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Abstract

We characterize, in several instances, those linear transformations from the linear
space of m X m matrices into the linear space of p X ¢ matrices that map the set of
matrices having a fixed rank into the set of matrices having a fixed rank. Examples are
given showing that, in contrast with the case of linear transformations on the linear
space of m X n matrices mapping a rank specific set into itself, in the more general
case of linear transformations between two full matrix spaces, often one cannot expect
neat and predictable results.

1 Introduction

Let F be a field. Let M,x,(F) be the linear space of p X g matrices with entries in F. We
study linear transformations

¢ Muyn(F) — M,y (F) (1.1)

(with p, ¢,m,n fixed) that are specific to certain matrix properties related to the rank. As
a general formulation that encompasses many problems, we state the following:

Problem 1.1 Fiz positive integers k and s. Describe all linear transformations (1.1) that
satisfy one of the following properties (a) - (e):

(a) A€ Myuxn(F), rank A=k = rank¢(A) = s.

(b) A€ Myxn(F), rank A = k <= rank¢(A) = s.

(¢) A€ Mpxn(F), rank A <k = rank¢(A) < s.
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(d) A€ Myxn(F), rank A <k <= rank¢(A) <s.
(e) A€ Mpxn(F), rank A =%k = rank¢(A) < s.

If (p,q) = (m,n) many results solving many problems in the spirit of Problem 1.1 are
known, most often assuming that k = s, see [10, Chapter 2].

In this paper, we consider the cases when (p,q) # (m,n), and study those linear
transformations ¢ that satisfy one of the properties (a) - (e) of Problem 1.1. In contrast
with the case (p,q) = (m,n), here one need not assume k = s to obtain meaningful
results. Examples show that in full generality Problem 1.1 is probably intractable, and we
confine ourselves here to a few particular instances when we were able to obtain a complete
description of such maps ¢.

There is an extensive literature concerning linear transformations on a full matrix alge-
bra that preserve certain matrix properties, such as determinants, ranks, norms, numerical
ranges, etc. Only recently there appeared works concerning structure of linear preservers
between different full matrix spaces. We mention here [3],[4] (on preservers of unitary
matrices, norms, numerical ranges, and other related properties), and [6] (on invertibility
preserving maps).

We denote by A’ the transpose of A.

2 Linear maps on rank one matrices
Structure of invertible rank-1 nonincreasing linear maps on M, x,(F) was described in [8].
All such maps have the form

A~ PAQ or A PA'Q,

where P and () are matrices of appropriate sizes. In the spirit of this result, in the next
theorem we consider rank-1 preserving linear maps between different (generally speaking)
full matrix spaces. We do not assume nondegeneracy.

Theorem 2.1 Let ¢ : Mpxn(F) — M,y o(F) be a linear transformation such that
A€ Mpyyn(F), rank A =1 = rank¢(A4) = 1. (2.1)

Then there exist invertible matrices P € My ,(F) and Q € M,x,(F) such that one of the
following four alternatives holds:
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m<gq, n<p, ¢(A)=P{é 8}@-

p(A)=P[¥(4) 0]Q,
where ¥ @ Myuxn(F) — Myx1(F) is a linear transformation such that ¢ (A) # 0 for
every A € My xn(F) having rank one.

6(4) = P [ v(4) } Q.

where ¥ @ Myuxn(F) — Miy(F) is a linear transformation such that ¢ (A) # 0 for
every A € Mpuxn(F) having rank one.

We need a lemma to prove the theorem.

Lemma 2.2 If U,V € M,y,(F) are such that for every vector w € Myx1(F) the vectors
Uw and Vw are linearly dependent, then either the ranges of both U and V' are contained
in the same one-dimensional subspace of Mpyy1(F), or U and V are linearly dependent.

Proof. We consider separately the case when U and V' are both of rank one. Thus, let
U= myl, V = z2yl. Let w be such that ylw # 0, ylw # 0. Then Uw = (ylw)z; and
Vw = (ylw)z,. By the hypotheses of the lemma, z; and z, are scalar multiples of each
other.

