OFF-DIAGONAL SUBMATRICES OF A HERMITIAN MATRIX
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ABSTRACT. A necessary and sufficient condition is given to an p X ¢ complex
matrix X to be an off-diagonal block of an n X n Hermitian matrix C' with
prescribed eigenvalues (in terms of the eigenvalues of C and singular values of
X). The proof depends on some recent breakthroughs in the study of spectral
inequalities on the sum of Hermitian matrices by Klyachko and Fulton. Some
interesting geometrical properties of the set S of all such matrices are derived
from the main result. These results improve earlier ones that only give partial
information for the set S.

1. INTRODUCTION

Let #,, be the real linear space of nxn complex Hermitian matrices, and let U,, be

the group of n X n unitary matrices. For ¢ = (¢1,--- , ¢,) € R", with ¢; > -+ > ¢,
let U(c) be the set of matrices in H,, with eigenvalues ¢y, - , ¢,. Equivalently, U(c)
is the wunitary (similarity) orbit of the diagonal matrix diag (c1,---, ¢s). In this

paper, a necessary and sufficient condition is given for an p x ¢ complex matrix X
to be an off-diagonal block of a matrix C' € U(c) in terms of the singular values of
X. The set of all such matrices X can be viewed as the projection of U(c).

Let p and ¢ be positive integers such that p + ¢ < n. Consider the set

Sp,q(c) = {A13 € CP*7: there exists A = (Aij)1<i,j<3 € U(c)}.

Clearly, in the block matrix A = (A4;;)1<i,j<3 above, A1; € H, and Azz € H,y. In
statistics and other applications, there is considerable interest (see [1, 2, 4, 15] and
their references) in studying inequalities relating the singular values of matrices in
Sp,n—p(c) and ¢. In [15], the authors proved that if p <n/2 and X € Sp ,,—p(c) has
singular values sy > --- > s,, then

1 m m
(1) §Z(Cj_cn—j+1)zzsj: m=1,...,p.
j=1 j=1

Using this result and the theory on Schur convex function, one can (see [15]) refine
and shorten the proofs of many existing inequalities. Evidently, the above result
on Sp n—p(c) is equivalent to

(2) Spn—p(c) C {X € gpx(n=p) .

X has singular values
$1 > --- > s, satisfying (1)

In [2] the authors studied some convexity features of U(c), and showed that the
equality in (2) holds if and only if S, ,_p(c) is convex, and this happens if and
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only if (c1,...,¢p) and (¢p—pt1,-..,Cpn) are arithmetic progressions with the same
common difference.

In this paper, we give a complete description of S, ,(c) for general (p,q). In
particular, it follows from our result that the set S, ,(c) is always star-shaped with
the zero matrix as a star-center; see Corollary 2.4. Some examples and remarks
related to our results are also given.

There are two key ingredients in our proofs. First, we need the recent major
breakthrough in the study of spectral inequalities on the sum of Hermitian matrices
by Klyachko [11] and its generalization by Fulton [8]; see also [7] for an excellent
survey. Second, we need some matrix techniques to related the results on sum of
Hermitian matrices to off-diagonal block of a Hermitian matrix.

Although our discussion is on complex Hermitian matrices, all our results are
valid (with the same proofs) for real symmetric and Hermitian matrices over real
quaternions.

In our discussion, the sets of eigenvalues or singular values always mean the
multi-sets of eigenvalues or singular values counting multiplicities.

We thank Professor W. Fulton for some helpful comments on an early draft of
this paper.

2. MAIN RESULT

As mentioned in the introduction, there are two important ingredients in our
proofs. We first present a result of Fulton [8] concerning the sum of Hermitian
matrices. This result is a generalization of a remarkable result of Klyachko[11] on
spectral inequalities on the sum of Hermitian matrices.

Let I = (i1,...,im), be an increasing subsequences of [n] = (1,...,n). Define
AI) = (i — My ..., 01 — 1).
Suppose J = (j1,---,m) and K = (ki1, ..., k) are also increasing subsequences of

[n]. We say that (I,J, K) € LR, if the Littlewood-Richardson coefficient cig()z\( 7
of the three partitions A(I), A(J), and A(K) is equal to one; see [6]. Our proofs de-
pend on the following result in [8]; see Theorem 1, the discussion after the statement
of Theorem 2, and the proofs in Section 2 of the paper.

