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Abstract. A description is given of those ray-patterns, which will be called inverse
closed ray-nonsingular, of complex matrices that contain invertible matrices only and
are closed under inversion. Here, two n × n matrices are said to belong to the same
ray-pattern if in each position either the entries of both matrices are zeros, or both
entries are nonzero and their quotient is positive. Possible Jordan forms of matrices
in the inverse closed ray-nonsingular ray-patterns are characterized.

1. Introduction

In this paper we study ray-patterns of complex matrices with the property that every
matrix in the ray-pattern is nonsingular, and the inverse of the matrix is again in the
same ray-pattern.

We first introduce some terminology and notation. Let

Ω = {0} ∪ {z ∈ C : |z| = 1}.
A matrix with entries in Ω will be called a ray-pattern. Denote by Mn(Ω) the set of
n× n ray-patterns. A pattern A ∈ Mn(Ω) generates a cone Cone (A) in a natural way:

Cone (A) = {X ◦ A : X n× n matrix with positive entries},
where ◦ stands for the Hadamard (entrywise) product.

A ray-pattern A ∈ Mn(Ω) is called ray-nonsingular if X ◦ A is invertible for every
n × n matrix X with positive entries. Ray-patterns, in particular ray-nonsingular
ray-patterns, were studied recently in [6], [8], [5], For a survey of the theory of real
ray-nonsingular ray-patterns see the book [1] and references there.

In applications of matrix analysis to stability (see, e.g., [2], [3]) one often encounters
closed cones of matrices with the property that the set of invertible matrices in the cone
is dense, and the inverse of every invertible matrix in the cone belongs again to the cone.
In the context of ray-nonsingular ray-patterns such cones appear as follows. We denote
by Mn(C) the algebra of complex n×n matrices. Given X = [xi,j]

n
i,j=1 ∈ Mn(C), define

the pattern projection ray (X) of X as follows: ray (X) is the ray-pattern whose (i, j)-th
entry is 0 if xi,j = 0, and is equal to

xi,j

|xi,j | if xi,j 6= 0. A ray-nonsingular ray-pattern A

is called inverse-closed if ray ((X ◦A)−1) = A for every matrix X with positive entries.
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Lemma 1.1. Suppose A is an inverse-closed ray-nonsingular ray-pattern. Denote by
Cone (A) the cone generated by A, and let CCone (A) be the closed cone which is the
closure of Cone (A):

CCone (A) = {X ◦ A : X has nonnegative entries}.

Then every Y ∈ Cone (A) is invertible, and every invertible Y ∈ CCone (A) has the
property that Y −1 ∈ CCone (A).

Proof. Let Y = X ◦A, for some X with nonnegative entries, and assume that Y is
invertible. Let Xm be a sequence of matrices with positive entries such that Xm −→ X
as m −→ ∞. Then clearly Ym := Xm ◦ A is invertible for large m, and Y −1

m −→ Y −1.
By the properties of inverse-closeness we have that Y −1

m ∈ Cone (A). Passing to the
limit we obtain Y −1 ∈ CCone (A), as required. �

In this paper, we solve the following problem.

Problem 1.2. Describe all inverse-closed ray-nonsingular (in short, ICRN)
ray-patterns.

A solution of the problem is known in the real case, see [1, Section 7.4], [4]. A closely
related (but different) problem, also in the real case, was studied in [10], [11], [12].
Another relevant paper is [8].

The ICRN ray-patterns transform well with respect to certain similarity transforma-
tions. Let Gn, sometimes abbreviated to G if the size n is understood from context,
be the group of matrices that consists of all products of the form DQ, where Q is an
n×n permutation matrix and D is a unimodular diagonal matrix, i.e., diagonal matrix
with unimodular entries on the main diagonal. Clearly, gA and Ag are ray-patterns for
every n× n ray-pattern A and every g ∈ Gn.

Lemma 1.3. If a ray-pattern A ∈ Mn(Ω) is ICRN, then so are ±A and ±At (the
transpose of A), and every ray-pattern of the form gAg−1, where g ∈ Gn is arbitrary.
Furthermore, if A1, . . . , Ap are ICRN’s, then so is diag (A1, . . . , Ap).

