. Hence Sn has a perfect partition.

Proof. Let H = {In, P, . . . , P n−1} where P is the basic n× n circulant matrix



0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . . 0 0
0 0 0 · · · 0 1
1 0 0 · · · 0 0

 . (5)

Then H is a cyclic group with n elements whose sum is the matrix Jn. There are (n − 1)!

cosets of H in Sn. Each coset has the form QH = {QP j : j = 0, . . . , n−1} for some Q ∈ Sn.
Clearly, the sum of the matrices in each coset is also the matrix Jn. 2

Now we consider the group An of even permutation matrices. We have |An| = n!/2,

and it is not hard to show that
∑

X∈An
X = [(n − 1)!/2]Jn if n ≥ 3. Can we partition An

into (n − 1)!/2 subsets so that the sum of the matrices in each subset is Jn? We have the
following result.

Proposition 2.2 Suppose n ≥ 3. The set An can be partitioned into (n − 1)!/2 subsets so
that the sum of the matrices in each subset is Jn.

Proof. We consider three cases according to n.

Case 1. If n ≥ 3 is odd, then the basic circulant matrix P is in An. Thus H = 〈P 〉 is a

subgroup of An with (n− 1)!/2 cosets, and the sum of the matrices in each coset is Jn.

Case 2. If n = 4k for some positive integer k, we can prove by induction that:

There is a subgroup H in An with n elements whose sum equals Jn, and hence the cosets
of the group H will be a desired partition.

When k = 1, let H4 be the subgroup of A4 containing all the elements of order 2 or 0
(H4 is the 2-Sylow subgroup of A4). One can readily check that the the sum of the matrices
in H4 sum up to J4.

Now, suppose the result is true for n = 4k for some k ≥ 1. Consider the case when n =
4(k +1). By the induction assumption, there is a group H4k of A4k such that the sum of the

matrices in H4k is J4k. Let H = {A⊗B : A ∈ H4, B ∈ H4k}, where X⊗Y = (xijY ) denotes

the usual tensor product of two matrices. Then H is a subgroup of An with n = 4(k + 1)
elements whose sum is the matrix Jn. By induction, our claim is proved.
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Case 3. Let n = 2m for some odd integer m. We consider the subgroup K of An consisting
of matrices of the form A⊕B, where A and B are m×m permutation matrices. There are

(m!)2/2 such matrices. To see this, if we allow A and B to be arbitrary matrices in Sm, there

will be (m!)2 such matrices in Sn. Since half of them are odd permutations, we see that K

has (m!)2/2 elements as asserted.

We claim that K can be partitioned into m((m − 1)!)2/2 subsets such that each subset
has m elements summing up to Jm⊕Jm. To this end, let P ∈ Sm be the basic circulant. Let
G = 〈P 〉, and let Q1G, . . . , QrG be the cosets of G in Sm, where r = (m−1)!, Q1, . . . , Qr/2 ∈
Am and Qj /∈ Am for j > r/2.

For each i, j = 1, . . . , r/2, consider the following m-element subsets of An:

Sij1 = {(Qi ⊕Qj)(P ⊕ P )k : k = 0, . . . ,m− 1},

Sij2 = {X(Im ⊕ P ) : X ∈ Sij1}, Sij3 = {X(Im ⊕ P 2) : X ∈ Sij1}, . . . ,

. . . , Sijm = {X(Im ⊕ Pm−1) : X ∈ Sij1}.

We get m(r/2)2 disjoint m-element subsets of K.

Next, for each i, j = r/2 + 1, . . . , r, consider

Sij1 = {(Qi ⊕Qj)(P ⊕ P )k : k = 0, . . . ,m− 1},

Sij2 = {X(Im ⊕ P ) : X ∈ Sij1}, Sij3 = {X(Im ⊕ P 2) : X ∈ Sij1}, . . . ,

. . . , Sijm = {X(Im ⊕ Pm−1) : X ∈ Sij1}.

We get another m(r/2)2 disjoint m-element subsets of K.

Consequently, we get mr2/2 = m((m−1)!)2/2 disjoint m-element subsets of K. Moreover,
the matrices in each subset sum up to Jm ⊕ Jm as desired.

Now, consider the matrix R obtained by switching the first two rows of
(

0m Im

Im 0m

)
. Then

R ∈ Am. Let
H = K ∪ {RX : X ∈ K}.

One easily checks that H is the subgroup of An consisting of matrices of the form(
A 0
0 B

)
or

(
0 C
D 0

)
.