Lemma 2.1. There exist Hermitian matrices A, B, C' with eigenvalues
3) ap > 2ap, b1 >--2by, and ¢ > 2>cp,
respectively, such that
A+B>C, i.e., A+ B—C is positive semidefinite
if and only if for each m € {1,...,n} and (I,J,K) € LR},
(4) Zai+zbj220k-
icl jed kEK

Moreover, if there is an m € {1,...,n} such that the equality in (4) holds for
some (I,J,K) € LR}, then there exist A1,B1,C1 € H,, with sets of eigenvalues
(counting multiplicities) {a; : i € I}, {b; : j € J}, {cx : k € K}, respectively, so
that Ay + By = C1, and in the case of n > m, there exist As, By, Cy € Hp_my with
sets of eigenvalues (counting multiplicities) {a; : i € [n]\ I}, {b; : j € [n]\ J},
{ck : k € [n]\ K}, respectively, so that As + By > Cs.
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Next, we establish a lemma relating Hermitian matrix sum to the off-diagonal
block of a Hermitian matrix.

Lemma 2.2. Suppose a; > -+ > an, by > -+ > by, c1 >+ > ¢y, and t €
[0,1] are such that 377, cn =t {Z?:]_(a]’ + bj)} and for each m € {1,...,n} and
(I,J,K) € LR?,

t Zai-l-ij chk

il jeJ keK
Then there exist A,B,C € H, with eigenvalues a; > --- > ap, by > -+ > by,
c1 > - > cp, respectively, such that

C=tA+B).

Moreover, there exists a unitary matriz U € Uy, such that
«(A 0 [ x  C/2
U(O —B)U_<C/2 *)
Proof. The first assertion follows from Lemma 2.1. To prove the second assertion,
let 6 € [0, 7/4] be such that sin 20 = ¢, and let

U= cos@I, sinfI,
~ \—sin6I,, cosfI, /"

v (61 —OB> v= ((A + B)*sin 26/2 “ B)*Sin 29/2) '

We are ready to give the characterization of
Sp,q(c) = {A13 € CP*?: there exists A = (Aij)lgi,jS?: € U(C)},

where p and ¢ are positive integers such that p + ¢ < n. Since X € S, ,(c) if and
only if X* € S, ,(c), we only need to consider the case when p < q.

Then

Theorem 2.3. Let ¢y > --- > ¢,,. Suppose p and q are positive integers such that
p<qandp+q <n, and X € C°*? has singular values s; > --- > s,. The
following conditions are equivalent:

(a) X € Spq(c).

(b) For each m € {1,...,p} and (I,J,K) € LRE,,

Se- Y22y o
i€l jed keK

(c) There exist A,B,S € H, with eigenvalues c1 > -+ > ¢p, Cp—pt1 > *+* > Cn,
and s > -+ > sp, respectively, such that A — B > 2S.

Proof. The equivalence of (b) and (c) follows from Lemma 2.1.

(a) = (b): Suppose (a) holds, i.e., there is a matrix A = (A4;;)1<i,j<3 € U(c),
such that A3 = X. Then A = —(~I, ® I, ,)A(~I, ® I,,_,) has eigenvalues
—Cp > -+ - > —c1- Suppose the matrix

~ 0 A A
AvA=2[4, 0 o
i3 O 0
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n—2p
. ~ ~ ,_’% ~ ~
has eigenvalues 25; > --- > 25, > 0>--->0 > —-25, > --- > —23;. By

Lemma 2.1, condition (b) holds with s; replaced by 3; for j = 1,...,p. Since

2 ( A(l A63) is a principal submatrix of A 4+ A, and has eigenvalues
13
q—p
——
2812225, 202>---202> 258, > --- > =251,
we have §; > s; for j = 1,...,p, by the result in [5] (see also [10, Theorem 4.3.15]).
Thus, condition (b) holds.

(b) = (a): Suppose (b) holds. It suffices to construct a matrix

A11 0 S
(5) A= 0 Agy 0 (S Z/{(C)
S* 0 A33

such that S € CP*7 has singular values sy > --- > s,. Then there exist V] € U,
and Va € U, such that Vi*SV, = X is the (1,3) block of the matrix