We omit a simple proof.
In view of Lemma 1.3, we will describe the ICRN ray-patterns up to a similarity with

the similarity matrix in Gn.
The rest of the paper consists of 5 sections. Sections 2 and 3 are preparatory, and

contain descriptions of ICRN ray-patterns without zero entries and irreducible ICRN
ray-patterns. The main result of the paper, Theorem 4.2, is stated in Section 4. Its
rather long proof is delegated to Section 5. In Section 6 we study location of eigenvalues
and inertia properties of matrices in the cone Cone (A), for ICRN ray-patterns A. In
particular, we completely describe Jordan forms of matrices in the set ∪A (Cone (A)),
where the union is taken over all n× n ICRN ray-patterns A.
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2. ICRN ray-patterns without zero entries

Lemma 2.1. Let A be an n× n ray-nonsingular ray-pattern without zero entries such
that the ray-pattern projection ray ((X ◦ A)−1) is independent of any matrix X with
positive entries and all entries of ray ((X ◦ A)−1) are nonzero. Then n ≤ 2, and there
exist g, h ∈ Gn such that gAh has the form

[1] or

[
1 1
1 −1

]
.

Proof. It is known that there do not exist ray-nonsingular n × n ray-patterns
without zero entries if n > 4 [6], [7]. We will focus on the cases for n = 1, . . . , 4, and
for completeness present also the case n = 5.

The hypotheses on A are clearly invariant under pre- and post-multiplication by
elements of Gn. Using a transformation of the form A 7→ gAh, g, h ∈ G, we may
assume that the entries of A in the first row and the first column are all one, viz.,

A = [zi,j]
n
i,j=1 with |zi,j| = 1, and zi,j = 1 whenever 1 ∈ {i, j}.

Then the result is trivial if n = 1. Suppose n = 2. Let

X =

[
1 1
1 r

]
with r > 0. Then the (1, 1) entry of X ◦ A is z2,2/(rz2,2 − 1) which has the same
argument for any r > 0. Thus, rz2,2−1 has the same argument for all r > 0, and hence
z2,2 = −1, i.e., A has the asserted form.

Consider the case n = 3. Let

X =

 1 u v
1 1 1
1 1 1

 .

Then the (3, 3) entry and (2, 3) entry of (X ◦ A)−1 are

(2.1) (z2,2 − u)/ det(X ◦ A) and (v − z2,3)/ det(X ◦ A),

respectively, and each of them has a fixed argument for all choices of u, v > 0. Dividing
the numbers (2.1), we see that (z2,2 − u)/(v− z2,3) has a fixed argument for all choices
of u, v > 0. Fixing v and changing u, we see that z2,2 = −1; fixing u and changing v,

we see that z2,3 = −1. Now, applying the argument to Ã, where Ã is obtained from A
by interchanging its last two rows, we see that z3,2 = z3,3 = −1. But then

A =

 1 1 1
1 −1 −1
1 −1 −1


is not ray-nonsingular, which is a contradiction.

Consider the case n = 4. We may assume that z2,2z3,k − z3,2z2,k 6= 0 for some k ≥ 3;
otherwise, the (1, 4) entry of A−1 is zero, which is excluded by the hypotheses. We may
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assume that k = 3; otherwise, interchange the last two columns of A. Let

X =


1 r s 1
t 1 1 1
1 1 1 1
1 1 1 1

 with r, s, t > 0.

Then the (4, 4) entry and the (1, 1) entry of (X ◦A)−1 have constant (i.e., independent
of r, s, t) arguments, and so is their quotient:

(z2,2z3,3 − z2,3z3,2)− r(tz3,3 − z2,3) + s(tz3,2 − z2,2)

z2,2z3,3z4,4 + z2,4z3,2z4,3 + z4,2z2,3z3,4 − z4,2z3,3z2,4 − z3,2z2,3z4,4 − z4,3z3,4z2,2

.

As a result, for any t > 0 not equal to z2,2/z3,2 or z2,3/z3,3, the quantity

(z2,2z3,3 − z2,3z3,2)− r(tz3,3 − z2,3) + s(tz3,2 − z2,2)

has a constant argument for any r, s > 0. Hence, z2,3 − tz3,3 and tz3,2 − z2,2 have the
same argument as z2,2z3,3 − z2,3z3,2 for all t > 0 not equal to z2,2/z3,2 or z2,3/z3,3. It
follows that z3,3 = −z2,3 and z3,2 = −z2,2. But then z2,2z3,3 − z2,3z3,2 = 0, which is a
contradiction.