Now assume that U or V, say V, has rank at least two. Let vq,...,v, be the columns
of V. Multiplying U and V on the right by the same invertible matrix, we may assume
that each pair of columns in the following list

(v1,v2), (v1,03), ..., (v1,0q)

is linearly independent. If uy,. .., u, are the columns of U, then we clearly have u; = o;v;
for some a; € F. But for a fixed j € {2,3,...,q}, also u; + zu; = a(z)(v1 + zv;) where
z € F is arbitrary and o(z) € F (here we use the condition that the columns v, and v; are
linearly independent). It follows that

(1 — a(2))vr + (ajz — az)z)v; = 0,

and hence oy = a(z), aj = a(z) for z # 0. Thus, all a;’s are equal, and U is a scalar
multiple of V. O

Proof of Theorem 2.1. We write M,y instead of M,,(F). Let k, ¢ be positive integers,
and z,y nonzero vectors in Myy1, Mgy, respectively. Then zy' is a rank one matrix
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and every matrix of rank one in Mpy, can be written in this form. Consider the sets
L, = {zy' : y € Mya} and R, = {zy' : 2 € Mgx1}. Each of L, and R, is a linear
subspace of My, consisting of matrices having rank one or zero; if V' is a linear subspace
of Myy¢ whose nonzero members have all rank one then V' is contained either in some L,,
or in some R,.

Suppose ¢ @ My,xn, — DM,y, preserves rank one matrices. Then for every nonzero
x € M,,x1 we have either ¢(L,) C L, for some z € M,x1, 0r ¢(L,) C R, for somey € M,x1.
Of course, an analogue holds true for ¢(R,) for every nonzero vector y.

If m =1 or n =1, the above argument shows that ¢ has the form (1) or (2). Assume
that m,n > 2. We will prove that we cannot have ¢(L,) C L, and ¢(L.) C R, simulta-
neously for some nonzero x and z in M,,y;. Assume on the contrary that such vectors x
and z exist. Then, clearly, x and z are linearly independent. Because of the injectivity
of the restriction of ¢ to L, we can find linearly independent vectors a,b € M,y such
that ¢(za') = uw', ¢(xb") = uv’, w and y are linearly independent, v and y are linearly
independent, and v and w are linearly independent. Now, ¢(za') = cy’ for some ¢ € My,
and since za' + za' has rank one, we have rank (cy’ 4+ vw’) = 1 which further implies that
¢ and u are linearly dependent. Thus, ¢(za') € span {uy'}. Similarly, ¢(2b") € span {uy'},
contradicting the fact that the restriction of ¢ to L, is injective.

So, either for every nonzero © € M,,x1 there is a vector y € M,y such that ¢(L,) C L,
or for every nonzero x € M,y there is a vector y € M,y such that ¢(L,) C R,. We will
consider only the first possibility since the second one can be reduced to the first one by
composing ¢ with the transposition.

If there exists y € Mpy; such that ¢(L,) C L, for every nonzero x € My,x1, then ¢
has one of the forms described in our statement. So, it remains to consider the case that
there are x¢ and zg in M« such that ¢(L,,) C L, and ¢(L,,) C L, for some linearly
independent vectors y and w. In particular, if we choose and fix a nonzero w € M, 1,
then ¢(zow') = ya' and ¢(zow') = ub’ for some nonzero vectors a and b. Applying the
fact that zow' 4+ zow' has rank one, we see that ¢ and b are linearly dependent. It follows
that ¢(R,) C R,. The restriction of ¢ to R, is injective; consequently, if z,z € M« are
linearly independent and if ¢(L,) C Ly and ¢(L,) C L; for some vectors s and ¢, then s
and ¢t are linearly independent. To verify this conclusion, observe that ¢(zw') = asa’ and
¢(zw') = fBta’ for some a, 3 € T.

So, for every x € M,,x1 there is y € M,y such that ¢(zw!) = yo' for every w € M.
The map w + v is linear. Therefore,

$law') = y(Crw)’ (2.2)

for some linear transformation C, : M, x; — M,x1. The linear transformation C, is clearly
injective (otherwise ¢(A) = 0 for some matrix A of rank one, a contradiction), and therefore
it 1s not of rank one.