V1@l pq@V2) AV1 @ In_p—q ©V2) € U(c).
To construct the matrix in (5), we first consider the case when n = 2p. We prove
the result by induction on p. If p = 1, then t(c; — ¢2) = 2s; for some ¢ € [0,1]. The

result follows from Lemma 2.2. Suppose p > 1, and the implication holds for lower
dimensions. Let ¢ € [0,1] be such that for eachm € {1,...,p} and (I, J,K) € LRE,,

t Zci _ch—j-i-l >2 Z Sk,
iel jeJ keEK
and the equality occurs at (I, J,K) € LR?, for some m' € {1,...,p}. f m' = p,
condition (a) follows from Lemma 2.2. If m' < p, then by Lemma 2.1, there exist
Aq,B1,S51 € Hyy with sets of eigenvalues {¢; : ¢ € I}, {—cp—jy1 : j € J}, and
{sk, : k € K} respectively, satisfying t(4; + B;) = 251, and there exist A, By, Sa €
Hp—m: with sets of eigenvalues {c; : i € [p] \ I}, {—cn—j1 : j € [p] \ J}, and
{sr : k € [p] \ K} respectively, satisfying t(As + Ba) > 253. Consequently, by
Lemma, 2.2 there exists U; € Uy, such that

* A1 0 _ X Sl
i (5 m)u (s %)

Moreover, by Lemma 2.1 again, the eigenvalues of Ay, By, Sy satisfy the inductive
hypothesis of the implication (b) = (a). So, there exists Us € Us(p—pny) such that

* A2 0 _ * 52
(0 ) (s %)

Let A=A ® Ay, B= B ®Byand S = S; ®5>. By a block permutation similarity,
there exists Us € Uy, such that

(A 0O (P S
U3 (0 —B) U3_ (S* Q) ’
which has eigenvalues ¢y, ..., c,.

Now, suppose n > 2p. Let

D = diag(c1,-..,CpyCneptis--->Cn).



OFF-DIAGONAL SUBMATRICES OF A HERMITIAN MATRIX 5

By the above construction, we can get a unitary matrix U € Uy, such that
P S
U*DU = ( g Q) ,
where S is p x p with singular values s; > --- > s,. If Dy = diag (cpt1,.-.,Cn—p),
then U*DU & Dy is permutationally similar to

P 0 S
0 Dy O
S* 0 @

which is the desired matrix satisfying (5) after we redefine the block sizes. d

7

By the result in [2], the set S, 4(c) may not be convex; S, ,(c) is convex if and
only if for £ = min{p, ¢}, the sequences (c1,...,¢¢) and (cp—r41,-..,¢n) are in
arithmetic progression with the same common difference. In general, we have the
following.

Corollary 2.4. Letc; > --- > ¢, and p, q be positive integers such that p+q < n.
Suppose X € Spq(c) has singular values s; > --- > s where £ = min{p, q}. If
Y € CP*? has singular values ti, --- , ty satisfying t; < s; for all i =1, --- , £,
then Y € Sp4(c). Equivalently, RXS € Spq(c) for all contractions R, S of sizes
p and q respectively. In particular, tX € S, 4(c) for all 0 <t < 1, i.e., Spq(c) is
star-shaped with the zero matriz as a star-center.

Proof. Since X € Sp4(c) if and only if X* € S, ,(c), we consider only the case
£ =p If X € S,,(c) has singular values s; > --- > sp, then Theorem 2.3 (b)
holds. Since t; < s; for all i = 1, ---, p, (b) also holds with s; replaced by t;.
Hence, Y € S, 4(c). Note that a matrix Y € CP*? has singular values t; < s;, for
alli=1, ---, pif and only if Y = RX S for some contractions R, S of sizes p and
q respectively. Therefore, the equivalent statement follows. The last assertion is
clear. O

3. REMARKS AND EXAMPLES

It is interesting that by Corollary 2.4, if X € S, ,(c), one can conclude without
any additional information about ¢ that RXS € S, ;(c) for any contractions R and
S of sizes p and ¢ respectively; in other words, if A = (A,-j)f’j:1 € U(A) so that
Az € Cpxq’ then there is A= (‘/Iij):ig,jzl S U(A) with fL’j = RA3S. Note that in
general the matrix T = R* @ I,,_,_, © S is not unitary, and therefore one cannot
simply let A to be T*AT although its (1,3) block has the form RA;3S. Actually,
in computation, even constructing A € U(c) such that A;3 = A;3/2 for a given
Ay € S, 4(c) is a non-trivial problem.

