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Abstract

The numerical range W (A) of a bounded linear operator A on a Hilbert space is the collection

of complex numbers of the form (Av, v) with v ranging over the unit vectors in the Hilbert space.

In terms of the location of W (A), inclusion regions are obtained for W (Ak) for positive integers

k, and also for negative integers k if A−1 exists. Related inequalities on the numerical radius

w(A) = sup{|µ| : µ ∈W (A)} and the Crawford number c(A) = inf{|µ| : µ ∈W (A)} are deduced.
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1 Introduction

Let H be a Hilbert space with the inner product (u, v), and let B(H) be the set of bounded linear
operators on H. The numerical range of A ∈ B(H) is defined by

W (A) = {(Av, v) : v ∈ S, (v, v) = 1}.

Furthermore, define the numerical radius and the Crawford number of A by

w(A) = sup{|z| : z ∈W (A)} and c(A) = inf{|z| : z ∈W (A)},

respectively. These concepts are useful in studying linear operators and have attracted the attention
of many authors in the last few decades (e.g., see [2, 7, 12, 13], and their references). In applications
of these concepts to other areas such as perturbation theory, generalized eigenvalue problems,
numerical analysis, system theory, and dilation theory (e.g., see [1, 4, 5, 9, 10, 12, 15, 18]), it is
useful to know the location of W (Ak) for positive integers k and also negative integers k if A is
invertible. The following facts are well-known; see [12, 13] for example.
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the University of Hong Kong and an honorary professor of the Taiyuan University of Technology.
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Facts 1.1 Let A ∈ B(H) and k be a positive integer.

(a) If W (A) ⊆ D with D = {z ∈ C : |z| ≤ 1} then W (Ak) ⊆ D.

(b) If W (A) ⊆ S = {reit : r ≥ 0, t ∈ [−t0, t0]} for some t0 ∈ [0, π/2) and A is invertible, then
W (A−1) ⊆ S as well.

(c) Suppose A is normal. Then W (Ak) is the convex hull of the spectrum of Ak, which is a subset
of the convex hull of the set

W (A)
k

= {ηk : η ∈W (A)}.

If, in addition, 0 /∈W (A), then the above conclusion holds for negative integers k as well.

It is desirable to find a good inclusion region for W (Ak) in terms of W (A). In view of (a)—(c)
above, one may wonder whether it is always the case that W (Ak) is a subset of the convex hull of

W (A)
k

= {zk : z ∈W (A)} for a general operator. It is not true as shown in the following example.

Example 1.2 Let k > 1 be a positive integer. If A =
(

1 2s
0 1

)
with s = sin(π/(2k)), then 1 < ks

and W (A) = {z ∈ C : |z − 1| ≤ s} and

W (A) ⊆
{
reit ∈ C : r ≥ 0,

−π
2k
≤ t ≤ π

2k

}
.

So, {η1 · · · ηk : ηi ∈ W (A), i = 1, . . . , k} is a subset of the right half plane {z ∈ C : Re z ≥ 0}.

Since Ak =
(

1 2ks
0 1

)
, it follows that W (Ak) is the circular disk with radius ks centered at 1. In

particular, 0 is an interior point of W (Ak). So,

W (Ak) 6⊆ conv {η1 · · · ηk : ηi ∈W (A), i = 1, . . . , k}.

In this paper, we will study the location of W (Ak) for integers k. Related inequalities on the
numerical radius and the Crawford number of Ak will be obtained. We will focus on positive powers
of operators A in Section 2, and turn to negative powers in Section 3.

In our discussion, we will identify H with Cn if H has dimension n. In such a case, we will
identify B(H) with Mn. The following basic facts (see [13, 12]) will be used frequently in our
discussion.

(1) the spectrum σ(A) of A is always a subset of the closure of W (A),

(2) W (aA+ bI) = aW (A) + b for any a, b ∈ C,

(3) W (B ⊕ C) = conv {W (B) ∪W (C)}, where convS denotes the convex hull of S ⊆ C.

