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Abstract
Suppose m and n are integers such that 1 ≤ m ≤ n. For a subgroup H of the symmetric

group Sm of degree m, consider the generalized matrix function on m×m matrices B = (bij)

defined by dH(B) =
∑

σ∈H

∏m
j=1 bjσ(j) and the generalized numerical range of an n×n complex

matrix A associated with dH defined by

WH(A) = {dH(X∗AX) : X is n×m such that X∗X = Im}.

It is known that WH(A) is convex if m = 1 or if m = n = 2. We show that there exist

normal matrices A for which WH(A) is not convex if 3 ≤ m ≤ n. Moreover, for m = 2 < n,

we prove that a normal matrix A with eigenvalues lying on a straight line has convex WH(A)
if and only if νA is Hermitian for some nonzero ν ∈ C. These results extend those of Hu,
Hurley and Tam, who studied the special case when 2 ≤ m ≤ 3 ≤ n and H = Sm.
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1 Introduction

Let Mn be the algebra of n × n complex matrices. Suppose m is a positive integer such
that 1 ≤ m ≤ n, and H is a subgroup of the symmetric group Sm of degree m. Define the
generalized matrix function associated with the principal character of the group H on an
m×m matrix B = (bij) by

dH(B) =
∑
σ∈H

m∏
j=1

bjσ(j),

and define the generalized numerical range of an A ∈ Mn associated with dH by

WH(A) = {dH(V ∗AV ) : V is n×m such that V ∗V = Im}.

Denote by X[m] the leading m×m principal submatrix of X ∈ Mn. It is easy to verify that

WH(A) = {dH(U∗AU [m]) : U unitary }.

When H = Sm, then dH(B) is the permanent of B, and WH(A) is known as the mth
permanental range of A ∈ Mn. When m = 1, the concept reduces to the classical numerical
range of A defined by

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1},

which has been studied extensively (see e.g. [4, Chapter 1]). There are many generalizations

of the classical numerical range, and WH(A) is one of the generalizations involving multilinear

algebraic structures introduced in [8]. This generalization has drawn the attention of several

authors [2, 5, 6, 7]. Very recently, it has been shown [1] that the mth permanental range is

related to quantum systems of bosons (particles carrying positive charges). This makes the
subject more interesting.

The celebrated Toeplitz-Hausdorff theorem (see e.g. [4, Chapter 1]) asserts that the
classical numerical range of a matrix is always convex. This result leads to many interesting
useful consequences in theory and applications. It is known [7] that if (m, n) = (2, 2) then

WH(A) is convex. However, it was shown in [5] that there exists a normal matrix A ∈ Mn

such that the permanental range W Sm(A) is not convex if 2 ≤ m ≤ 3 ≤ n. Moreover, the
following conjecture was made.

Conjecture 1.1 Suppose H = Sm, 2 ≤ m ≤ n with (m, n) 6= (2, 2). Then a normal matrix

A ∈ Mn is a multiple of a Hermitian matrix if and only if WH(A) is convex.

The authors of [5] commented that the methods in their paper are too special to be used to
deal with the conjecture, and urged for more general techniques. In this note, we make a
move along this direction. In particular, we establish some techniques and prove the following
results.

Theorem 1.2 Suppose 3 ≤ m ≤ n. There is a normal matrix A = diag (µ + 1, 1, . . . , 1) ∈
Mn with a suitable choice of µ such that WH(A) is not convex.
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Theorem 1.3 Suppose m = 2 < n. Suppose A ∈ Mn is a normal matrix with eigenvalues

lying on a straight line. Then WH(A) is convex if and only if νA is Hermitian for some
nonzero ν ∈ C.

Besides extending the result in [5], our proofs may lead to useful ideas for studying their
conjecture and other types of generalized numerical ranges. Furthermore, in view of our
results, one may consider strengthening Conjecture 1.1 by removing the condition H = Sm.

We remark that one can extend the class of normal matrices A such that WH(A) is not

convex to a wider class of nonnormal matrices by a simple continuity argument, as in [5,

Theorem 4].