Now, suppose n = 5. Let

X =


1 r s t 1
u x 1 1 1
v 1 1 1 1
w 1 1 1 1
1 1 1 1 1

 with r, s, t, u, v, w, x > 0.

Denoted by Y (p, q) the matrix obtained from the matrix Y by removing its pth row
and qth column. Let B = (X ◦A)(5, 5). Then the (5, 5) and (1, 1) entries of (X ◦A)−1

have constant arguments and so does their quotient, which has the form

(2.2)
det(B(1, 1))− r det(B(1, 2)) + s det(B(1, 3))− t det(B(1, 4))

det(X ◦ A)(1, 1)
.

Note that B(1, 1) and A(1, 1) depend only on the variable x; B(1, 2), B(1, 3), B(1, 4)
depend on the variables u, v, w, x. For fixed x > 0, the quotient (2.2) has constant
argument for all choices of r, s, t, u, v, w > 0. It follows that

(2.3) det(B(1, 3)) = u(z3,2z4,4− z4,2z3,4)− v(xz2,2z4,4− z4,2z2,4)+w(xz2,2z3,4− z3,2z2,4)

is either zero or has a constant argument for all choices of u, v, w > 0 if x > 0 is fixed.
Choosing x > 0 such that both xz2,2z4,4−z4,2z2,4 and xz2,2z3,4−z3,2z2,4 are nonzero, and
varying u, v, w > 0 in (2.3), we see that xz2,2z4,4− z4,2z2,4 and xz2,2z3,4− z3,2z2,4 always
have the same arguments. Hence, they are positive multiples of each other. This is
true for infinitely many x > 0. It follows that

z4,4/z4,2 = z3,4/z3,2.
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Interchange the kth row and the third row of A for k = 2, 5, and repeat the above
argument. We conclude that

z4,4/z4,2 = zk,4/zk,2, k = 2, 3, 5.

Thus, the second column and the fourth column of A(1, 1) are multiples of each other.
It follows that det(A(1, 1)) = 0, which is a contradiction. Our proof is complete. �

Proposition 2.2. An n× n ray-pattern A without zero entries is ICRN if and only if
n ≤ 2 and there exists g ∈ Gn such that gAg−1 has one of the three forms

[1], [−1],

[
1 1
1 −1

]
.

Proof. The “if” part is obvious. For the “only if” part, by Lemma 2.1 we have n ≤
2. The case n = 1 is trivial. For n = 2, we may apply a transformation A 7→ gAg−1,
g ∈ G and assume that

A =

[
1 1
v w

]
,

where v, w are unimodular numbers. Let

X =

[
1 1
x 1

]
with x > 0,

and consider the (1, 1) and (2, 1) entries of (X ◦A)−1. We see that w/(w−xv) > 0 and
−1/(w − xv) > 0 for all x > 0. Thus, v = −w = 1. �

3. Irreducible ICRN ray-patterns

A ray-pattern A is called irreducible if there is no permutation matrix Q such that

QAQ−1 =

[
A1,1 0
A2,1 A2,2

]
,

where the sizes of the square submatrices A1,1 and A2,2 are strictly smaller than that
of A.

Proposition 3.1. Let A be an n × n irreducible ray-pattern. Then A is ICRN if and
only if n ∈ {1, 2, 4} and there exists g ∈ Gn such that gAg−1 has one of the following
five forms:

(3.1) [1], [−1],

[
1 1
1 −1

]
,

[
0 1
1 0

]
,


0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0

 .

Proof. The proof follows the argument from [1, Section 7.4]. The “if” part is clear.
Assume A is an ICRN ray-pattern. First suppose that A is fully indecomposable, i.e.,
no p×q submatrix of A with p+q ≥ n is the zero matrix. Consider an (n−1)× (n−1)
submatrix B of A. Since the ray-pattern projection ray ((X ◦ A)−1) is independent of
the positive matrix X, we have either det (X ◦B) = 0 for every positive (n−1)×(n−1)
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matrix X, or det (X ◦ B) 6= 0 for every positive (n − 1) × (n − 1) matrix X. In the
former case, all (n − 1)! terms in the expression of det B are zeros, which implies (as
can be seen by induction on the size of B, for example) that there exists an r × s zero
submatrix of B with r + s > n− 1 (the Frobenius - König theorem, see, e.g., [9]). This
contradicts the full indecomposability of A. Thus, the latter case holds, which implies
that A has no zero entries. Now use Proposition 2.2.

