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Abstract

As an attempt to understand linear isometries between C∗-algebras without the surjec-
tivity assumption, we study linear isometries between matrix algebras. Denote by Mm the
algebra of m×m complex matrices. If k ≥ n and φ : Mn → Mk has the form

X 7→ U [X ⊕ f(X)]V or X 7→ U [X t ⊕ f(X)]V

for some unitary U, V ∈ Mk and contractive linear map f : Mn → Mk, then ‖φ(X)‖ = ‖X‖
for all X ∈ Mn. We prove that the converse is true if k ≤ 2n− 1, and the converse may fail
if k ≥ 2n. Related results and questions involving positive linear maps and the numerical
range are discussed.

2000 Mathematics Subject Classifications: 15A04, 15A60.
Keywords and phrases: isometry, matrices, linear maps.

1 Introduction

In [6], Kadison characterized surjective linear isometries on C∗-algebras. The problem with-

out surjectivity seems very difficult even in the finite dimensional case. In this paper, we
study linear isometries from Mn to Mk, that is, linear maps φ : Mn → Mk such that

‖φ(A)‖ = ‖A‖ for all A ∈ Mn, where Mm is the algebra of m×m complex matrices. Clearly,

if such a linear isometry φ exists, then k ≥ n. If k = n, it follows from the result of Kadison

[6] that φ has the form

X 7→ UXV or X 7→ UX tV,

for some unitary U, V ∈ Mn. One can modify the above maps to norm preserving linear
maps φ : Mn → Mk with k > n, namely, if U, V ∈ Mk are unitary and f : Mn → Mk−n is a
contractive linear map, then φ : Mn → Mk defined by

X 7→ U [X ⊕ f(X)]V or X 7→ U [X t ⊕ f(X)]V

is a linear isometry. It is natural to ask whether the converse of this statement holds. We
have the following result.

Theorem 1.1 Suppose k ≤ 2n − 1, and φ : Mn → Mk is linear such that ‖φ(X)‖ = ‖X‖
for all X ∈ Mn. Then k ≥ n, and there exist U, V ∈ Mk and a contractive linear map
f : Mn → Mk−n such that φ has the form

X 7→ U [X ⊕ f(X)]V or X 7→ U [X t ⊕ f(X)]V. (1)

Moreover, if k ≥ 2n ≥ 4, then there exists a norm preserving linear map ψ : Mn → Mk that

is not of the form (1).

1Corresponding author.
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Recall that B ∈ Mn is essentially Hermitian if B = aA + bI for some Hermitian A and
a, b ∈ C, equivalently, B is normal and its eigenvalues lie on a straight line. It turns out
that Theorem 1.1 can be deduced from the following result concerning unital linear maps
φ : Mn → Mk that preserve the norm of essentially Hermitian matrices.

Theorem 1.2 Suppose k ≤ 2n − 2, and φ : Mn → Mk is a linear map. Then φ satisfies

φ(In) = Ik and ‖φ(X)‖ = ‖X‖ for all essentially Hermitian matrices X ∈ Mn if and only if

k ≥ n, and there exist a unitary U ∈ Mk and a unital positive linear map f : Mn → Mk−n

such that φ has the form

X 7→ U [X ⊕ f(X)]U∗ or X 7→ U [X t ⊕ f(X)]U∗. (2)

Moreover, if k ≥ 2n−1 ≥ 3, then there exists a linear map ψ : Mn → Mk which is not of the

form (2) but satisfies ψ(In) = Ik and ‖ψ(X)‖ = ‖X‖ for all essentially Hermitian matrices

X ∈ Mn.

We prove some auxiliary results in the next section, and give the proofs of Theorems 1.1
and 1.2 in Section 3. Some related results and questions are discussed in the last section.

In our discussion, we let {e1, . . . , en} be the standard basis for Cn, and Eij = eie
t
j be the

standard matrix unit. Denote by Hn the real linear space of n× n Hermitian matrices, and

λ1(A) ≥ · · · ≥ λn(A) the eigenvalues of A ∈ Hn; we write A > 0 (respectively, A ≥ 0) if

λn(A) > 0 (respectively, λn(A) ≥ 0).

2 Auxiliary results

Theorem 2.1 Suppose φ : Mn → Mk satisfies ‖φ(A)‖ ≤ ‖A‖ for all essentially Hermitian

A ∈ Mn and U∗φ(In)V = Ip⊕D, where U, V ∈ Mk are unitary and D ∈ Mk−p is a diagonal

matrix with diagonal entries in the interval [0, 1). Use the first p columns of U (respectively,

V ) to form the matrix U1 (respectively, V1). Then the mapping ψ : Mn → Mp defined by

ψ(X) = U∗
1 φ(X)V1 satisfies the following conditions:

(1) ψ(In) = Ip.