2 Proofs

First, we introduce some notations and lemmas to prove Theorem 1.2. Our strategy is to

choose A = diag (µ + 1, 1, . . . , 1) ∈ Mn for a suitable µ ∈ C so that WH(A) lies in the

(closed) upper half plane in C determined by a certain line L with L ∩WH(A) containing
at least two points z1 and z2, but not the whole line segment joining them.

Let 1 ≤ k ≤ m and H be a subgroup of Sm. For any increasing subsequence (j1, . . . , jk)

of (1, . . . ,m), define τ(j1, . . . , jk) to be the number of σ ∈ H satisfying σ(j) = j for all

j /∈ {j1, . . . , jk} with the convention that τ(1, . . . ,m) = |H|. Furthermore, define

Fk(t1, . . . , tm) =
∑

1≤j1<···<jk≤m

τ(j1, . . . , jk) tj1 · · · tjk

for (t1, . . . , tm) ∈ Tm, where

Tm = {(t1, . . . , tm) : tj > 0, t1 + . . . + tm = 1}.

Note that

F1(t1, . . . , tm) =
m∑

j=1

tj = 1,

and
Fm(t1, . . . , tm) = |H| t1 · · · tm. (2.1)

Since H contains the identity permutation, we see that for k = 2, . . . ,m− 1,

Fk(t1, . . . , tm) ≥ Ek(t1, . . . , tm), (2.2)

where Ek(t1, . . . , tm) is the kth elementary symmetric function of (t1, . . . , tm). We shall also
use the notation

Tm = {(t1, . . . , tm) : tj ≥ 0, t1 + . . . + tm = 1}.

With all these notations, we are ready to give a description for the elements in WH(A)

for A = diag (µ + 1, 1, . . . , 1) ∈ Mn.
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Lemma 2.1 Let A = diag (µ + 1, . . . , 1) ∈ Mn. Then z ∈ WH(A) if and only if

z = 1 +
m∑

k=1

(pµ)kFk(t1, . . . , tm)

with (t1, . . . , tm) ∈ Tm and p ∈ P , where P = [0, 1] if m < n, and P = {1} if m = n.

Proof. Suppose U ∈ Mn is unitary such that the first row of U equal to (u1, . . . , un).

Let Jm be the m×m matrix with all entries equal to 1, and let D = diag (u1, . . . , um). Set

(|u1|2, . . . , |um|2) = p(t1, . . . , tm) with p =
∑m

j=1 |uj|2. Then

dH(U∗AU [m]) = dH(Im + µD∗JmD) = 1 +
m∑

k=1

(pµ)kFk(t1, . . . , tk).

Conversely, for any (t1, . . . , tm) ∈ Tm and p ∈ P , where P is defined as in the lemma, there

exists a unitary U with the first row equal to (u1, . . . , un) such that (|u1|2, . . . , |um|2) =

p(t1, . . . , tm). Then

1 +
m∑

k=1

(pµ)kFk(t1, . . . , tk) = dH(U∗AU [m]) ∈ WH(A).

The result follows. 2

By the above lemma, we see that if A = diag (µ + 1, 1, . . . , 1) ∈ Mn and µ = Leiθ with

θ ∈ [0, 2π), then the real parts and imaginary parts of elements in WH(A) are of the form

1 +
m∑

k=1

(pL)k cos kθFk(t1, . . . , tk)

and
m∑

k=1

(pL)k sin kθFk(t1, . . . , tk),

respectively, where (t1, . . . , tm) ∈ Tm and p ∈ P . In the next lemma, we show that one can
choose µ so that the real parts and imaginary parts of the elements satisfy certain conditions.

Lemma 2.2 Suppose 2 ≤ m and 1 ≤ s < m. For each θ ∈ (π/m, π/(m − 1)) and L > 0,
define

F (θ, L) = inf {fθ,L(t1, . . . , tm) : (t1, . . . , tm) ∈ Tm} ,

where

fθ,L(t1, . . . , tm) =
m∑

k=s

Fk(t1, . . . , tm)

Fm(t1, . . . , tm)
Lk−s sin kθ.