Suppose that A is not fully indecomposable. We denote by Y [α, β] the |α| × |β|
submatrix of an n × n matrix Y defined by the nonempty index set α ⊆ {1, 2, . . . , n}
of rows and the nonempty index set β ⊆ {1, 2, . . . , n} of columns; |α| stands for the
cardinality of a set α. Let α and β be such that |α| + |β| = n and A[α, β] = 0.
Then for every positive matrix X we have (X ◦ A)−1[β, α] = 0, where α stands for
the complement of α in {1, 2, . . . , n}. Since A is ICRN, it follows that A[β, α] = 0. If

α \ β 6= ∅, then A[α \ β, α \ β] = 0, a contradiction with irreducibility of A. Thus,
α \ β = ∅. Similarly, β \ α = ∅. So α = β. Since

A[α, α] = 0, A[α, α] = 0,

we conclude that n is even and |α| = n/2.

If A[α, α] is not fully indecomposable, then there exists a |γ| × |δ| zero submatrix
A[γ, δ] with |γ| + |δ| = n and γ 6= δ, a contradiction with what was proved above.
Thus, A[α, α] and similarly A[α, α] are fully indecomposable. Applying a similarity
A 7→ QAQ−1, with a permutation matrix Q, we may assume that

A =

[
0 A1

A2 0

]
,

where A1 and A2 are fully indecomposable (n/2)× (n/2) ray-patterns. Clearly,

ray ((X ◦ A1)
−1) = A2 and ray ((X ◦ A2)

−1) = A1

for every positive matrix X. In particular, the ray-pattern projections ray ((X ◦Aj)
−1)

are independent of X, for j = 1, 2. The first paragraph of the proof shows that Aj have
no zero entries, and an application of Lemma 2.1 completes the proof. �

4. Reducible ICRN ray-patterns: the main result

Lemma 4.1. Let

A =

[
A1,1 0
A2,1 A2,2

]
be an ICRN n× n ray-pattern, where A1,1 and A2,2 are irreducible ICRN ray-patterns.
Then either A2,1 = 0 or there exists g ∈ Gn such that gAg−1 has one of the following
forms:

(4.1)

[
1 0
1 −1

]
,

[
−1 0

1 1

]
,

 1 0 0
1 0 1

−1 1 0

 ,

 0 1 0
1 0 0
1 −1 1

 ,
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(4.2)

 −1 0 0
1 0 1
1 1 0

 ,

 0 1 0
1 0 0
1 1 −1

 ,


0 1 0 0
1 0 0 0
1 z 0 1

−z −1 1 0

 z ∈ Ω.

Conversely, all matrices in (4.1) and (4.2) are ICRN ray-patterns.

Proof. The converse statement is verified in a straightforward way.
Let A be as in the lemma. By Proposition 3.1, each of the matrices A1,1 and A2,2

has one of the forms (3.1). We will prove that if at least one of A1,1 and A2,2 has either
the third or the fifth form of (3.1), then A2,1 = 0.

Let

A1,1 = A2,2 =

[
1 1
1 −1

]
, A2,1 =

[
z1,1 z1,2

z2,1 z2,2

]
.

Then for x1,1, x1,2, x2,1, x2,2 positive we have
1 1 0 0
1 −1 0 0

x1,1z1,1 x1,2z1,2 1 1
x2,1z2,1 x2,2z1,2 1 −1


−1

=

[
A−1

1,1 0
T A−1

2,2

]
,

where

T = −A−1
2,2

[
x1,1z1,1 x1,2z1,2

x2,1z2,1 x2,2z1,2

]
A−1

1,1.

The matrix T is computed to be

T =
−1

4

[
x1,1z1,1 + x2,1z2,1 + x1,2z1,2 + x2,2z2,2 x1,1z1,1 + x2,1z2,1 − x1,2z1,2 − x2,2z2,2

x1,1z1,1 − x2,1z2,1 + x1,2z1,2 − x2,2z2,2 x1,1z1,1 − x2,1z2,1 − x1,2z1,2 + x2,2z2,2

]
.