Assume that = and z are linearly independent. Then ¢(zw') = y(C,w)" and ¢(zw') =
u(C,w)', w € M,x1, and the fact that y and u are linearly independent imply that C,w
and C,w are linearly dependent for every w. As C, and C, are not of rank one, by Lemma
2.2, C, and C, are linearly dependent. If z and z are linearly dependent, then we can
find w such that z and w, as well as z and w are linearly independent. We already know
that then C, and Cy, as well as C, and C,, are linearly dependent. Thus, for every pair
of nonzero vectors x and z the linear transformations C, and C, are linearly dependent.
By absorbing the constant in the first term of the product on the right-hand side in (2.2)
we may assume that C, = C is independent of xz. Whence, for every nonzero x € M,,x1
there exists y such that ¢(zw') = y(Cw)’, w € M,x1. The map z + y is linear. Denoting
it by D we have ¢(zw') = Dz(Cw)', w € M,x;. We already know that both D and C are
injective. It follows that ¢ has the form (1). 0

There are certain restrictions on the sizes of matrices involved, under which the situa-
tions described in (3) and (4) may occur:

Proposition 2.3 If m +n — 1 < q, then there exists a linear transformation

such that
A€ Mpyn(F), rtank A=1 = ¢(A) #0. (2.3)

Conversely, if F is an algebraically closed field, and there is a linear transformation
qb . MTILXTL(F) —> MIXQ(F)

satisfying (2.3), then m+n —1 < gq.

Proof. Assume m +n — 1 < q. Define ¢ : Myxn(F) — M, (F) by
qb([aj,k];‘rlérll,kzl) = [am,lv am—l,l —I_ am,27 am—2,1 ‘I’ am—1,2 ‘I’ Clm,i’n

L p—2 F Q-1+ U340, 01 -1 F A2, G1,0,0- -+, 0]

Then ¢(A) # 0 if rank A = 1, and therefore ¢ has the property (2.3).

To prove the converse, let {e;,...,e,} be the standard basis of F". If ¢ satisfies
(2.3), then for every j = 1,...,m, there exists M; € M,x,(F) such that ¢(e;z") = ' M;.
Moreover, for any nonzero a = (a,...,a,)" € F", ¢(az’) = E;n:l z'(a;M;) # 0 for any
nonzero z'. Thus, E;":l a;M; has rank n for any nonzero a = (ay,...,a,) € F™. So,
{M,...,M,} is a basis for a subspace in M,,x,(F) whose nonzero elements have rank n.
By a result of Meshulam [1, Appendix|, we see that m < n + ¢ — 2n + 1, which is our
desired inequality after rearrangement. O



Without the additional hypothesis on F, the converse statement of Proposition 2.3
is false, as the following example shows. Let ¢ : Myyx2(R) — Mix2(R) be a linear

transformation such that
, 0 1
Ker ¢ = span {I’[—l 0]}

Since Ker ¢ does not contain any rank one matrix, ¢(A) # 0 for every rank one matrix A.

Corollary 2.4 Let ¢ : Myxn(F) — M,yo(F) be a linear transformation such that
A€ M, (F), rank A=1 <= rank¢(A4) =1. (2.4)

Then there exist invertible matrices P € Myx,(F) and Q € Myx,(F) such that condition
(1) or (2) of Theorem 2.1 holds.

Proof. We need only to show that the situations (3) and (4) of Theorem 2.1 cannot
occur under the more restrictive hypothesis (2.4). We may assume m,n > 2. Arguing by
contradiction, assume there exists a linear map

Y ¢ Mupwn(F) — Myyi(F)

such that (A) # 0 for every A € Mpxn(F) of rank one, and ¢(A) = 0 for every A €
Mxn(F) of rank at least two. Select linearly independent x,y € M,,x1(F), and a,b, c €

M, x,(F) such that a,b are linearly independent, a, ¢ are linearly independent, and b # c.
Then

d(y(b —e)') = ¢p(za’ + yb") — d(xza" + yc) =0—-0=0,

a contradiction, because y(b — ¢) has rank one. 0

Theorem 2.5 Let F be an algebraically closed field of characteristic 0, and k be a positive
integer. The following conditions are equivalent for a linear transformation ¢ : My, (F) —
M,«o(F) whose range contains a matriz of rank kn.