Then the inf is always attained. Moreover, there exist θ0 and L0 such that F (θ0, L0) = 0,

and for any (t1, . . . , tm) ∈ Tm satisfying 0 = F (θ0, L0) = fθ0,L0(t1, . . . , tm) we have

m∑
k=s

Fk(t1, . . . , tm)Lk
0 cos kθ0 <

−|H|
2

.
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Proof. For a fixed θ ∈ (π/m, π/(m − 1)) and L > 0, the function fθ,L is continuous on

Tm. Moreover, we have

fθ,L(t1, . . . , tm)

≥ Lm−s sin mθ +
Fm−1(t1, . . . , tm)

Fm(t1, . . . , tm)
Lm−s−1 sin(m− 1)θ

≥ Lm−s sin mθ +
Em−1(t1, . . . , tm)

Fm(t1, . . . , tm)
Lm−s−1 sin(m− 1)θ by (2.2)

= Lm−s sin mθ + |H|−1(
m∑

j=1

t−1
j )Lm−s−1 sin(m− 1)θ

> Lm−s sin mθ + |H|−1t−1
j Lm−s−1 sin(m− 1)θ, (2.3)

which will be larger than f ∗ = fθ,L(1/m, . . . , 1/m) if

tj < δ =
|H|−1Lm−s−1 sin(m− 1)θ

|f ∗|+ Lm−s| sin mθ|
.

Thus, F (θ, L) = f ∗ or

F (θ, L) = inf {fθ,L(t1, . . . , tm) : (t1, . . . , tm) ∈ Tm and tj ≥ δ for all j} .

The collection of such (t1, . . . , tm) form a compact subset of Tm. Hence the value F (θ, L) is
attainable.

Now we fix θ ∈ (π/m, π/(m− 1)) and let L vary. If L →∞, then F (θ, L) tends to −∞
since

F (θ, L) ≤ f ∗ = Lm−s sin mθ +
m−1∑
k=s

Fk(1/m, . . . , 1/m)

Fm(1/m, . . . , 1/m)
Lk−s sin kθ.

Relations (2.1) and (2.2) and a standard calculus argument imply that

Fs(t1, . . . , tm)

Fm(t1, . . . , tm)
≥ Es(t1, . . . , tm)

|H|Em(t1, . . . , tm)
≥ Es(1/m, . . . , 1/m)

|H|Em(1/m, . . . , 1/m)
> 0

for all (t1, . . . , tm) ∈ Tm. Since

fθ,L(t1, . . . , tm) ≥ Lm−s sin mθ +
Fs(t1, . . . , tm)

Fm(t1, . . . , tm)
sin sθ,

we have

lim
L→0

F (θ, L) ≥ 1

2
inf

{
Fs(t1, . . . , tm)

Fm(t1, . . . , tm)
sin sθ : (t1, . . . , tm) ∈ Tm

}
> 0.

5



By the intermediate value theorem, there exists Lθ such that F (θ, Lθ) = 0. By the estimate

in (2.3), we see that if (t1, . . . , tm) ∈ Tm satisfies 0 = F (θ, Lθ) = fθ,Lθ
(t1, . . . , tm), then for

each j,

tjLθ > |H|−1 sin(m− 1)θ

| sin mθ|
. (2.4)

Now, choose θ0 ∈ (π/m, π/(m−1)), which is very close to π/m, so that cos mθ0 = −1/2−r

with r ∈ (1/4, 1/2) and

max{1/r, |H|} ≤ sin(m− 1)θ0

| sin mθ0|
= min

{
sin kθ0

| sin mθ0|
: 1 ≤ k ≤ m− 1

}
. (2.5)

Let L0 > 0 be such that F (θ0, L0) = 0. Then for any (t1, . . . , tm) ∈ Tm with 0 =

fθ0,L0(t1, . . . , tm) we have

tjL0 > 1 (2.6)

for all j by (2.4) and (2.5). Furthermore,

0 =
−Ls

0Fm(t1, . . . , tm)

| sin mθ0|
fθ0,L0(t1, . . . , tm)