Since A is ICRN, we must have in particular that each of the entries of T has the same
argument (or is zero) irrespectively of the positive values of x1,1, x1,2, x2,1, x2,2. It is
easy to see that this happens only if at most one number among z1,1, z1,2, z2,1, z2,2 is
nonzero. But if one of those numbers were nonzero, we would have ray (T ) 6= A2,1, a
contradiction with A being ICRN.

Let

A1,1 =

[
0 Q
Q 0

]
, A2,2 = Q,

where Q =

[
1 1
1 −1

]
. Note that Q−1 = 1

2
Q. Let

A2,1 = [zi,j]i=1,2;j=1,2,3,4, X = [xi,j]i=1,2;j=1,2,3,4, xi,j > 0.

Then [
A1,1 0

X ◦ A2,1 A2,2

]−1

=

[
A−1

1,1 0
T A−1

2,2

]
,

where

T =
−1

4

[
Q

[
x1,3z1,3 x1,4z1,4

x2,3z2,3 x2,4z2,4

]
Q Q

[
x1,1z1,1 x1,2z1,2

x2,1z2,1 x2,2z2,2

]
Q

]
.
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As in the preceding case, where A1,1 and A2,2 were both equal to Q, it follows (since
ray (T ) should be independent of X) that at most one number among z1,1, z1,2, z2,1, z2,2

is nonzero, and at most one number among z1,3, z1,4, z2,3, z2,4 is nonzero. Say, z1,1 6= 0.
The right 2× 2 submatrix of T is

−1

4

[
x1,1z1,1 x1,1z1,1

x1,1z1,1 x1,1z1,1

]
.

Since A is ICRN, we must have

P

(
−1

4

[
x1,1z1,1 x1,1z1,1

x1,1z1,1 x1,1z1,1

])
=

[
z1,3 z1,4

z2,3 z2,4

]
,

a contradiction with the property that at least three numbers among z1,3, z1,4, z2,3, z2,4

are zeros. Thus, A2,1 = 0. The cases when

A1,1 = A2,2 =

[
0 Q
Q 0

]
or A1,1 = Q, A2,2 =

[
0 Q
Q 0

]
,

are treated in a similar manner.
Let now consider the case

A1,1 =

[
0 Q
Q 0

]
, A2,2 =

[
0 1
1 0

]
.

Let
A2,1 = [zi,j]i=1,2;j=1,2,3,4, X = [xi,j]i=1,2;j=1,2,3,4, xi,j > 0.

We have [
A1,1 0

X ◦ A2,1 A2,2

]−1

=

[
A−1

1,1 0
T A−1

2,2

]
,

where

T =
1

2

[
x2,3z2,3 + x2,4z2,4 x2,3z2,3 − x2,4z2,4 x2,1z2,1 + x2,2z2,2 x2,1z2,1 − x2,2z2,2

x1,3z1,3 + x1,4z1,4 x1,3z1,3 − x1,4z1,4 x1,1z1,1 + x1,2z1,2 x1,1z1,1 − x1,2z1,2

]
.

For ray (T ) to be independent of xi,j we must have that there is at least one zero in each
of the four pairs {z1,1, z1,2}, {z1,3, z1,4}, {z2,1, z2,2}, and {z2,3, z2,4}. But if one of the zi,j

is nonzero, say z1,1 6= 0, then the ray-pattern of the right lower 1× 2 corner of T is not
equal to

[
z2,3 z2,4

]
, a contradiction with the ICRN property of A. The remaining

cases of one of the two blocks A1,1 and A2,2 being equal to either Q or

[
0 Q
Q 0

]
, and

the other block being one of [±1] or

[
0 1
1 0

]
can be dealt with similarly.

Thus, leaving aside the case when A2,1 = 0, each of the matrices A1,1 and A2,2 has
one of the first, second, or fourth forms of (3.1). The rest is elementary. For example,

0 y2 0 0
y1 0 0 0

y5z5 y6z6 0 y4

y7z7 y8z8 y3 0


−1

=


0 y−1

1 0 0
y−1

2 0 0 0
−y−1

3 y−1
2 y8z8 −y−1

3 y−1
1 y7z7 0 y−1

3

−y−1
4 y−1

2 y6z6 −y−1
4 y−1

1 y5z5 y−1
4 0

 ,
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where y1, . . . , y8 > 0 and z5, z6, z7, z8 ∈ Ω. Thus, the ray-pattern

A0 =


0 1 0 0
1 0 0 0
z5 z6 0 1
z7 z8 1 0


is ICRN if and only if z8 = −z5 and z7 = −z6. Applying a suitable transformation

A0 7→ (h⊕ g)A0(h⊕ g)−1, h, g ∈ G2,

we reduce A0 to one of the forms indicated in (4.2) (if at least one of z5, z6, z7, and z8

is nonzero). �

We now state the main result of this paper describing all ICRN ray-patterns up to
similarity with a similarity matrix in the group G.