(4) If A ∈M2 has eigenvalues λ1, λ2, then W (A) is an elliptical disk with foci λ1, λ2 and the length
of minor axis equals {tr (A∗A)− |λ1|2 − |λ2|2}1/2.
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2 Positive powers of operators

2.1 Inclusion regions of W (Ak) in terms of W (A)

Let k be a positive integer, and A ∈ B(H). As shown in Section 1, the inclusion W (Ak) ⊆ W (A)k

is not true in general. But there are situations under which the inclusion is valid. Here is a scheme
to amend the situation so that W (A) will be useful in estimating W (Ak).

Let µ = ei2π/k and Ã = A ⊕ µA ⊕ · · · ⊕ µk−1A. Then W (Ãk) = W (Ak). It is natural to use
W (Ã) to determine an inclusion region for W (Ak). Denote by Ck = {ηk : η ∈ C} for any C ⊆ C.
We have the following result.

Theorem 2.1 Suppose A ∈ B(H) and µ = ei2π/k for a positive integer k > 1. Let Ã = A⊕ µA⊕
· · · ⊕ µk−1A. Then

W (Ã)k = {conv [∪kj=1µ
jW (A)]}k

is a convex set satisfying the following inclusion

W (Ak) = W (Ãk) ⊆W (Ã)k.

To show that W (Ã)k is convex, we prove the following general result on convex subsets in C,
which is of independent interest.

Proposition 2.2 Suppose C ⊆ C is convex and satisfies C = µC with µ = ei2π/k. Then the set
Ck = {νk : ν ∈ C} is convex.

Proof. Suppose α, β ∈ C. We need only to show that the line segment joining αk and βk lies in
the set Ck. The conclusion is clear if α or β is 0. Suppose it is not the case. We may assume that the
argument of α−1β lies in [0, π/k]. Otherwise, replace β by ei2jπ/kβ for a suitable j ∈ {1, . . . , k−1}.
Let ∆ = conv {0, α, β}. Then {zk : z ∈ ∆} is a convex set with boundary:

{tαk : 0 ≤ t ≤ 1} ∪ {tβk : 0 ≤ t ≤ 1} ∪ {[tα+ (1− t)β]k : 0 ≤ t ≤ 1}.
2

The following identity will be useful in our discussion.

Lemma 2.3 Let T ∈ B(H), a ∈ C, and µ = ei2π/k for a positive integer k > 1. If gj(z) =
(ak − zk)/(a− µjz) for j = 1, . . . , k, then

kāk−1(akI − T k) =
k∑
j=1

gj(T )∗(aI − µjT )gj(T ).

Proof. Let gj(z) = (ak − zk)/(a− µjz) for j = 1, . . . , k . Then

k∑
j=1

gj(z) =
d

da
(ak − zk) = kak−1
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is independent of z. Thus, kāk−1 =
∑k
j=1 gj(z) and

kak−1(akI − T k) =
k∑
j=1

gj(T )∗(akI − T k) =
k∑
j=1

gj(T )∗(aI − µjT )gj(T ). 2

We are now ready to present the following.

Proof of Theorem 2.1. Since W (B ⊕ C) = conv {W (B) ∪ W (C)}, if Ã is defined as in the
theorem then W (Ak) = W (Ãk) and W (Ã)k = {conv [∪kj=1µ

jW (A)]}k. Applying Proposition 2.2 to

C = W (Ã), we see that W (Ã)k is convex.
It remains to show that W (Ãk) ⊆ W (Ã)k. By Lemma 2.3, if gj(z) = (ak − zk)/(a − µjz) for

j = 1, . . . , k, then

kak−1(akI − Ãk) =
k∑
j=1

gj(Ã)∗(aI − µjÃ)gj(Ã). (2.1)

Now, suppose b = ak ∈W (Ak) = W (Ãk). Then there is a unit vector v ∈ H such that

0 = ((akI − Ãk)v, v).