Moreover, for each set Sijk defined above, we may construct

Tijk = Sijk ∪ {RX : X ∈ Sijk}.

Then each Tijk will have n = 2m elements summing up to Jn, and these Tijk form a partition

of the subgroup H.
Now, let H, W1H, W2H, . . . ,WtH be the cosets of H in An, where t+1 = |An|/|H|. Each

coset WsH is a disjoint union of WsTijk’s, and each WsTijk has n elements summing up to

Jn. 2
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Corollary 2.3 The set Sn has a perfect partition in which each part of the partition consists
of all even permutation matrices or all odd permutation matrices.

Proof. As in the proof of Proposition 2.1, the coset of odd permutations also can be
partitioned into sets summing to Jn. 2

3 Partitioning Dn = PJn−In: Partial Result

Let Ln = Jn − In. For n = 2, . . . , 5 we show that Dn = PLn can be partitioned into subsets
each with n− 1 matrices that sum to Ln.

In the following discussion, we identify a permutation σ in disjoint cycle representation
with the corresponding permutation matrix in Sn. For example, (1, 2)(3, 4) represents the
permutation obtained from the identity matrix by interchanging the first and second rows,
and also the third and fourth rows. Then σ ∈ Sn is a derangement if and only if σ(i) 6= i

for i = 1, . . . , n. Moreover, the elements in a set of derangements {σ1, . . . , σn−1} ⊆ Dn sum

to Ln if and only if σr(i) 6= σs(i) for r 6= s and for all i = 1, . . . , n. We have the following
partial result for the partition problem of PLn .

Proposition 3.1 The set Dn has a perfect partition if n ≤ 5.

Proof. If n = 2, then Dn = {Ln} is a singleton. If n = 3, then the members of

Dn = {(1, 2, 3), (1, 3, 2)} sum to Ln.
For n = 4, a permutation belongs to Dn if and only if it is a 4-cycle or a product of two

disjoint transpositions. If

F1 = {(1, 2)(3, 4), (1, 3, 2, 4), (1, 4, 2, 3)},

F2 = {(1, 3)(2, 4), (1, 2, 3, 4), (1, 4, 3, 2)},

F3 = {(1, 4)(2, 3), (1, 2, 4, 3), (1, 3, 4, 2)},

then D4 = ∪3
k=1Fk and the members of each Fk sum to L4.

For n = 5, a permutation belongs to Dn if and only if it is of the form (i1, i2, i3, i4, i5) or

(i1, i2)(i3, i4, i5). Let D′
5 ⊂ D5 be the set of derangements of the form (i1, i2, i3, i4, i5) and let

D′′
5 ⊂ D5 be the set of derangements of the form (i1, i2)(i3, i4, i5). Observe that |D′

5| = 24 and

|D′′
5 | = 20. We show that D′

5 and D′′
5 can be partitioned into 6 and 5 subsets, respectively,

such that the members of each subset sum to L5.
Let τ1 = (1, 2, 3, 4, 5), τ2 = (1, 2, 3, 5, 4), τ3 = (1, 2, 4, 3, 5), τ4 = (1, 2, 4, 5, 3), τ5 =

(1, 2, 5, 3, 4), and τ6 = (1, 2, 5, 4, 3). If Tk = {τk, τ
2
k , τ 3

k , τ 4
k}, then the collection of subsets

T1, . . . , T6 forms a partition of D′
5 such that the members of each Tk sum to L5. Now,

consider the following subsets of D′′
5 :

R1 = {(1, 2)(3, 4, 5), (1, 3)(2, 5, 4), (1, 4)(2, 3, 5), (1, 5)(2, 4, 3)}
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R2 = {(2, 1)(3, 5, 4), (2, 3)(1, 4, 5), (2, 4)(1, 5, 3), (2, 5)(1, 3, 4)}

R3 = {(3, 1)(2, 4, 5), (3, 2)(1, 5, 4), (3, 4)(1, 2, 5), (3, 5)(1, 4, 2)}

R4 = {(4, 1)(2, 5, 3), (4, 2)(1, 3, 5), (4, 3)(1, 5, 2), (4, 5)(1, 2, 3)}

R5 = {(5, 1)(2, 3, 4), (5, 2)(1, 4, 3), (5, 3)(1, 2, 4), (5, 4)(1, 3, 2)}.

Then the collection of subsets R1, . . . , R5 forms a partition of D′′
5 such that the members of

each Rk sum to L5. This completes the partition of D5. 2

The problem of partitioning Dn with n ≥ 6 is more difficult. In the following, we describe
several different approaches we considered.