(2) ‖ψ(A)‖ ≤ ‖A‖ for all essentially Hermitian A ∈ Mn.

(3) ψ(A) ≥ 0 for all A ≥ 0.

(4) ψ(A∗) = ψ(A)∗ for all A ∈ Mn.

If, in addition, ‖φ(A)‖ = ‖A‖ for all A ∈ Hn, then

(5) ‖ψ(B)‖ = ‖B‖ for all essentially Hermitian B ∈ Mn.

(6) ψ(A) ≥ 0 if and only if A ≥ 0.
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(7) For every A ∈ Hn, λ1(A) = λ1(ψ(A)) and λn(A) = λp(ψ(A)).

Proof. Conditions (1) and (2) follow from the definition.

For (3), suppose A ≥ 0 and ψ(A) = B + iC, B, C ∈ Hp. For any unit vector x ∈ Cp, let

b = x∗Bx and c = x∗Cx. We are going to prove that c = 0. It will then follow that C = 0.

To prove our claim, for each positive integer m, let Am = A− bIn + i(mcIn). Then

‖A− bIn‖2 + m2c2 ≥ ‖(A− bIn)2 + m2c2In‖
= ‖AmA∗

m‖
= ‖Am‖2

≥ ‖ψ(Am)‖2

≥ |x∗ψ(Am)x|2
= |x∗(B − bIn + i(mcIn + C))x|2
= |x∗Bx− b + i(mc + x∗Cx)|2
= |(m + 1)c|2.

Hence, c = 0 as asserted. So, ψ(A) = B. If s > 0 is small, then

‖Ip − sB‖ = ‖ψ(In − sA)‖ ≤ ‖In − sA‖ ≤ 1.

Therefore, B ≥ 0.

Condition (4) follows readily from (3).

Now, suppose that ‖φ(A)‖ = ‖A‖ for all A ∈ Hn. Let B ∈ Mn be essentially Hermitian,

that is, B = aA + bI for some A ∈ Hn and a, b ∈ C. We are going to show that ‖ψ(B)‖ =

‖B‖. The claim clearly holds if a = 0. So, without loss of generality, we assume that a = 1.

First, consider the case when b = 0. Hence, B = A ∈ Hn. We may further assume that

‖A‖ = λ1(A); otherwise, replace A by −A. Then

1 + λ1(A) = ‖In + A‖ = ‖φ(In + A)‖ = ‖U∗φ(In + A)V ‖ = ‖(Ip ⊕D) + U∗φ(A)V ‖.

So there exist unit vectors x and y in Ck such that

1 + λ1(A) = y∗[(Ip ⊕D) + U∗φ(A)V ]x ≤ |y∗(Ip ⊕D)x|+ |y∗U∗φ(A)V x| ≤ 1 + λ1(A).

Therefore, y = x = (Ip ⊕D)x and U∗φ(A)V x = λ1(A)x. Hence, x =
[
x1

0

]
, where x1 ∈ Cp

and ψ(A)x1 = λ1(A)x1. As a result, ‖ψ(A)‖ = ‖A‖.
For the general case, suppose B = A + (a + ib)In, where A ∈ Hn and a, b ∈ IR. Then

‖ψ(B)‖2 = ‖ψ(A + aIn) + ibIp‖2

= ‖ψ(A + aIn)‖2 + |b|2
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= ‖A + aIn‖2 + |b|2
= ‖(A + aIn) + ibIn‖2

= ‖B‖2.

This proves (5).

For (6), let A ∈ Mn such that ψ(A) ≥ 0. Let A = B + iC where B, C ∈ Hn. Then by

(4), we have ψ(B − iC) = ψ(A∗) = ψ(A)∗ = ψ(A). Hence, ψ(C) = 0 implies C = 0, that is,

A ∈ Hn. For every t > ‖ψ(A)‖, we have t ≥ ‖tIp − ψ(A)‖ = ‖tIn − A‖. Therefore, A ≥ 0.

For (7), let A ∈ Hn and t ∈ IR. By (6), we have

t ≥ λ1(A) ⇐⇒ tIn − A ≥ 0 ⇐⇒ tIp − ψ(A) ≥ 0 ⇐⇒ t ≥ λ1(ψ(A)).

Therefore, λ1(A) = λ1(ψ(A)). Similarly, λn(A) = λp(ψ(A)). 2

Remark 2.2 Note that one cannot weaken the hypothesis in Theorem 2.1 to

‖φ(A)‖ ≤ ‖A‖ for all Hermitian A ∈ Mn.

For example, suppose φ : M2 → M3 is given by

φ(A) = A⊕ [(a + d + i(a− d))/2] if A =
(

a b
c d

)
.