We consider two cases.
Case 1. Suppose gj(Ã)v is nonzero for each j = 1, . . . , k in (2.1). Let

K = W (aI − µÃ) = · · · = W (aI − µk−1Ã) = W (aI − Ã).

By (2.1), if
ηj = ((aI − µjÃ)gj(Ã)v, gj(Ã)v)/‖gj(Ã)v‖2 ∈W (aI − µjÃ)

for j = 1, . . . , k, then for γ =
∑k
j=1 ‖gj(Ã)v‖2,

0 = γ−1((akI − Ãk)v, v) = γ−1
k∑
j=1

‖gj(Ã)v‖2ηj

is a convex combination of k elements in the convex set K = W (aI − Ã). So, a ∈ W (Ã) and
ak ∈W (Ã)k.

Case 2. Suppose there is j ∈ {1, . . . , k} such that

0 = gj(Ã)v =
∏

1≤q≤k,q 6=j
(aI − µqÃ)v.

Then there is q ∈ {1, . . . , k} and a nonzero vector y such that (a − µqÃ)y = 0. It follows that
a ∈W (µqÃ) = W (Ã). Thus, ak ∈W (Ã)k. 2

Note that one can also deduce Theorem 2.1 from [14, Theorem 1] once Proposition 2.2 is verified.
Also, one can use Proposition 2.2 and arguments similar to those in the proof of Theorem 2.1 to
prove the following general version of Theorem 2.1.
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Theorem 2.4 Let k > 1 be a positive integer. Suppose A ∈ B(H) is such that W (A) ⊆ Γ, where
Γ is a convex subset of C satisfying ei2π/kΓ = Γ. Then W (Ak) ⊆ conv {zk : z ∈ Γ}.

Now, if one considers Γ to be the set of k-sided polygons if k ≥ 3 or parallel strips when k = 2
containing W (A), then the intersection of all such Γ equals W (Ã) in Theorem 2.1, and we have

W (Ak) ⊆ {µk : µ ∈W (Ã)} ⊆
⋂
Γ

{µk : µ ∈ Γ}.

2.2 Inclusion regions for W (Ak) in terms of w(A) and c(A)

In this subsection, we study inclusion regions for W (Ak) in terms of the numerical radius and the
Crawford number of A when W (A) does not contain the origin. In particular, it provides estimates
for c(Ak) in terms of c(A).

Theorem 2.5 Let A ∈ B(H) be such that W (A) is a subset of the segment

{z ∈ C : |z| ≤ 1, Re z ≥ cosφ}

for some φ ∈ [0, π/2]. For any positive integer m = 2k or 2k − 1 such that 2kφ ≤ π, we have
W (Am) is a subset of the segment

{z ∈ C : |z| ≤ 1, Re z ≥ cos(mφ)}.

Proof. By the power inequality, w(Am) ≤ w(A)m for any positive integer m. Thus, W (Am) lies
inside the unit disk. Denote by Am = Hm + iGm with Hm = H∗m and Gm = G∗m. It remains to
show that:

For m = 2k − 1 or k, Hm ≥ (cos(mφ))I.

Here X ≥ Y means that X − Y is positive semi-definite.
For m = 1, we have H1 ≥ (cosφ)I by the given assumption. For m = 2, we have H2

1 ≥ (cos2 φ)I.
Since W (A) lies inside the unit disk and H1 ≥ (cosφ)I, we have −(sinφ)I ≤ G1 ≤ (sinφ)I and
hence G2

1 ≤ (sin2 φ)I. By the fact that

A2 = (H1 + iG1)2 = (H2
1 −G2

1) + i(H1G1 +G1H1),

we have
H2 = H2

1 −G2
1 ≥ (cos2 φ)I − (sin2 φ)I = (cos(2φ))I.