= Lm
0 Fm(t1, . . . , tm)−

m−1∑
k=s

Fk(t1, . . . , tm)Lk
0

sin kθ0

| sin mθ0|

≤ Lm
0 Fm(t1, . . . , tm)− 1

r

m−1∑
k=s

Fk(t1, . . . , tm)Lk
0, (2.7)

where the last inequality is based on (2.5). It follows that

m∑
k=s

Fk(t1, . . . , tm)Lk
0 cos kθ0

≤ Fm(t1, . . . , tm)Lm
0 cos mθ0 +

m−1∑
k=s

Fk(t1, . . . , tm)Lk
0

=
−1

2
Fm(t1, . . . , tm)Lm

0 −
(
rFm(t1, . . . , tm)Lm

0 −
m−1∑
k=s

Fk(t1, . . . , tm)Lk
0

)

≤ −1

2
Fm(t1, . . . , tm)Lm

0 by (2.7)

=
−1

2
(|H| t1 . . . tm)Lm

0 by (2.1)

≤ −|H|
2

. by (2.6)

Thus the last assertion of the lemma follows. 2

6



We are now ready to present the

Proof of Theorem 1.2.
First, suppose m < n. Let L0 and θ0 satisfy the conclusion of Lemma 2.2 with s = 1.

Suppose µ = L0e
iθ0 and A = diag (µ + 1, 1, . . . , 1) ∈ Mn. By Lemma 2.1, WH(A) consists of

complex numbers of the form

z(p, t1, . . . , tm) = 1 +
m∑

k=1

(pµ)kFk(t1, . . . , tm),

where (t1, . . . , tm) ∈ Tm and p ∈ [0, 1]. By our choice of θ0 and L0, we see that there

are at least two points z1 and z2 in WH(A) with imaginary parts equal to 0, namely,

z1 = z(0, 1, 0, . . . , 0) = 1 and z2 = z(1, t∗1, . . . , t
∗
m) for a certain (t∗1, . . . , t

∗
m) ∈ Tm attain-

ing F (θ0, L0). We know that z1 6= z2 because the real part of z2 − z1 is equal to

m∑
k=1

Fk(t
∗
1, . . . , t

∗
m)Lk

0 cos kθ0 <
−|H|

2

by Lemma 2.2.

We claim that WH(A) does not contain the entire line segment joining z1 and z2. To
prove this, let

z(p, t1, . . . , tm) ∈ WH(A)

have imaginary part
m∑

k=1

(pL0)
k sin kθ0Fk(t1, . . . , tm) = 0.

If p = 0, then z(p, t1, . . . , tm) = 1 = z1. Suppose p > 0. If tj = 0 for some j, then

Fm(t1, . . . , tm) = 0. Hence

Im(z(p, t1, . . . , tm)) =
m−1∑
k=1

(pL0)
k sin kθ0Fk(t1, . . . , tm) > 0.

Now, suppose all tj > 0, i.e., (t1, . . . , tm) ∈ Tm, and 0 < p < 1. By our choice of θ0 and L0,

we see that

Im(z(p, t1, . . . , tm)) =
m∑

k=1

(pL0)
k sin kθ0Fk(t1, . . . , tm)

> pm

(
m∑

k=1

Lk
0 sin kθ0Fk(t1, . . . , tm)

)
≥ 0.

Finally, suppose tj > 0 for all j and p = 1. If

0 = Im(z(p, t1, . . . , tm))
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=
m∑

k=1

Lk
0 sin kθ0Fk(t1, . . . , tm)

= L0Fm(t1, . . . , tm)fθ0,L0(t1, . . . , tm),

where fθ0,L0 is defined as in the proof of Lemma 2.2, then (t1, . . . , tm) ∈ Tm attains F (θ0, L0).

By Lemma 2.2, the real part of z(1, t1, . . . , tm)− z1 is equal to

m∑
k=1

Fk(t1, . . . , tm)Lk
0 cos kθ0 <

−|H|
2

.

Thus, if z(1, t1, . . . , tm) ∈ WH(A), then z(1, t1, . . . , tm) 6= z1 + x whenever x ∈ [−|H|/2, 1].
Next, we turn to the case when m = n ≥ 3. Let L0 and θ0 satisfy the conclusion of

Lemma 2.2 with s = 2. Suppose µ = L0e
iθ0 and A = diag (µ + 1, 1, . . . , 1) ∈ Mn. By Lemma

2.1, WH(A) consists of complex numbers of the form

z(t1, . . . , tm) = 1 +
m∑

k=1

µkFk(t1, . . . , tm)

with (t1, . . . , tm) ∈ Tm. By our choice of θ0 and L0, we see that there are at least two points z1

and z2 in WH(A) with imaginary parts equal to L0 sin θ0, namely, z1 = z(1, 0, . . . , 0) = 1+µ

and z2 = z(t∗1, . . . , t
∗
m) for a certain (t∗1, . . . , t

∗
m) ∈ Tm attaining F (θ0, L0) = 0 in Lemma 2.2.