Then φ(I2) = I3 and ‖φ(A)‖ = ‖A‖ for all A ∈ H2. However, if A = [1] ⊕ 0 ∈ H2, then

φ(A) = A⊕ [(1 + i)/2] /∈ H3 and

‖φ(2A + 2iI2)‖ = ‖(2A + 2iI2)⊕ [1 + 3i]‖ =
√

10 >
√

8 = ‖2A + 2iI2‖.

In fact, none of the conditions (2) – (7) holds.

Note also that the only place where we use the condition ‖φ(A)‖ ≤ ‖A‖ for all essentially

Hermitian A ∈ Mn is in showing that ψ(A) ∈ Hk for all A ∈ Hn. Hence, the proof of

Theorem 2.1 also gives the equivalence of (a)–(c) in the following theorem.

Theorem 2.3 Suppose k ≤ 2n− 2, and φ : Hn → Hk is a linear map satisfying φ(In) = Ik.

The following conditions are equivalent.

(a) ‖φ(X)‖ = ‖X‖ for all X ∈ Hn.

(b) A ∈ Hn is positive semidefinite if and only if φ(A) is positive semidefinite.

(c) For every A ∈ Hn, λ1(A) = λ1(φ(A)) and λn(A) = λk(φ(A)).

(d) We have k ≥ n, and there exist a unitary U ∈ Mk and a unital positive linear map

f : Hn → Hk−n such that φ has the form

X 7→ U [X ⊕ f(X)]U∗ or X 7→ U [X t ⊕ f(X)]U∗.

4



Proof. By the discussion before the theorem, we see that (a), (b), (c) are equivalent. It is

clear that (d) implies all the conditions (a) — (c). In the following, we assume that one, and

hence all, of the conditions (a) — (c) holds, and prove condition (d) by induction on n ≥ 2.

By (a), we have k ≥ n.

Suppose n = k. If X1 ∈ Hn is a rank one orthogonal projection, then there exist rank

one orthogonal projections X2, . . . , Xn such that
∑n

j=1 Xi = In. By condition (c), φ(Xj) is

positive semi-definite with largest eigenvalue equal to one for j = 1, . . . , n. Moreover,

∑

j=1

tr φ(Xj) = tr φ




n∑

j=1

Xj


 = tr In = n.

Thus, φ(Xj) has eigenvalues 1, 0, . . . , 0, that is, φ(Xj) is a rank one orthogonal projection,

for j = 1, . . . , n. Hence, φ maps rank one orthogonal projections to rank one orthogonal

projections. By [3, Theorem 3], we conclude that there exists a unitary S ∈ Mn such that φ

has the form
X 7→ SXS∗ or X 7→ SX tS∗. (3)

Thus, condition (d) holds if n = k. Note that if n = 2, then n ≤ k ≤ 2n − 2 implies that

n = k = 2. So, condition (d) holds. Now, suppose n ≥ 3 and n < k ≤ 2n− 2, and the result

is true for linear maps from Hr to Hs for any r < n and s ≤ 2r − 2. We shall establish the
following.

Claim. There exist unitary matrices V ∈ Mn and U ∈ Mk such that the mapping

A 7→ Uφ(V AV ∗)U∗ (4)

has the form

X 7→ g(X)⊕ f̃(X), (5)

where f̃ : Hn → Hk−n is a unital positive linear map, and g : Hn → Hn is unital, linear,
and maps rank one orthogonal projections to rank one orthogonal projections.

Once the claim is proved, we can apply [3, Theorem 3] to g and conclude that g has the

form (3) for some unitary S ∈ Mn. Consequently, the original map φ will satisfy condition

(d).

Note that we only need to show that there exist unitary matrices U and V such that the

mapping in (4) is a direct sum of two linear maps in the form (5). It will then follow (say,

from (b)) that f̃ is a unital positive linear map as asserted.

We establish several assertions to prove our claim.

Assertion 1. For each j ∈ {1, . . . , n}, φ(Ejj) has largest and smallest eigenvalues equal to

1 and 0, respectively. Moreover, if v ∈ Ck is a unit vector such that v∗φ(Ejj)v = 1, then

v∗φ(X)v = 0 for any X ∈ Hn with (j, j) entry equal to 0.
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Proof. The first statement follows from (c). To prove the second statement, we may

assume that j = 1. Suppose v ∈ Cn is a unit vector such that v∗φ(E11)v = 1. If Y = [0]⊕Y1

with Y1 ∈ Hn−1, then for any t ∈ [−1, 1],

v∗[φ(E11) + tφ(Y )]v ≤ ‖E11 + tY ‖ = 1.

Thus, v∗φ(Y )v = 0. If Z = e1z
∗ + ze∗1 for some unit vector z ∈ span {e2, . . . , en}, then

there exists a unitary matrix U = [1] ⊕ U1 with U1 ∈ Mk−1 such that UZU∗ = E12 + E21.