Next, for m = 2k − 1 or 2k with k > 1, we assume by induction hypothesis that

H2k̃−1 ≥ cos((2k̃ − 1)φ)I and H2k̃ ≥ (cos(2k̃)φ)I
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for k̃ < k. In particular, Hk−1 ≥ (cos((k−1)φ))I and Hk ≥ (cos(kφ))I. Since W (Ak) and W (Ak−1)
lies inside the closed unit disk, it follows that

−(sin((k − 1)φ))I ≤ Gk−1 ≤ (sin((k − 1)φ))I and − (sin(kφ))I ≤ Gk ≤ (sin(kφ))I (2.2)

For m = 2k, we have Hk ≥ (cos(kφ))I by induction assumption, and G2
k ≤ (sin2(kφ))I by (2.2).

Thus,
H2k = H2

k −G2
k ≥ (cos2(kφ))I − (sin2(kφ))I = (cos(2kφ))I.

Suppose m = 2k − 1. Note that

Gk = (−i/2)[Ak − (A∗)k]
= (−i/2)[AAk−1 −A∗(A∗)k−1]
= (−i/2)[(H1 + iG1)(Hk−1 + iGk−1)− (H1 − iG1)(Hk−1 − iGk−1)]
= H1Gk−1 +G1Hk−1.

Also, since Gk = G∗k, we have

Gk = H1Gk−1 +G1Hk−1 = Gk−1H1 +Hk−1G1. (2.3)

Writing Am = Ak−1AAk−1 = (Hk−1 + iGk−1)(H1 + iG1)(Hk−1 + iGk−1), we have

2Hm = 2Hk−1H1Hk−1 −Gk−1G1Hk−1 −Hk−1G1Gk−1

−Gk−1(H1Gk−1 +G1Hk−1)− (Gk−1H1 +Hk−1G1)Gk−1.

By (2.3),

2Hm = Hk−1[2H1 −H−1
k−1Gk−1G1 −G1Gk−1H

−1
k−1]Hk−1 − (GkGk−1 +Gk−1Gk). (2.4)

Since Hk−1 ≥ (cos((k − 1)φ))I by induction assumption, and ‖Gk−1‖ ≤ sin((k − 1)φ) by (2.2),

‖H−1
k−1Gk−1G1 +G1Gk−1H

−1
k−1‖ ≤ 2‖G1‖‖Gk−1‖‖H−1

k−1‖ ≤
2 sinφ sin((k − 1)φ)

cos((k − 1)φ)
.

It follows that

2H1 −H−1
k−1Gk−1G1 −G1Gk−1H

−1
k−1 ≥ 2(cosφ)I − 2 sinφ sin((k − 1)φ)I

cos((k − 1)φ)
=

2(cos(kφ))I
cos((k − 1)φ)

. (2.5)

By (2.2) again, we have

‖GkGk−1 +Gk−1Gk‖ ≤ 2‖Gk‖‖Gk−1‖ ≤ 2 sin(kφ) sin((k − 1)φ). (2.6)

Putting (2.5) and (2.6) in (2.4) and using the assumption that Hk−1 ≥ (cos((k − 1)φ))I, we have

2Hm ≥ 2 cos(kφ)
cos((k − 1)φ)

Hk−1Hk−1 − 2 sin((k − 1)φ) sin(kφ)I
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≥ 2 cos(kφ) cos((k − 1)φ)I − 2 sin((k − 1)φ) sin(kφ)I
= 2(cos((2k − 1)φ))I,

which is the desired inequality. 2

Clearly, if W (A) lies in a segment of a circle, we have bounds for w(A) and c(A). By the power
inequality, we know that w(Ak) ≤ w(A)k. By these facts and Theorem 2.5, one can use w(A) and
c(A) to obtain bounds for c(Am) as follows.

Theorem 2.6 Let m be a positive integer and A ∈ B(H) be nonzero such that c(A) = w(A) cosφ
with mφ ∈ [0, π/2]. Then

c(Am)/w(Am) ≥ c(Am)/w(A)m ≥ cos(mφ).