(a) rank ¢(A) = k whenever rank A = 1.
(b) rank ¢(A) < k whenever rank A = 1.

(¢) ¢ has the form
I, ® A 0 0
AmP| 0 LoA 0|Q, (2.5)
0 0 A

where Z stands for the (p—rn—sn) X (q—rn—sn) zero matriz, for some nonnegative
integers r and s and some invertible matrices P € Mpyp(F) and Q € My, (F).



Proof. The implications (c) = (a) = (b) are clear. We consider (b) = (c). If A has
rank r, then it can be written as a sum of r rank one linear transformations, and since
rank is subadditive, we have rank ¢(A) < rk. Let B be a matrix with the property that
rank ¢(B) = nk. Then B has rank n, and so, we may assume without loss of generality

that ;
sy =B o)

Let P € M, x,(F) be an idempotent, say of rank r. Then ¢(I,) = ¢(P) + ¢(I, — P) and
kn = rank ¢(I,,) < rank ¢(P) + rank (I, — P) < kr + k(n — r) = kn. So, the inequalities

are actually equalities.

Identifying matrices with operators we have the following obvious relation involving
range spaces

R(¢(1n)) € R(&(P)) + R(S(1. = P)).

From

dim R(¢(I,)) = dim R($(P)) + dim R(¢(I, — P))

we get
R(¢(1n)) = R((P)) + R($(In — P)), (2.6)

a direct sum. In particular, R(¢(P)) C R(¢(I,)). The same is true for the transposes,
so ¢(P) is a matrix having nonzero entries only in the upper left kn x kn corner. Every
A € M,x,(F) is a linear combination of idempotents, and so, it is mapped into the upper
left kn x kn corner. Therefore, there is no loss of generality in assuming that p = ¢ = kn.
For x € R(¢(P)) we have v = ¢(I,)x = ¢(P)x + ¢(I, — P)x, which by (2.6) yields
¢(P)x = z and ¢(I, — P)r = 0. Similarly, ¢(P)z = 0 for every € R(H(I, — P)).
Therefore, ¢(P) is an idempotent. We have thus proved that ¢ : M,xn(F) = Mukxnk(F)
maps idempotents into idempotents. By [2, Theorem 2.1], ¢ is a sum of a homomorphism
and an antihomomorphism. Now one can complete the proof using the same approach as

in [7, p. 77]. O

The assumption that the range of ¢ contains a matrix of rank kn in Theorem 2.5 is
essential as shown in the following.

Example 2.6 Let n,p : Myxn(F) = Mgni1)x(nt1)(F) be linear maps so that for any A €
M (F), n(A4) = A% (0] and 1(A) = 016 4. Then 6 = 1+ : Myen(F) = Moirysony(F)

maps every rank one matrix into a rank two matrix but is not of the form (2.5).

The next example shows that one cannot simply replace in Theorem 2.5 the domain of

¢ by Myuxn(F) and kn by kmin{m,n}.



Example 2.7 Let ¢ : Myy3(F) — Myx4(F) be defined by

QLR o
D S~ 0
~ 0 O O

Clearly, ¢ maps every rank one matrix to a rank two matrix, and ¢ ({(1) 1 ﬂ) has

rank four. However, ¢ is not of the form (2.5).

3 Linear maps on matrices of higher ranks

In view of Theorem 2.1, one may conjecture that if k is fixed, 2 < k < min{m,n} and
¢ ¢ Muxn(F) — M,x,(F) is a linear mapping having the property that rank ¢(A) = k
whenever rank A = k then either it is of the form (1) or (2) in Theorem 2.1, or the range
of ¢ is a rank-k subspace of M,x,(F), that is, a subspace whose all nonzero members have
rank k. This conjecture is not true as shown in the following examples.

Example 3.1 Assume k = n < p and consider any linear map from M, x,,(F) into M, (F)

of the form 4 WA
A [0 0 ]

where t is any linear map. Obviously, such maps need not be of the form (1) or (2) in
Theorem 2.1, and their range need not be a rank-n space.