Therefore, for every t ∈ [−1, 1],

v∗[φ(E11) + tφ(Z)]v ≤ ‖E11 + tZ‖ = ‖U(E11 + tZ)U∗‖
= ‖E11 + t(E12 + E21)‖ ≤

√
1 + 2t2.

Again, we have v∗φ(Z)v = 0. Consequently, if X is any (real) linear combination of two

matrices Y and Z of the above form, we have v∗φ(X)v = 0. 2

Assertion 2. There exists a rank one orthogonal projection X such that φ(X) is unitarily

similar to [1]⊕Oq ⊕D1, where q + 1 < k and D1 is a diagonal matrix with diagonal entries

in the interval (0, 1).

Proof. By Assertion 1, each φ(Ejj) has largest and smallest eigenvalues equal to 1 and

0, respectively. Since n < k ≤ 2n− 2 and

k = tr Ik = tr φ(In) =
n∑

j=1

tr φ(Ejj), (6)

we see that there exist at least two matrices φ(Ejj) with exactly one eigenvalue equal to 1.

If one of these matrices, say, φ(Ejj), is not an orthogonal projection in Hk, then Ejj is a

desired matrix X.
Suppose each matrix φ(Ejj) with one eigenvalue equal to 1 is an orthogonal projection,

and φ(E11) is one of them. Since n < k, by (6) again there exists φ(Epp) with at least two

eigenvalues equal to 1. Without loss of generality, we may assume that p = 2. By Assertion
1, there exists a unitary U ∈ Mk such that

φ(E11) = U(E11 ⊕Ok−n)U∗ and φ(E22) = U([0]⊕ Ir ⊕ C2)U
∗

so that r > 1 and ‖C2‖ < 1. For simplicity, assume that U = Ik; otherwise, replace φ by the

mapping X 7→ U∗φ(X)U . So,

φ(E11) = E11 ⊕Ok−n and φ(E22) = [0]⊕ Ir ⊕ C2. (7)

Let Y1 = φ(E11 +E22), Y2 = φ(E12 +E21), and Y = (Y1 +Y2)/2 = φ(E11 +E22 +E12 +E21)/2.

Since ‖φ(Z)‖ = ‖Z‖, we have

1 = ‖Y ‖ = ‖Y1‖ = ‖Y2‖.
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Applying Assertion 1 to the matrices φ(E11) and Y2, and also to φ(E22) and Y2, we see that

Y2 =




0 u∗1 u∗2
u1 Or ∗
u2 ∗ ∗


 (8)

for some u1 ∈ Cr and u2 ∈ Ck−1−r. If v ∈ Ck is a unit vector so that v∗Y v = 1, then

2 = 2v∗Y v = v∗Y1v + v∗Y2v ≤ ‖Y1‖+ ‖Y2‖ = 2,

and hence v∗Y1v = 1 = v∗Y2v. Since Y1 = I1+r ⊕ C2 with λ1(C2) < 1 by (7), we see that

v ∈ span {e1, . . . , e1+r} ⊆ Ck. Thus, if P is obtained from Ik by taking its first 1+r columns,

then
1 = ‖Y2‖ = v∗Y2v ≤ ‖P ∗Y2P‖ ≤ ‖Y2‖.

It follows that

1 = ‖P ∗Y2P‖ =
∥∥∥∥
(

0 u∗1
u1 Or

)∥∥∥∥ ;

thus, u1 is a unit vector. Since Y2 in the form (8) has norm 1, we see that u2 = 0 and there

exists a unitary matrix W = [1] ⊕W1 ⊕ Ik−1−r such that WY2W
∗ =

(
0 1
1 0

)
⊕ Z2. Hence,

W (Y1 + Y2)W
∗ =

(
1 1
1 1

)
⊕ Z0, and Z0 is nonzero positive semidefinite such that

‖Z0‖ ≤
∥∥∥∥
(

0 1
1 1

)
⊕ Z0

∥∥∥∥ = ‖φ(E22 + E12 + E21)‖ = ‖E22 + E12 + E21‖ < 2.

Thus, Y is unitarily similar to the direct sum of a rank one orthogonal projection and a

non-trivial D with 0 < λ1(D) < 1. So, X = (E11 + E22 + E12 + E21)/2 is a desired rank one

orthogonal projection. 2

Assertion 3. There exist unitary U ∈ Mk and V ∈ Mn such that the mapping φ̃ defined by

X 7→ Uφ(V XV ∗)U∗ (9)

satisfies

φ̃(Y ) = Y ⊕ f̃(Y ) for all Y = [a]⊕ Y1, or (10)

φ̃(Y ) = Y t ⊕ f̃(Y ) for all Y = [a]⊕ Y1, (11)

where f̃ : Hn → Hk−n is a unital positive linear map satisfying 0 < ‖f̃(E11)‖ < 1.