Proof. The result is trivial if m = 1. Assume that m > 1. Then mφ ∈ [0, π/2] implies
that c(A) ≥ w(A) cos(φ) > 0. Hence, A is invertible, and so is Am. Thus, 0 < w(Am) and
w(Am) ≤ w(A)m by the power inequality. The first inequality in the theorem follows.

To prove the second inequality, we may replace A by A/w(A) and assume that w(A) = 1 and
c(A) = cosφ with mφ ∈ [0, π/2]. Then there is θ ∈ [0, 2π) such that

W (A) ⊆ eiθ{z ∈ C : |z| ≤ 1, Re z ≥ cosφ}.

By Theorem 2.5, for each m = 2k or 2k − 1 with 2kφ ≤ 2mφ ≤ π, we have

W (Am) ⊆ eimθ{z ∈ C : |z| ≤ 1, Re z ≥ cos(mφ)}.

Thus, c(Am) ≥ cos(mφ). 2

Remark 2.7 Note that the conclusion on W (Am) in Theorem 2.5 can be deduced from Theorem
2.6 if mφ ∈ [0, π/2].

To see this, suppose Theorem 2.6 holds. Assume

W (A) ⊆ {z ∈ C : |z| ≤ 1, Re z ≥ cosφ},

where mφ ∈ [0, π/2]. Then B = diag (eiφ, e−iφ) ⊕ A satisfies w(B) = 1 and c(B) = cosφ. By
Theorem 2.6, w(Bm) ≤ 1 and c(Bm) ≥ cos(mφ). Thus, there is θ ∈ [0, 2π) such that

W (Am) ⊆W (Bm) ⊆ eiθ{z ∈ C : |z| ≤ 1, Re z ≥ cos(mφ)}.

Since eimφ, e−imφ ∈W (Bm), we see that θ = 0. Hence, we have

W (Am) ⊆ {z ∈ C : |z| ≤ 1, Re z ≥ cos(mφ)}.
2

Next, we prove a result using the information W (Ak) to deduce information of W (A). In a
certain sense, it can be viewed as the converse of Theorem 2.6.
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Theorem 2.8 Suppose k is a positive integer and A ∈ B(H) satisfies

W (A) ⊆ {z ∈ C : |z| ≤ 1, Re z ≥ cos(π/k)}. (2.7)

If d ∈ IR is such that
W (Ak) ⊆ {z ∈ C : |z| ≤ 1, Re z ≥ dk},

then
W (A) ⊆ {z ∈ C : |z| ≤ 1, Re z ≥ d}.

Proof. If d < cos(π/k), the result trivially holds. Assume that d ≥ cos(π/k). By Lemma 2.3
and the assumption on W (Ak), we have

0 ≥ Re
(
kdk−1(dkI −Ak)

)
= Re

 k∑
j=1

gj(A)∗(dI − µjA)gj(A)

 , (2.8)

where µ, g1, . . . , gk are defined as in Lemma 2.3. Since Re (µjA) ≤ cos(π/k) < d, we see that
d /∈ W (µjA) for j ∈ {1, . . . , k − 1}. Hence gk(A) =

∏k−1
j=1(dI − µjA) is invertible. Thus, the

negativity of gk(A)∗Re (dI −A)gk(A) implies that of Re (dI −A). 2

Note that if c(A)/w(A) ≤ cos(π/(2k)), then 0 may lie in W (Ak). So, we always assume that
c(A)/w(A) ≥ cos(π/(2k)) when we study bounds of c(Ak). Using the contra-positive of Theorem
2.6, we can get an upper bound for c(A) in terms of that of c(Ak), namely, if w(A) = 1 and
c(Ak) = cos(kφ) with φ ∈ [0, π/(2k)), then c(A) ≤ cosφ. Using Theorem 2.8, we can prove the
following.