First, we divide the set Dn into subsets according to different cycle decompositions, and
we attempt to show that each of these subsets admits a partition into (n−1)-element subsets
with elements summing to Ln. In particular, when n = 5, the partition was done in this
way. When we apply this idea to D6, we get the following subsets:

T1: the set of length-6 cycles – 120 elements;
T2: the set of permutations obtained by the product of a 2-cycle and a 4-cycle – 90 elements;
T3: the set of permutations obtained by the product of two 3-cycles – 40 elements;
T4: the set of permutations obtained by the product of three 2-cycles – 15 elements.

For each subset, the sum of its elements (say, denoted by X) will be a multiple of Ln because

all of the diagonal entries of X are zeroes and PXP t = X for every permutation matrix P .
However, this approach to partitioning Dn fails when n = 6. One can check that the set
T4 cannot be partitioned into three 5-element subsets such that the elements in each subset
sum up to L6.

An alternative idea is to select 15 elements τ1, . . . , τ15 from T1 and construct disjoint
subsets

Ui = {τ j
i : j = 1, . . . , 5}

so that each of them has elements summing up to L6. Note that each Ui will have two
elements in T1, two elements in T3, and one element in T4. If this is done, then we are left
with 90 elements in T1, the entire set T2, and 10 elements in T3.

Another scheme is to select one element in T4 and four elements in T1 of the form

τ1, τ
−1
1 , τ2, τ

−1
2 to form a set whose elements sum up to L6. Here is an example:

(1, 2)(3, 4)(5, 6), (1, 3, 5, 2, 6, 4), (1, 4, 6, 2, 5, 3), (1, 6, 3, 2, 4, 5), (1, 5, 4, 2, 3, 6).

In fact, one can construct 15 sets of such form and use up the 15 elements in T4 together
with 60 elements in T1.

It is also possible to use two elements in T3 and three elements in T1 to form a set whose
elements sum up to L6. Here is an example:

(1, 2, 3)(4, 5, 6), (1, 3, 2)(4, 6, 5), (1, 4, 2, 5, 3, 6), (1, 5, 2, 6, 3, 4), (1, 6, 2, 4, 3, 5).

One can actually construct 20 subsets of this form and use up the 40 elements in T3 together
with 60 elements in T1.
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One may want to use the two schemes in the last two paragraphs to exhaust the elements
in T1, T3, and T4, but this strategy seems to be impossible. Of course, even if it can be done,
one must still partition the elements in T2 into 18 sets, each of which has elements summing
up to L6. Here is an example of such a set:

(1, 2)(3, 4, 5, 6), (1, 3)(2, 4, 6, 5), (1, 4)(2, 5, 3, 6), (1, 5)(2, 6, 4, 3), (1, 6)(2, 3, 5, 4).

It is unclear whether one can construct 18 disjoint subsets of T2 with the desired property.

Thus, the problem of finding a perfect partition for PLn seems difficult. We close this
section with a statement of the problem and some related questions:

Problem 3.2 For n ≥ 6, is there a perfect partition for PLn or PLn ∩ An?

Problem 3.3 For n ≥ 6, is there a perfect partition for the collection of permutations in
PLn with some specific cycle decomposition?

For example, can the set of permutations obtained by the product of a 2-cycle and an
(n − 2)-cycle be partitioned into subsets such that the elements of each subset sum up to
Ln? The answer is no for n = 4, yes for n = 5, and unknown for n ≥ 6.

4 Additional Problems

We continue to use P to denote the basic circulant as defined in (5). Note that Jn =
∑n−1

k=0 P k

and Ln =
∑n−1

k=1 P k. For any subsets K ⊆ {0, 1, . . . , n− 1}, let

PK =
∑
k∈K

P k.

A general question is:

Problem 4.1 Determine K ⊆ {0, 1, . . . , n− 1} so that PPK
(respectively, PPK

∩ An) has a
perfect partition.

By the results in the previous sections, we see that both problems in Problem 4.1 have
affirmative answers if |K| = n. If |K| = 1, then both problems also have affirmative answers

trivially. If |K| = 2, then we have the following proposition.

Proposition 4.2 Let A = In + P k with 0 < k < n. Then PA admits a perfect partition.

Proof. Write P k in disjoint cycle notation. There are two cases.

Case 1. If (n, k) is relatively prime, then P k is just one long cycle, and In and P k are the
only two elements in PA, which admits a trivial perfect partition.