Proof. By Assertion 2, we may replace φ by a mapping of the form (9) and assume that

φ(E11) = [1]⊕ Oq ⊕D1, where q + 1 < k and D1 is a diagonal matrix with diagonal entries

in the interval (0, 1). Let Y = [0] ⊕ Y1 ∈ Hn, where Y1 ∈ Hn−1, ‖Y1‖ = 1. By Assertion 1,
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the (1,1) entry of φ(Y ) is 0. Since ‖φ(E11 + Y )‖ = ‖E11 + Y ‖ = 1, the first row and column

of φ(Y ) are all zero. Therefore,

φ(Y ) =




0 0 0
0 ψ(Y1) ∗
0 ∗ ∗




with ψ(Y1) ∈ Hq. Since 1 = ‖φ(Y )‖, there exists a unit vector v such that 1 = |v∗φ(Y )v| =

‖φ(Y )‖. Clearly, the first entry of v must be zero. Suppose v =




0
v1

v2


 with v1 ∈ Cq and

v2 ∈ Ck−1−q. Since φ(E11) = [1]⊕Oq ⊕D1 and

|v∗2D1v2 ± v∗φ(Y )v| = |v∗φ(E11 ± Y )v| ≤ ‖E11 ± Y ‖ = 1,

we see that v2 = 0 and |v∗1ψ(Y1)v1| = 1 = ‖Y1‖. Hence, the mapping from Mn−1 to Mq

defined by Y1 7→ ψ(Y1) is unital and satisfies ‖ψ(Y1)‖ = ‖Y1‖ for all Y1 ∈ Hn−1. Since

q ≤ k − 2 ≤ 2n− 4, we can apply induction assumption to ψ and conclude that ψ on Hn−1

has the standard form:

Y1 7→ U∗[Y1 ⊕ f(Y1)]U or Y1 7→ U∗[Y t
1 ⊕ f(Y1)]U

for some unitary U ∈ Mq. Now, the mapping φ̃ defined by

X 7→ ([1]⊕ U ⊕ Ik−q−1)φ(X)([1]⊕ U∗ ⊕ Ik−q−1)

satisfies (10) or (11). 2

Proof of the Claim. By Assertion 3, we can modify φ to φ̃ that satisfies (10) or (11),

where f̃ is a unital linear map satisfying 0 < ‖f̃(E11)‖ < 1. We may further assume that

φ̃ satisfies (10); otherwise, replace φ by the mapping A 7→ φ(At). For simplicity, we assume

that φ = φ̃.
To prove the claim, we note that every matrix in Hn is a linear combination of rank

one orthogonal projections. Therefore, we only need to show that if X ∈ Hn is a rank one
orthogonal projection, then

φ(X) = g(X)⊕ f̃(X), (12)

where g(X) is a rank one n× n orthogonal projection.

If X = E11 or X has the form [0]⊕X1, then we are done because φ = φ̃ satisfies (10). Now,

suppose X is not of these forms. Then X = uu∗, where u = ae1 + bv ∈ Cn is a unit vector

such that v ∈ e⊥1 and a, b are nonzero complex numbers satisfying |a|2 + |b|2 = 1. Replacing

u by ξ1u for a suitable complex unit ξ1, we may assume that a > 0; then replacing v by ξ2v

for a suitable complex unit ξ2, we may assume that b > 0 as well. So, (a, b) = (cos θ, sin θ)
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for some θ ∈ (0, π/2). Suppose V ∈ Mn is a unitary matrix with e1 and v as the first two

columns. Then V has the form [1]⊕ V1 and satisfies

V ∗XV = cos2 θE11 + cos θ sin θ(E12 + E21) + sin2 θE22.

Consider the mapping φV defined by

A 7→ (V ∗ ⊕ Ik−n)φ(V AV ∗)(V ⊕ Ik−n).

Note that the mapping φV inherits all the properties we have established in Assertion 1, 2

and 3 (10) for φ. Moreover, if we can show that φV sends the matrix

cos2 θE11 + cos θ sin θ(E12 + E21) + sin2 θE22

to a matrix of the form Z1 ⊕ Z2 so that Z1 ∈ Mn is a rank one orthogonal projection,

then φ(X) = (V ⊕ Ik−n)φV (V ∗XV )(V ∗ ⊕ Ik−n) = V Z1V
∗ ⊕ Z2, where V Z1V

∗ is a rank one

orthogonal projection as desired. So, we focus on φV . For simplicity, we write φV as φ in

the rest of our proof. For j ∈ {1, . . . , n}, let

φ(Ejj) = Ejj ⊕ Cj.

Then C1 = f̃(E11) satisfies 0 < ‖C1‖ < 1 and

C1 + · · ·+ Cn = Ik−n. (13)

We consider two cases.