We know that z1 6= z2 because the real part of z2 − z1 is equal to

m∑
k=2

Fk(t
∗
1, . . . , t

∗
m)Lk

0 cos kθ0 <
−|H|

2

by Lemma 2.2.

We claim that WH(A) does not contain the entire line segment joining z1 and z2. To
prove this, suppose

z(t1, . . . , tm) ∈ WH(A)

has imaginary part
m∑

k=1

Lk
0 sin kθ0Fk(t1, . . . , tm) = L0 sin θ0.

If tj = 1 for some j, then z(t1, . . . , tm) = z1. If tj = 0 for some j, but tj 6= 1 for all j, then

m∑
k=2

Lk
0 sin kθ0Fk(t1, . . . , tm) =

m−1∑
k=2

Lk
0 sin kθ0Fk(t1, . . . , tm) ≥ L2

0 sin 2θ0E2(t1, . . . , tm) > 0,

and hence
Im(z(t1, . . . , tm)) > L0 sin θ0.
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Now, suppose tj > 0 for all j, and

Im(z(t1, . . . , tm)) = L0 sin θ0.

Then

0 =
m∑

k=2

Lk
0 sin kθ0Fk(t1, . . . , tm) = L2

0Fm(t1, . . . , tm)fθ0,L0(t1, . . . , tm),

where fθ0,L0 is defined as in the proof of Lemma 2.2. Thus, (t1, . . . , tm) ∈ Tm attains

F (θ0, L0). By Lemma 2.2, the real part of z(t1, . . . , tm)− z1 is equal to

m∑
k=2

Fk(t1, . . . , tm)Lk
0 cos kθ0 <

−|H|
2

.

Thus, if z(t1, . . . , tm) ∈ WH(A), then z(t1, . . . , tm) 6= z1 + x whenever x ∈ [−|H|/2, 1]. 2

Next we turn to the proof of Theorem 1.3. Notice that if m = 2, then H = {e} or
H = S2. We need some more lemmas to prove Theorem 1.3.

Lemma 2.3 Let H be a subgroup of S2. Suppose B ∈ M2 is Hermitian and has eigenvalues
µ1 ≥ µ2. Then

WH(B) =

{
[µ1µ2, (µ1 + µ2)

2/4] if H = {e},
[µ1µ2, (µ

2
1 + µ2

2)/2] if H = S2.

Proof. By direct computation or by the result in [7].

Lemma 2.4 Let B = diag (µ1, . . . , µn) ∈ Mn with µ1 ≥ · · · ≥ µn. There exists a unitary

matrix U such that U∗BU [2] has eigenvalues ν1 ≥ ν2 if and only if ν1 ∈ [µn−1, µ1] and

ν2 ∈ [µn, µ2].

Proof. See [3].

Lemma 2.5 Let H be a subgroup of S2. Suppose n > 2 and A = diag (µ1+i, . . . , µn+i) ∈ Mn

with µ1 ≥ · · · ≥ µn. Then x+ iy ∈ WH(A) if and only if y = ν1 +ν2 for some ν1 ∈ [µn−1, µ1]

and ν2 ∈ [µn, µ2], and x + 1 ∈ Ry with

Ry =

{
[ν1ν2, (ν1 + ν2)

2/4] if H = {e},
[ν1ν2, (ν

2
1 + ν2

2)/2] if H = S2.