Theorem 2.9 Let k be a positive integer. Suppose A ∈ B(H) is nonzero and satisfies c(A)/w(A) ≥
cos(π/(2k)). Then c(A)k ≥ c(Ak).

Proof. We may replace A by ξA for some complex number ξ with |ξ| = 1/w(A) and assume
that c(A) = cos θ ∈W (A) with θ ∈ [0, π/(2k)] and

W (A) ⊆ {z ∈ C : |z| ≤ 1, Re z ≥ cos θ}.

Suppose γ ∈W (Ak) satisfies |γ| = c(Ak). By Theorem 2.6,

γ ∈ {z ∈ C : |z| ≤ 1, Re z ≥ cos(kθ)}

so that γ = dkeikt for some d > 0 and t ∈ [−π/(2k), π/(2k)]. Now, replace A by e−itA so that

W (A) ⊆ {z ∈ C : |z| ≤ 1, Re z ≥ cos(|θ|+ |t|)} ⊆ {z ∈ C : |z| ≤ 1, Re z ≥ cos(π/k)}

as θ, t ∈ [−π/(2k), π/(2k)]. Since dk = |γ| is a point in W (Ak) nearest to the origin, we see that

W (Ak) ⊆ {z ∈ C : |z| ≤ 1, Re z ≥ dk}.

By Theorem 2.8, we see that

W (A) ⊆ {z ∈ C : |z| ≤ 1, Re z ≥ d}.

Thus, c(A) ≥ d, and hence c(A)k ≥ dk = c(Ak) as asserted. 2
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3 Negative powers of operators

First, we study inclusion region for W (A−1). To ensure that A−1 exists, we often assume that
0 /∈W (A). Note that this condition is stronger than the assumption that A is invertible. We have
the following.

Proposition 3.1 Let A ∈ B(H). If H has dimension 2 and A is invertible, then W (A−1) =
W (A)/ det(A). If H has dimension at least 3 and if 0 /∈W (A), then

W (A−1) ⊆
⋃
{W (B)/det(B) : B = X∗AX,X∗X = I2}.

Proof. Assume that A =
(
a b
0 c

)
∈ M2. Then A−1 = 1

ac

(
c −b
0 a

)
, which is unitarily similar

to A/det(A). So, W (A−1) = W (A)/ det(A).
Suppose A ∈ B(H) is invertible, and v ∈ H is a unit vector. Let B be the compression of A on

a two dimensional subspace of H containing v and A−1v. Since 0 /∈W (B) ⊆W (A), B is invertible.
Then (A−1v, v) = (B−1v, v) ∈W (B−1). 2

If A is a nonzero multiple of a positive definite matrix, then W (A−1) = conv {z−1 : z ∈W (A)}.
But the equality may not hold even for a normal operator A of the form αI + βH for some self-
adjoint H.

Example 3.2 Let A = diag(1 + i, 1− i). Then W (A) is the line segment joining the points 1 + i

and 1− i, but W (A−1) is the line segment joining the points (1− i)/2 and (1+ i)/2, and is a proper
subset of conv {z−1 : z ∈W (A)}.

For non-normal A ∈ B(H), the inclusion relation W (A−1) ⊆ {z−1 : z ∈ W (A)} may not hold
as shown in the following example.

Example 3.3 Let A =
(

1 2c
0 1

)
with 0 < c < 1. Then A−1 =

(
1 −2c
0 1

)
, and W (A−1) = W (A)

is a circular disk with [1− c, 1 + c] as diameter. However, K = {z−1 : z ∈ W (A)} is the disk with
[1/(1 + c), 1/(1− c)] as diameter. So W (A−1) 6⊆ K as 1− c < 1/(1 + c).

Using Theorem 6 in [14], we have the following result.