In the proof of the implication (a) = (b) in Theorem 2.3, one actually has

Se-Yamz2Y
iel jeJ keEK

for any (I,J,K) € LRI, whereas our necessary and sufficient conditions only re-
quire those inequalities associated with (I, J, K) € LRE,. Thus many inequalities
associated with (I, J, K) € LR}, are redundant.
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In [15], using the inequalities (1), which is a subcollection of those in Theorem
2.3 (b), and the theory of Schur convex functions, the authors refine and shorten
the proofs of results on matrix inequalities relating the eigenvalues of C' € H,
and the singular values of an off-diagonal submatrix of C'. Using the whole set of
inequalities in Theorem 2.3 (b), one should be able to get more information. For
example, for any 1 <4y < --- < iy < p, we have

m m
Z(Cir_cn7T+l)ZQZSir7 m=17"'7‘€'
r=1 r=1

Thus, for any increasing convex function f : IR — IR, we have

¢ £
Z f(ci'r - cn—r—i—l) > Z f(2$ir)-
r=1 r=1

In our main result and the supporting lemmas, we may replace LR?, (or LR?,) by
other sets. For example, we can use the set LR},: the set of (I, J, K) sequence triples
such that the Littlewood-Richardson coefficient corresponding to the partitions
M), A(J), A(K) is positive. As shown in [7, Theorem 18], these sequence triples
(I, J,K) are the same as the Horn-Thompson consistent sequences, which can be
generated systematically as follows; see [3, 7, 9] and their references.

Let I = (il,...,im),JZ (jl;---;jm);Kz (kl,...7km) S [n]
1. For m > 1, 27:1 ke+m(m+1)/2= Z;il(ig + jeo)-
2. If m > 1, then for any consistent triple (U, V, W), where U = (u1, - - -, Uy ),
V= (v, ,0m) and W = (wy,...,wyy) with m' € {1,...,m — 1}, we
have

m' m'

> kw, A m/(m +1)/22 (i, + du,)-

=1 =1
Although LR} contain some redundant inequalities, it is relatively easy to generate
them because one needs not verify that the Littlewood-Richardson coefficient of
A(I),A(J), and A\(K) is one. Here we give a short explanation why LR} can be
replaced by LR},.

It is known [14] (see also [12, 13]) that a1 > --- > ap, b1 > --- > by, and
¢ > --- > ¢ satisfy (4) for each m € {1,...,n} and (I, J, K) € LR?, if and only
if they satisfy (4) for each m € {1,...,n} and (I, J, K) € LR;. By the minimality
of LRT , if equality holds for some consistent triples (I,J, K) € LR then we can
find a triple (I',J',K') € LR, for which the equality holds. In fact, if equality
holds in (4) for some (I, J,K) € LR}, with m € {1,...,n}, but

doait) b>) a
el jeJ’ kK’
for all (I',J',K') € LR}, with m' € {1,...,n}, then there exists d > 0 such that
Z(ai —d)+ Z(bJ —d) > Z Ck
icl’ JjeJ’ kEK'
for all (I',J',K') € LR, with m' € {1,...,n}, which implies (by the minimality

of LR™),
ch :Zai+zbj SZ(ai—d)+Z(bj—d),

keEK i€J JEJ i€l JEJ
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a contradiction.

In general, condition (b) in theorem 2.3 is difficult to check. If ¢y, ..., ¢, have
some special properties, the situations are more pleasant.

Examples: Let p and g be positive integers such that p < ¢ and p+ q < n.

(i) If (c1,...,¢p) and (¢p_pt1,-..,cn) are arithmetic progressions with the same
common difference, then condition (b) reduces to
T T
Z(cj Cn—j+1) 2 22817 r= 17 , D
j=1 j=1
(ii) If ¢; =-+- =¢p OF Cp_pt1 = -+ = Cp, then (b) reduces to
(6) ¢j — Cp—jt1 > 2s; foreach je {1,...,p}.

For the verification of (i), see [2]. To verify (ii), we focus on the case when
Cn—pt+1 = -+ = Cy. First, note that (6) are just the subcollection of inequalities in
Theorem 2.3 (b) with |I| = |J| = |K| =1 and J = {1}. Now, suppose (6) holds.
Then for each j € {1,...,p}, one can construct a Hermitian matrix of the form

. o2 — . = . . H .
such that r;t; 87 = ¢jcn and rj 4+ s; = ¢; + ¢y, and thus C; has eigenvalues c;, c,.

Now, a permutation similarity of the matrix
Ci®---0Cp®diag (cpti1,s---5Cnep)

will yield A = (Ai5)3 =, € U(c) such that A;3 € CP* has singular values si,.. ., 5p.
By the implication (a) = (b) in Theorem 2.3, we see that all the inequalities in (b)
hold.
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