Case 2. If d > 1 is the greatest common divisor of n and k, and m = n/d, then P k is the

product of d cycles of length m. Now, we can rewrite A = In + P k as the direct sum of d
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m×m matrices, each of which is Im +Q, where Q is the m×m basic circulant. In this form,
one readily checks that X ∈ PA if and only if X = X1 ⊕ · · · ⊕Xd such that Xj ∈ {Im, Q}.
Thus, there are 2d matrices in PA. Moreover, PA has a perfect partition consisting of sets
of the form {X, A−X} with X ∈ PA. 2

If |K| = n − 1, we basically have the PLn problem, and we only have partial results.

If |K| = 3, even the necessary condition for a perfect partition may not hold. Here is an
example which can be verified readily.

Example 4.3 For n = 5 there are 13 matrices in PA for A = In+P+P 2 or A = In+P 2+P 3.
In either case, a perfect partition is impossible.

Note that in general, if |K| = n − 2, then PK = Jn − P r − P s. Replacing PK by P jPK

for a suitable j ∈ {0, . . . , n − 1}, we may assume that (r, s) = (−l, l) with 1 ≤ l ≤ n/2, or

(r, s) = (0, 1). For example, for n = 5, we only need to consider the cases in Example 4.3.

If n is even and (r, s) = (−l, l) with 1 ≤ l ≤ n/2, then up to a permutation equivalence,

i.e., replace A by RAS for some suitable R,S ∈ Sn, we can assume that PK = Jn−(In/2⊗J2),

which can be viewed as a generalization of Ln. In general, if n = km, we consider Ln,k =

Jn − (Im ⊗ Jk). We have the following.

Proposition 4.4 Suppose n ≥ 4 and n = km. Then per (Ln,k) is a multiple of (n − k).

Moreover, if n > k ≥ 2, then
∣∣∣PLn,k

∩ An

∣∣∣ = per (Ln,k)/2 is also a multiple of (n− k).

Proof. Use Laplace expansion about the first row of Ln,k. Note that all of the submatrices

of Ln,k obtained by deleting the first row and jth column with k < j ≤ n are permutationally

equivalent and have the same permanent, say, r. Thus, per (Ln,k) = (n− k)r.

Next, suppose n > k ≥ 2. Then for each σ ∈ PLn,k
, we have (1, 2)σ ∈ PLn,k

, and either

σ or (1, 2)σ is an even permutation. Thus, half of the elements in PLn,k
belong to An.

Next, consider the Laplace expansion of per (Ln,k) as in the first paragraph of the proof. We

claim that r is even. To this end, suppose A is obtained from Ln,k by deleting its first row

and (k + 1)st column. Note that for any permutation σ ∈ PA, we have σ(1, 2) ∈ PA, and

either σ or σ(1, 2) is an even permutation (in Sn−1). Thus, |PA| = r is even. Consequently,∣∣∣PLn,k
∩ An

∣∣∣ = per (Ln,k)/2 = (n− k)(r/2) is also a multiple of (n− k). 2

Note that the second assertion of the above proposition is not valid for PLn . As shown
in Section 3, the number of even and odd permutations in PLn may be different:

n : 3 4 5 6
|PLn| : 2 9 44 265

|PLn ∩ An| : 2 3 24 130
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Nevertheless, for (n, k) = (3, 1), (4, 1), (5, 1) it is not hard to find a perfect partition for
PLn ∩ An; see the results in the last section. In general, we have the following.

Problem 4.5 Determine whether there is a perfect partition for PLn,k
(respectively, PLn,k

∩
An).

Notice that finding a perfect partition for PLn,n/2
is the same as finding a perfect partition

for PA with A = Jn/2 ⊕ Jn/2. Examining Case 3 in the proof of Proposition 2.2, we have the

following.

Proposition 4.6 Suppose n is even. There is always a perfect partition for PLn,n/2
(respec-

tively, PLn,n/2
∩ An).

Answering Problem 4.5 for other values of (n, k) is not so easy. For (n, k) = (6, 2), we
have an affirmative answer.

Proposition 4.7 There is a perfect partition for PL6,2.

Proof. Let L6,2 = (Aij)1≤i,j≤3, where Aii = 02 for i = 1, 2, 3, and Aij = J2 for i 6= j. We

first show that |PL6,2| = 80. Every permutation matrix in PL6,2 is determined by selecting

exactly one nonzero entry from each row and column of L6,2. Consider the number of ways

to construct a matrix X ∈ PL6,2 if the 1 in the (1, 3) position of L6,2 is selected to be in X.