Proposition 3.4 Suppose A ∈ B(H) is invertible. If

W (A) ⊆ {z ∈ C : |z − 1| ≤ 1},

then
W (A−1) ⊆ {z : Re z ≥ −1/2}.
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By Proposition 3.4, one can obtain a left supporting line for W (A−1) if W (A) is included in a
certain circle. In the following, we show that one can obtain a circular inclusion region for W (A−1)
in terms of a supporting line of W (A) that separates W (A) and the origin.

Proposition 3.5 Let A ∈ B(H) be such that ReA ≥ sI for some s > 0. Then

‖A−1 − I/(2s)‖ ≤ 1/(2s),

and
W (A−1) ⊆ {z ∈ C : |z − 1/(2s)| ≤ 1/(2s)}.

Proof. If A+A∗ ≥ 2sI > 0, then 2sA−1(A+A∗ − 2sI)A∗−1 ≥ 0 and hence

I ≥ I − 2sA−1(A+A∗ − 2sI)A∗−1 = (I − 2sA−1)(I − 2sA−1)∗,

which is equivalent to ‖I − 2sA−1‖ ≤ 1. Hence w(I − 2sA−1) ≤ 1 and the result follows. 2

Note that none of Proposition 3.4 or Proposition 3.5 gives us any information about c(A−1). In
connection with this, we have the following result.

Theorem 3.6 Suppose A ∈ B(H) is invertible. Then

c(A−1) ≥ c(A)/w(A)2.

Proof. The result is trivial if c(A) = 0. So, we assume that c(A) > 0. If A ∈M2, then W (A−1) =
W (A)/det(A) by Proposition 3.1. Since |det(A)| ≤ w(A)2, we have c(A−1) ≥ c(A)/(w(A))2.

This result can be extended to general operators A ∈ B(H) with 0 /∈W (A). In fact, for such an
operator A, let v ∈ H be any unit vector, and let B be the compression of A on a two dimensional
subspace of H containing the vectors v and A−1v. Since 0 /∈ W (B), B is invertible. By the result
on 2× 2 matrices, we have

|(A−1v, v)| = |(B−1v, v)|
≥ inf{|z| : z ∈W (B−1)}
≥ inf{|z| : z ∈W (B)/w(B)2}
≥ inf{|z| : z ∈W (A)/w(A)2}

Thus c(A−1) ≥ c(A)/w(A)2. 2

Theorem 3.7 Let S = {z ∈ C : |z| ≤ r,Re z ≥ s} with r > s > 0. Suppose A ∈ B(H) is such that
W (A) ⊆ S. Then

W (A−1) ⊆ conv {z−1 : z ∈ S} = {z ∈ C : |z − 1/(2s)| ≤ 1/(2s), Re z ≥ s/r2}.
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Proof. We may replace A by A/w(A) and assume that r = 1 and s = cos θ with θ ∈ (0, π/2).
Let B = A ⊕ diag (eiθ, e−iθ). Then W (B) ⊆ S and W (A−1) ⊆ W (B−1). By Theorem 3.6,
c(B−1) ≥ c(B)/w(B)2 = cos θ. Since eiθ, e−iθ ∈W (B−1), it follows that s = cos θ ∈W (B−1) is the
point in W (B−1) nearest to the origin, and the support line of the convex set W (B−1) at cos θ must
pass through eiθ and e−iθ. Thus, W (A−1) ⊆W (B−1) ⊆ {z : Re z ≥ s}. By Proposition 3.5, we see
that W (A−1) ⊆ {z : |z−1/(2s)| ≤ 1/(2s)}. Hence, W (A−1) ⊆ {z : |z−1/(2s)| ≤ 1/(2s), Re z ≥ s},
which equals the set conv {z−1 : z ∈ S}. 2

By Theorem 2.5 and Theorem 3.7, we have the following.

Corollary 3.8 Let θ ∈ [0, π/(2p)] for a positive integer p. Suppose A ∈ B(H) is such that W (A) ⊆
{z : |z| ≤ 1,Re z ≥ cos θ}. Then for γ = 2 cos(pθ),

W (A−p) ⊆ {z ∈ C : |z − 1/(2γ)| ≤ 1/(2γ), Re z ≥ γ}.