The next example again concerns linear map from M, x,(F) into Mpx,(F). For simplic-
ity, we describe the construction for n = 3, k = 2, and p = 8. It is easy to construct higher
dimensional examples using exactly the same idea.

Example 3.2 Let E;;, 1 < 1,5 < 8 be the standard matrix units in Msxs(F). Define
o M3x3(]F) — MSXS(]F) by

o([ai]) = an1(Ev + Ea2) + ar2(Evz + Ea3) 4+ a13(Evs + Eq)+

a21(Era + Eas) + ax(Ers + Ezg) + aas(Eie + E2r) + ¢([asj])

where @ is any linear map from Msy3(F) to the linear span of Eis and Egs. If A € Msys
is any matrix of rank two, then at least one of the entries aq1, ais, 13, asi, daa, oz has to
be nonzero, and so, the rank ¢(A) is two. But obviously, ¢ is neither of the form (1) nor
of the form (2) in Theorem 2.1, and as we have a complete freedom when choosing ¢ the
range of ¢ 1s in general not a rank-2 space.



By the above examples, we need some stronger assumptions to get a good description
for rank £ preservers between matrix spaces. One possibility is to assume preservation of
rank k& matrices in both directions.

Theorem 3.3 Assume that F is infinite. Let m,n,p,q,k be positive integers such that
2 < k < min{m,n}. Suppose ¢ : Muxn(F) — Myy,(F) is a linear transformation such
that

rank $(A) =k < rank A =k

Then either m < p and n < q, or m < q and n < p, and there exist invertible matrices

P € Myy,(F) and Q € Myyy(F) such that ¢ has the form (1) or (2) in Theorem 2.1.

Proof. We let M, ys = M,«s(F). We start with the special case kK = 2. Observe that ¢
is continuous in the Zariski topology, i.e., the topology in M,,x, in which closed sets are
exactly those that are common zeros of finite sets of polynomials with coefficients in F of
mn independent commuting variables that represent the entries of an element of M, xn,
and the analogously defined closed sets in M,y,. It is easy to see that the closure of the set
of matrices of rank two in the Zariski topology is the set of matrices of rank at most two.
Because of the continuity of ¢, we see that ¢ maps matrices of rank one into matrices of
rank at most two. By the assumption, a rank one matrix cannot be mapped into a matrix
of rank two. So, its image has rank at most one. We will show that rank one matrix
cannot be mapped into zero matrix. Assume that there is a rank one matrix A such that
¢(A) = 0. It is easy to find a rank one B such that A + B has rank two. But then ¢(B)
must have rank two, a contradiction. So, ¢ preserves rank one matrices and the result
follows from Theorem 2.1.

Now let & > 3. We assume (without loss of generality) that n < m.

First consider the case £ = n. We will prove that in this case ¢ preserves matrices of
rank one and then the result will follow directly from Theorem 2.1. So, for any rank one
matrix A we have to show that rank ¢(A) = 1. With no loss of generality we may assume
that A = Fq;. There is also no loss of generality in assuming that

[3-142)

Our next step will be to prove that

3)-[ 3

for every A € M, x,. Indeed, it is easy to see that if there is an A € M,,x,, such that ¢(A)
has a nonzero entry in the bottom right corner then there is an o € F such that ¢(al + A)
has rank larger than n. On the other hand, we know that by continuity (in the Zariski
topology) of ¢ every matrix in the range of ¢ has rank at most n, a contradiction.



We define now a new linear map ¢ : M,,x,, — M, x, which associates to each A € M, x,,
A
0
maps singular matrices into singular matrices. Indeed, if A is singular, then the rank of
qb(fi) cannot be equal to n, on the other hand, it cannot be larger than n because of the
continuity of ¢; so rank ¢(A) < n, and therefore also rank(A4) < n. Since ¥(I) = I,
Theorem 1 of [9] implies that ¢»(A) = UAV or (A) = UA'V for some U,V € GL(n,F) (in

fact, since (1) = I we have V = U™'). Hence, there is no loss of generality in assuming

that ¢ is such that
(3h-Lay )

Here, of course n and p are linear maps satisfying n(/) = 0 and p(I) = 0.