Case 1. Suppose λ1(C1 + C2) < 1, that is, φ(E11 + E22) only has 2 eigenvalues equal to 1.

If v ∈ Ck satisfies v∗(φ(E11 + E22))v = 1, then only the first two entries of v can be nonzero.

Now,

2 = ‖(e1 + e2)(e1 + e2)
∗‖ = ‖φ((e1 + e2)(e1 + e2)

∗)‖
≤ ‖φ(e1e

∗
1 + e2e

∗
2)‖+ ‖φ(e1e

∗
2 + e2e

∗
1)‖ = 2.

So, there is a unit vector v ∈ Cn such that

v∗(φ(e1e
∗
1 + e2e

∗
2))v = 1 = v∗(φ(e1e

∗
2 + e2e

∗
1))v.

Thus, the leading 2× 2 principal submatrix of φ(e1e
∗
2 + e2e

∗
1) has norm one. By Assertion 1,

the (1, 1) and (2, 2) entries of φ(e1e
∗
2 + e2e

∗
1) are zero. Hence, there is a complex unit µ such

that
φ(e1e

∗
2 + e2e

∗
1) = (µe1e

∗
2 + µ̄e2e

∗
1)⊕D.

Therefore,

φ((cos θe1 + sin θe2)(cos θe1 + sin θe2)
∗) =

(
cos2 θ µ cos θ sin θ

µ̄ cos θ sin θ sin2 θ

)
⊕ D̃.
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Since ∥∥∥∥∥∥
φ


(cos θe1 + sin θe2)(cos θe1 + sin θe2)

∗)±
n∑

j=3

eje
∗
j




∥∥∥∥∥∥
= 1,

we see that D̃ has the form On−2 ⊕ D̂. Hence, φ((cos θe1 + sin θe2)(cos θe1 + sin θe2)
∗) has

the desired form (12).

Case 2. Suppose λ1(C1 + C2) = 1. We shall prove that there exists a sequence of unit

vectors {vr} in the linear span of {e2, . . . , en} ⊆ Cn such that vr → e2, and for each r,

φ(E11 + vrv
∗
r) has only two eigenvalues equal to 1. By the result in Case 1,

φ((cos θe1 + sin θvr)(cos θe1 + sin θvr)
∗)

has the desired form (12). By continuity, we see that

φ((cos θe1 + sin θe2)(cos θe1 + sin θe2)
∗)

has the desired form (12) as well.

To construct our sequence {vr}, note that by (13) and the fact that 0 < ‖C1‖ < 1, we

have
(Ik−n − C1)

−1/2(C2 + · · ·+ Cn)(Ik−n − C1)
−1/2 = Ik−n.

Since k − n ≤ n− 2, comparing traces, we see that there exists j ≥ 3 such that

(Ik−n − C1)
−1/2Cj(Ik−n − C1)

−1/2

is a strict contraction, equivalently, λ1(C1 + Cj) < 1. Without loss of generality, we may

assume that j = 3. Let φ(E23 + E32) = (E23 + E32)⊕ C23. For t ∈ [0, π/2], let

F (t) = v(t)v(t)∗ with v(t) = cos te2 + sin te3 ∈ Cn.

Then

φ(E11 + F (t)) = [E11 + F (t)]⊕ [C1 + cos2 tC2 + sin2 tC3 + cos t sin tC23].

If φ(E11 + F (t)) has more than two eigenvalues equal 1, then

0 = det(Ik−n − (C1 + cos2 tC2 + sin2 tC3 + cos t sin tC23))

= det(cos2 t[(1 + tan2 t)(Ik−n − C1)− C2 − tan2 tC3 − tan tC23])

= cos2(k−n) t det((Ik−n − C1 − C2)− tan tC23 + tan2 t(Ik−n − C1 − C3)). (14)

Since φ(E11 + E33) has only two eigenvalues equal to 1, det(Ik−n − C1 − C3) 6= 0. It follows

that (14) only has finitely many roots in the interval [0, π/2]. Thus, we can find a sequence

{tr} → 0 such that {vr} = {v(tr)} → e2, and for each r, E11 + vrv
∗
r has only two eigenvalues

equal to 1 as desired. 2
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3 Proof of the main theorems

Proof of Theorem 1.2 The ‘if’ part of the theorem is clear. Suppose k ≤ 2n−2, φ(In) = Ik

and ‖φ(X)‖ = ‖X‖ for all essentially Hermitian X. By Theorem 2.1, φ(X) is Hermitian

whenever X is Hermitian. Now, the result follows from Theorem 2.3.
For the last statement, suppose n ≥ 2 and k ≥ 2n− 1. Let

W =




1√
2

0 1√
2

0
0 In−1 0 0
0 0 0 In−1




Define φ : Mn → Mk by

φ(A) = W [A⊕ At]W ∗ ⊕ (tr A/n)Ik−2n+1 =




A11
A12√

2

At
21√
2

A21√
2

A22 0
At

12√
2

0 At
22


⊕ (tr A/n)Ik−2n+1

for any

A =
(

A11 A12

A21 A22

)
with A22 ∈ Mn−1.