In the following discussion, a nonzero entry of L6,2 is said to be available if no other nonzero

entry in its row or column has been selected to be in X. We consider two cases, depending
on the nonzero entry selected from the second row of L6,2.

Case 1. If the (2, 4) entry of L6,2 is selected to be in X, then the remaining four nonzero

entries of X must be obtained by selecting two nonzero entries each from the A23 and A31

submatrices of L6,2. The nonzero entries from each of these two submatrices can be selected

in one of two ways: either entirely on the submatrix diagonal or entirely off of the submatrix
diagonal. Thus, there are 2× 2 = 4 possible ways to construct X in this case.
Case 2. If the (2, 4) entry of L6,2 is not selected, then there are two available nonzero

entries in the second row of L6,2 that can be selected; both choices lie in A13. Each choice

sequentially forces the selection of one of two available nonzero entries each from the A23, A21,
and A31 submatrices, thereby determining the final selection of the only available nonzero

entry from the A32 submatrix. Thus, there are 24 = 16 ways to construct X in this case.
Combining the two preceding cases, there are 4 + 16 = 20 matrices in PL6,2 with a 1

in the (1, 3) position. By analogous arguments, one can show that there are 20 matrices in

PL6,2 with a 1 in the (1, k) position for k = 4, 5, 6. Thus, |PL6,2| = 4× 20 = 80.

Next, we show that PL6,2 admits a perfect partition. Let T2 ∈ S2 correspond to the

permutation (1, 2), and let R3 ∈ S3 correspond to the permutation (1, 3, 2). Let

W = {R3 ⊗ I2, R3 ⊗ T2, R
t
3 ⊗ I2, R

t
3 ⊗ T2}.
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Then W , (3, 4)W , (5, 6)W , and (3, 4)(5, 6)W are disjoint subsets of PL6,2 such that the

matrices in each subset sum up to L6,2, and each of the four subsets contains exactly one

matrix from Case 1 above.
The remaining 64 matrices in PL6,2 can be partitioned as follows. Recall that each of the

16 matrices X1, . . . , X16 from Case 2 above has exactly one nonzero entry from every Aij in

L6,2 with i 6= j. Now, we associate each matrix Xr from Case 2 with three other matrices

Xr,2, Xr,3, and Xr,4 in PL6,2 as determined in the following manner:

Xr,2: From each nonzero Aij, select the entry horizontally adjacent to the entry that

was selected to be in Xr.

Xr,3: From each nonzero Aij, select the entry vertically adjacent to the entry that was

selected to be in Xr.

Xr,4: From each nonzero Aij, select the entry diagonal to the entry that was selected

to be in Xr.

Then we have 16 disjoint sets of the form {Xr, Xr,2, Xr,3, Xr,4} such the matrices in each

set sum up to L6,2. For example, the following four matrices in PL6,2 constitute a set in the

partition:

Xr =



0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0


, Xr,2 =



0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0


,

Xr,3 =



0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0


, Xr,4 =



0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0


.

None of the 64 matrices partitioned into sets of the form {Xr, Xr,2, Xr,3, Xr,4} were previously

used up in sets of the form σW , because all matrices belonging to sets of the form σW in
the partition have either two or zero entries from each nonzero Aij in L6,2. We thus have a

perfect partition of PL6,2 . 2

We close the paper with some general questions.

Problem 4.8 For which n× n (0,1)-matrices A does PA have a perfect partition?

Note that such matrices A must be regular, and if k is the constant row and column sum,
k must be a factor of the permanent of A. In addition, the permanental minors of the 1’s of
A are constant.
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Problem 4.9 Determine a good upper bound on the chromatic number χ(GA) of the per-
mutation graph of a regular matrix A. More specifically, find a constant cn such that

χ(GA) ≤ cn

⌈
per(A)

k

⌉
.

An even more general problem is the following.

Problem 4.10 Let P = {Pi : i ∈ I} be a set of permutation matrices of order n. Let A be

a multiset of (0, 1)-matrices of order n. When is there a partition of I into sets I1, I2, . . . , Im

such that the matrices
∑{Pj : j ∈ Ii}, (i = 1, 2, . . . ,m), are the matrices in A, including

multiplicities?

The problem discussed in this paper concerns sets of permutation matrices PA where A
is a (0, 1)-matrix and A is the multiset consisting of A with a certain multiplicity.
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