the upper left n X n corner of qb(jl), where A = [ . This linear transformation obviously

Let A € M, x,, be any matrix of rank n — 1 having the first row equal to zero. Since
rank $(A) < n — 1 we see using (3.1) that the first row of n(A) must be zero. Every
matrix from M,,y, having the first row equal to zero can be written as a difference of two
such matrices with rank n — 1. So, for every such matrix the first row of n(A) must be
zero. Of course, an analogue holds true for every matrix having the i-th row zero. In
particular, n(E;;) has nonzero entries only in the first row. Assume that n(Eq;) # 0.
Since ¢(I) = ¢(E11) + ¢(Ear + ...+ Enp) the first row of n(Eqz + ...+ E,,) is nonzero, a
contradiction. Thus, n(Ey;) = 0, and similarly, x4(E11) = 0. Consequently, ¢(E11) = Eq;.
Hence, we have proved that ¢ maps rank one matrices into rank one matrices. This

completes the proof in the special case that k = n.

Let us now prove the statement for 2 < k < n. Once again we will prove that ¢ preserves
matrices of rank one and then the result follows directly from Theorem 2.1. As before it
is enough to prove that ¢(FEi;) has rank one. The linear span V of {E;; : 1 <1,5 < k}
is 1somorphic to Myxx. We consider the restriction of ¢ to the subalgebra V and applying
the previous step we get the desired relation rank ¢(Fy;) = 1. O

A special case of linear maps ¢ such that rank ¢(A) = s for every matrix A of rank &
(with k& and s fixed) are linear maps that send full rank matrices to full rank matrices. In
particular, if m = n and p = ¢, we are studying linear maps preserving invertibility, which
is very difficult; see [6]. It was proved in [5] that if a linear transformation ¢ : My, xm (F) —
M,«»(F) maps invertible matrices to invertible matrices, then p = km for some positive
integer k. An example in [6] shows that without additional assumptions description of all
linear transformations (1.1) (where m = n and p = ¢) such that

¢(A) is invertible <= A is invertible (3.2)

may be intractable. Thus, we need to impose additional assumptions. We have the follow-
ing result.

Proposition 3.4 Let C be the complex field, and suppose ¢ : Myym(C) — Mpy,(C)
is linear and maps invertible matrices to invertible matrices. If ¢(A*) = ¢(A)* for all
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A € Mpxm(C), and ¢(P) is positive or negative definite for some positive definite P €
Mxm(C), then ¢ is of the from

I, A 0

QD(A) = :l:T 0 _[52 ® At

T (3.3)
for some invertible matriz T and some nonnegative integers s1, sy (if s; = 0 for some j,
J = 1,2, then the corresponding part in the right hand side of (3.3) is absent).

Proof. Suppose P € M,xm(C) is positive definite such that ¢(P) = @ is positive
or negative definite. Replacing ¢ by a mapping of the form X — £¢(P'/2XP'?), we
may assume that ¢(I,;,) is positive definite. We may further replace ¢ by the mapping
of the form X s (L) /24(X)¢(1,,)""/? and assume that ¢(I,,) = I,. Note that the
modified transformation still maps Hermitian matrices to Hermitian matrices. Moreover,
if A € Myuxm(C) is a Hermitian idempotent, then ¢I,,, — A is invertible for all ¢+ € C\ {0, 1}.
Thus ¢(t1,, — A) = tI, — ¢(A) is also invertible for all ¢+ € C\ {0,1}. Hence ¢ maps the set
of Hermitian idempotents to itself. The proof can now be completed using the arguments
from the proofs of Theorem 4.1 and Corollary 4.3 in [7] (see also [2, Theorem 2.1]). O

Note that one cannot remove the hypothesis that ¢(P) is definite for some definite
P € M;,xm(C) in the above proposition.

Example 3.5 Let ¢ : Myy3(C) — Myx4(C) be defined by

o /] oo
QU TN O O
OO0 2
o O o

Then ¢ is linear such that ¢(A*) = ¢(A)* for all A € Myy2(C), and maps invertible matrices

to invertible matrices. However, ¢ is not of the form (3.3).
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