Since WW ∗ = I2n−1, by the interlacing inequalities for eigenvalues of Hermitian matrices [4,

Theorem 4.3.6], if A ∈ Hn and B = W [A ⊕ At]W ∗, then λ1(B) = λ1(A) and λ2n−1(B) =

λn(A). Consequently, ‖φ(X)‖ = ‖X‖ for all essentially Hermitian X ∈ Mn.

If φ has the standard form (2), then there exist a contractive linear map f : Mn → Mk−n

and a unitary matrix U ∈ Mk such that Uφ(A) = (A† ⊕ f(A))U , where A† = A or At.

Partition U into U = (Uij)
2
i, j=1, where U22 ∈ Mk−1, then we have

(
U11 U12

U21 U22

)



A11
A12√

2

At
21√
2

0
A21√

2
A22 0 0

At
12√
2

0 At
22 0

0 0 0 (tr A/n)Ik−2n+1




=
(

A† 0
0 f(A)

) (
U11 U12

U21 U22

)

Let A = E11 and consider the first row on both sides. We have ( U11 0 ) = ( U11 U12 ).

Hence, U11 = eiθ for some real number θ and U12, U21 are both zero. Consider the first row
on both sides in the general case, we have

eiθ
(
A11

A12√
2

At
21√
2

0
)

= ( A†
12 0 ) U22 ,

for all A ∈ Mn, which is impossible. Hence, φ is not of the standard form (2). 2

Proof of Theorem 1.1 Suppose k ≤ 2n− 1, and ‖φ(X)‖ = ‖X‖ for all X ∈ Mn. Clearly,

we have k ≥ n. If k = n then (1) follows from Kadison’s result [6]. So we may assume that
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n < k ≤ 2n− 1. By the result in [1], it is impossible that φ(U) is unitary for every unitary

U ∈ Mn. Thus, there exists a unitary X ∈ Mn such that φ(X) is not unitary. By replacing

φ with the map A 7→ φ(XA), if necessary, we may assume that X = I. Therefore, φ satisfies

all conditions in Theorem 2.1 with 1 ≤ p ≤ 2n − 2. Let U, V ∈ Mk, and ψ be as given by

Theorem 2.1. Then ψ satisfies the conditions for Theorem 1.2 (with φ, k replaced by ψ, p).

So, there exists a unitary W1 ∈ Mp and a unital positive linear map f̃ : Mn → Mp−n such

that ψ has the form

A 7→ W1[A
† ⊕ f̃(A)]W ∗

1 ,

where A† = A or At. Let W = W1 ⊕ Ik−p. Then the mapping φ0 : Mn → Mk defined by

A 7→ W ∗U∗φ(A)V ∗W has the form

A 7→



A† 0 ∗
0 f̃(A) ∗
∗ ∗ g(A)


 .

If A ∈ Mn is unitary, then ‖φ0(A)‖ = ‖A‖ implies that

φ0(A) = A† ⊕
(

f̃(A) ∗
∗ g(A)

)
. (15)

Since this is true for n2 linearly independent unitary matrices A, it follows that (15) holds

for any A ∈ Mn. Consequently, the original map φ has the form (1) as asserted.

For the last statement, suppose n ≥ 2 and k ≥ 2n. Let

W =




1√
2

0 1√
2

0
0 In−1 0 0
0 0 0 In−1
1√
2

0 −1√
2

0


 and P = I2n−1 ⊕Ok−2n+1 .

Define φ : Mn → Mk by

φ(A) = P (W ⊕ Ik−2n)[A⊕ At ⊕Ok−2n](W ⊕ Ik−2n)∗ =




A11
A12√

2

At
21√
2

0 0
A21√

2
A22 0 A21√

2
0

At
12√
2

0 At
22 −At

12√
2

0
0 0 0 0 0
0 0 0 0 0




for any

A =
(

A11 A12

A21 A22

)
with A22 ∈ Mn−1.

Note that φ(A)φ(A)∗ = B ⊕ Ok−2n+1, where B ∈ H2n−1 is a leading principal submatrix of

W (AA∗ ⊕ (AA∗)t)W ∗. By the interlacing inequalities for eigenvalues of Hermitian matrices

[4, Theorem 4.3.6], we have ‖φ(A)‖ = ‖A‖. By an argument similar to the one in the proof

of Theorem 1.2, we can show that φ is not of the form (1). 2
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4 Related results and questions

Motivated by Theorem 1.1 and the example constructed in its proof, we have the following.