Furthermore, if x + iy ∈ WH(A) is such that y = µ1 + ν with ν ∈ [µn, µ2], then x + 1 has
maximum value {

(µ1 + ν)2/4 if H = {e},
(µ2

1 + ν2)/2 if H = S2.
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Proof. Suppose B = U∗AU [2] for some unitary U . Then B =
(

a + i b
b̄ c + i

)
, where

B − iI2 is a submatrix of U∗diag (µ1, . . . , µn)U . By Lemma 2.4, if B − iI2 has eigenvalues

ν1 ≥ ν2, then ν1 ∈ [µn−1, µ1] and ν2 ∈ [µn, µ2]. Now,

dH(B) =
{

ac− 1 + i(a + c) if H = {e},
ac + |b|2 − 1 + i(a + c) if H = S2.

Clearly, we have a + c = ν1 + ν2. Furthermore, we have Re(dH(B)) + 1 ∈ WH(B − iI2). By

Lemma 2.3, Re(dH(B)) + 1 is of the asserted form.
Conversely, suppose x + iy is of the asserted form. Then we can find a suitable unitary

matrix U so that U∗(A − iIn)U [2] has eigenvalues ν1 ≥ ν2 by Lemma 2.4. Then we have

x + iy = dH(U∗AU [2]) ∈ WH(A).

Finally, consider the last assertion of the lemma. If x + iy = dH(U∗AU [2]) ∈ WH(A) is

such that y = µ1 + ν with ν ∈ [µn, µ2] and U∗(A − iIn)U [2] has eigenvalue ν1 ≥ ν2, then

ν1 = µ1 − δ and ν2 = ν + δ with 0 ≤ δ ≤ (µ1 − ν)/2 and x + 1 has maximum value{
(µ1 + ν)2/4 if H = {e},
(µ1 − δ)2 + (ν + δ)2)/2 if H = S2.

One easily checks that the maximum occurs when δ = 0 if H = S2. The result follows. 2

We are now ready to give the

Proof of Theorem 1.3.
Let m = 2 < n, and let H be a subgroup of Sm. Suppose A ∈ Mn is such that νA is

Hermitian for some nonzero ν ∈ C. Then WH(A) is just a line segment in C, and is convex

(see [7]).
To prove the converse, assume that A has eigenvalues lying on a straight line, but µA is

not Hermitian for any nonzero ν ∈ C. Then the eigenvalues of A cannot lie on a line passing
through origin. There exists a nonzero ν ∈ C so that νA has eigenvalues lying on a line
parallel to the real axis. Furthermore, by adjusting the magnitude of ν, we can assume that

νA has eigenvalues µj + i with real µj, j = 1, . . . , n. We claim that WH(νA) = ν2WH(A) is

not convex. The result will then follow.
To prove our claim, we assume that ν = 1 for simplicity. Since WH(A) = WH(U∗AU),

we may further assume that A = diag (µ1 + i, . . . , µn + i) ∈ Mn with µ1 ≥ · · · ≥ µn. Since A
is not a mutliple of a Hermitian matrix, we have µ1 > µn. We further assume that µ2 > µn.
If not, we have µ1 > µ2 = . . . = µn. We may replace A by −A∗ because

WH(−A∗) = {(−1)mz̄ : z ∈ WH(A)},

and thus WH(−A∗) is convex if and only if WH(A) is.

Now, let B1 = diag (µ1, µ2) + iI2 and B2 =
(

a + i b
b̄ a + i

)
with a = (µ1 + µn)/2 and

b = (µ1 − µn)/2. Then z1 = dH(B1) = (µ1µ2 − 1) + i(µ1 + µ2) and

z2 = dH(B2) =

{
(a2 − 1) + i(µ1 + µn) if H = {e},
((µ2

1 + µ2
n)/2− 1) + i(µ1 + µn) if H = S2,
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are elements in WH(A). We claim that (z1 + z2)/2 /∈ WH(A) to get the desired conclusion.

To this end, notice that if x + iy ∈ WH(A) with y = Im(z1 + z2)/2 = µ1 + (µ2 + µn)/2, then
by Lemma 2.5 x + 1 has the maximum equal to{

(µ1 + ν)2/4 if H = {e},
(µ2

1 + ν2)/2 if H = S2.

with ν = (µ2 + µn)/2. Since µ2 > µn, by the strict convexity of the function t 7→ t2 on IR,

we see that x < Re(z1 + z2)/2. The result follows. 2

We remark that in the above proof one can actually show that all the points in the open

segment joining z1 and z2 do not belong to WH(A).
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