By the power inequality, we have w(Ak) ≤ w(A)k for any A ∈ B(H) and any positive integer
k. In the following, we obtain a similar inequality for the negative powers of A for an invertible
A ∈ B(H), and characterize those A which attained the equality.

Theorem 3.9 Suppose A ∈ B(H) is invertible and p is a positive integer. Then

w(A−p) ≥ w(A)−p.

The equality holds if and only if A is a nonzero multiple of a unitary operator.

Proof. Using the fact that ρ(B) ≤ w(B) for any B ∈ B(H), one easily sees that

w(A−1) ≥ ρ(A−1) = 1/ inf{|z| : z ∈ σ(A)} ≥ ρ(A)−1 ≥ w(A)−1.

Replacing A by Ap, we have w(A−p) ≥ w(Ap)−1. Using the fact that w(Ap) ≤ w(A)p, we have
w(A−p) ≥ w(A)−p.

If A is a multiple of a unitary operator, then we have w(A−p) = w(A)−p. For the converse,
suppose the equality holds. We may replace A by γA for a suitable nonzero γ and assume that
w(A−p) = w(A)−p = 1. Thus,

1 = w(A−p) ≥ w(Ap)−1 ≥ w(A)−p = 1.

So, 1 = w(A−p) = w(Ap). By [17, Corollary 1] (see also [16]), Ap is unitary. Since w(A) = 1, by
the result of Ando [1], there exist a self-adjoint Z ∈ B(H) and a contraction C ∈ B(H) such that
−I ≤ Z ≤ I and A = (I + Z)1/2C(I − Z)1/2. Now,

V = Ap = (I + Z)1/2C̃(I − Z)1/2 (3.1)
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is unitary, where C̃ = C(I − Z2)1/2C · · ·C(I − Z2)1/2C is a contraction. So, (I + Z) and (I − Z)
are invertible, and (

I + Z V
V ∗ I − Z

)
is positive semi-definite. Applying Schur complement, we see that

I + Z ≥ V (I − Z)−1V ∗. (3.2)

Suppose conv σ(Z) = [a, b]. Since (I + Z) and (I − Z) are invertible, we have [a, b] ⊆ (−1, 1) and
conv (σ((I − Z)−1)) = [(1 − a)−1, (1 − b)−1]. Comparing the spectrum on both sides of (3.2), we
see that 1 + a ≥ (1− a)−1 and 1 + b ≥ (1− b)−1. Hence, a = b = 0, i.e., Z = 0. By (3.1) and the
fact that Z = 0, we have Ap = C̃ = Cp is unitary. Because C is a contraction, we conclude that C
is unitary. 2

Corollary 1 in [17] asserts that A ∈ B(H) is unitary if w(A) = w(A−1) = 1. The above theorem
can be viewed as a generalization of this result. Clearly, if w(A) = w(A−1) = 1, then w(A) ≤ 1
and σ(A) lies on the unit circle. In the finite-dimensional case, the converse is also valid. In the
infinite-dimensional case, there exists non-unitary A ∈ B(H) such that w(A) ≤ 1 with σ(A) lying
on the unit circle. For instance, if V is the Volterra operator, then A = (I + V )−1 is such an
example (e.g., see [13, Problem 190]).

Remark 3.10 From the proof of Theorem 3.9, we see that

w(A−1)p ≥ w(A−p) ≥ w(Ap)−1 ≥ w(A)−p.

We have shown that w(A−p) = w(A)−p if and only if A is a multiple of a unitary operator. Replacing
A by A−1, we see that w(A−1)p = w(Ap)−1 if and only if A is a multiple of a unitary operator.

Very recently, Ando and Li [3] have extended Theorem 3.9 by replacing the numerical radius
with any operator radius.
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