Proposition 4.1 Suppose P and Q are n(p + q) × m matrices such that I − PP ∗ ≥ 0,

I − QQ∗ ≥ 0, and rank(I − PP ∗) + rank(I − QQ∗) < p + q. Let W1,W2 ∈ Mk be unitary,

and let f : Mn → Mk−m be a contractive linear map. If φ : Mn → Mk is defined by

φ(X) = W1{P ∗[(X ⊗ Ip)⊕ (X t ⊗ Iq)]Q⊕ f(X)}W2,

then ‖φ(X)‖ = ‖X‖ for all X ∈ Mn.

Proof. It is clear that ‖φ(X)‖ ≤ ‖X‖. To prove the reverse inequality, suppose P has

singular value decomposition UDV , where U ∈ Mn(p+q) and V ∈ Mm are unitary, and the

singular values of P lie in the (1, 1), (2, 2), . . . positions of D in descending order. Let D̃ be

obtained from D by setting all the entries in (0, 1) to 0, and let P̃ = UD̃V . Apply a similar

construction to Q to get Q̃. Then

rank (I − P̃ P̃ ∗) + rank (I − Q̃Q̃∗) = rank (I − PP ∗) + rank (I −QQ∗) < p + q. (16)

If the largest singular value of X is s1 = ‖X‖, then s1 is a singular value of (X ⊗ Ip) ⊕
(X t ⊗ Iq) with multiplicity at least p + q. By (16) and a result of Thompson [7], the matrix

P̃ ∗[(X ⊗ Ip)⊕ (X t ⊗ Iq)]Q̃ has largest singular value equal to s1 also. Thus, we have

‖X‖ = s1 = ‖P̃ ∗[(X ⊗ Ip)⊕ (X t ⊗ Iq)]Q̃‖ ≤ ‖φ(X)‖.
2

Using a similar argument in the proof of Proposition 4.1 and the interlacing inequalities

on Hermitian matrices (see [4, Theorem 4.3.6]), we have the following.

Proposition 4.2 Suppose P is an n(p + q) × m matrix such that P ∗P = Im, where 0 ≤
n(p + q) − m < p + q. Let U ∈ Mk be unitary, and f : Mn → Mk−m be a unital positive

linear map. If φ : Mn → Mk is defined by

φ(X) = U∗{P ∗[(X ⊗ Ip)⊕ (X t ⊗ Iq)]P ⊕ f(X)}U,

then ‖φ(X)‖ = ‖X‖ for all essentially Hermitian X ∈ Mn.

Recall that the numerical range of a matrix A ∈ Mn is the set

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1},

which is a useful concept in matrix and operator theory, and has been studied extensively;

see [5, Chapter 1]. We have the following.
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Proposition 4.3 Let Vm = Mm or Hm. Suppose φ : Vn → Vk is linear. If φ has the form
in Proposition 4.2, then

W (φ(X)) = W (X) for all X ∈ Vn. (17)

When k ≤ 2n− 2, (17) holds if and only if φ has the form (2) in Theorem 1.2.

Proof. Suppose φ has the form in Proposition 4.2. If X ∈ Hn, then X and φ(X) have

the same largest and smallest eigenvalues; since W (X) is the convex hull of the largest and

smallest eigenvalues of X, it follows that W (φ(X)) = W (X).

Suppose Vn = Mn and X ∈ Mn is not Hermitian. Then X = H + iG for some Hermitian

H and G. Now, φ(cos tH + sin tG) and cos tH + sin tG have the same largest and smallest

eigenvalues for all t ∈ [0, 2π), we see that the two convex sets W (X) and W (φ(X)) have the

same support lines; see [5, Theorem 1.5.11]. Thus, the two sets are equal.

Suppose k ≤ 2n − 2. If Vn = Hn, the result follows readily from Theorem 2.3. If

Vn = Mn, one can use the fact that W (X) ⊆ IR if and only if X is Hermitian to conclude

that φ(Hn) ⊆ Hk. Then the result follows from the Hermitian case. 2

There are several related problems that deserve further investigation.

1. If φ : Mn → Mk has the form in Proposition 4.1, then ‖φ(A)‖ = ‖A‖ for all A ∈ Mn. It

would be nice to know whether the converse is true.

2. If φ : Mn → Mk has the form in Proposition 4.2, then ‖φ(A)‖ = ‖A‖ for all essentially

Hermitian A ∈ Mn. It would be nice to know whether the converse is true. Note that by

Theorem 2.1 and Theorem 2.3 (b), the problem is equivalent to studying positive linear

maps φ such that A is positive definite whenever φ(A) is positive definite.

3. One can ask whether the converse of the first statement in Proposition 4.3 is true.

4. One can study the above problems under the additional assumption that φ is a decom-
posable or completely positive linear map.
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