Theorem 4.2. Let

(4.3) A =


A1,1 0 0 . . . 0
A2,1 A2,2 0 . . . 0
...

...
. . . . . .

...
Ap,1 Ap,2 Ap,3 . . . Ap,p


be an ICRN n× n ray-pattern, where A1,1, . . . , Ap,p are irreducible ICRN ray-patterns.
Then there exists g ∈ Gn such that gAg−1 has a block lower triangular form

(4.4) B := gAg−1 = [Bi,j]1≤i,j≤p =

[
C1 0
C2 C3

]
⊕ C0

with the following properties:

(α) C0 is the direct sum of r identical matrices of the form

[
1 1
1 −1

]
and of s

identical matrices of the form


0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0

;

(β) [
C1 0
0 C3

]
= B1,1 ⊕ · · · ⊕Bq,q,

with q = p− r − s, where for j = 1, . . . , q:

(4.5) Bj,j ∈
{

[1], [−1],

[
0 1
1 0

]}
;

(γ) If the block

[
Bi,i 0
Bj,i Bj,j

]
is such that Bj,i is a submatrix of C2, then[

Bi,i 0
Bj,i Bj,j

]
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has one of the following forms:

(a)

[
±1 0

0 ±1

]
, (b)

[
±1 0

z ∓1

]
, (c)

 ±1 0 0
z 0 1

∓z 1 0

 ,

(d)

 0 1 0
1 0 0
z ∓z ±1

 , (e)


0 1 0 0
1 0 0 0
w z 0 1
−z −w 1 0


for some w, z ∈ Ω.

Conversely, every ray-pattern of the form (4.4) with the properties (α) - (γ) is ICRN.

The cases when one or more integers among q, r, s are zeros, with the obvious
interpretation, are not excluded in Theorem 4.2. If q = 1, then the property (β) is
interpreted in the sense that B1,1 has one of the forms as in (4.5).

For convenience of reference, we define the following five types of block forms:

(4.6)

(I) [1], (II) [−1], (III)

[
0 1
1 0

]
,

(IV)

[
1 1
1 −1

]
, (V)


0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0

 .

The rather long proof of the theorem will be given in the next section.

It will be seen in the proof of Theorem 4.2 that when the proof is specialized to real

ray-patterns A, the following real analogue of Theorem 4.2 is obtained. Let G(r)
n be the

group of n× n matrices of the form DQ, where Q is a permutation matrix, and D is a
diagonal matrix with diagonal entries ±1.

Theorem 4.3. Let

(4.7) A =


A1,1 0 0 . . . 0
A2,1 A2,2 0 . . . 0
...

...
. . . . . .

...
Ap,1 Ap,2 Ap,3 . . . Ap,p


be an ICRN n × n ray-pattern with entries 0, ±1, where A1,1, . . . , Ap,p are irreducible

ICRN ray-patterns. Then there exists g ∈ G(r)
n such that gAg−1 has a block diagonal

form (4.4) with the properties (α), (β), and (γ), where z, w ∈ {0, 1,−1} in (b) - (e).
Conversely, every real ray-pattern of the form as described is ICRN.

Theorem 4.3 is essentially a reformulation of [1, Theorem 7.4.6].
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5. Proof of Theorem 4.2

We prove first the direct statement of the theorem.
We use induction on p. For p ≤ 2 the result is established in Proposition 3.1 and

Lemma 4.1. Let now p ≥ 3 and assume that Theorem 4.2 is proved for all smaller
values of p.

Let A be given as in the Theorem. In what follows we formally put Ai,j = 0 if i < j.
By Proposition 3.1 we may assume that each diagonal block Aj,j has one of the forms
(I) - (V).

Step 1. Suppose that one of the diagonal blocks, say Aj0,j0 where j0 < p, has the

form (IV) or (V). Applying the induction hypothesis to [Aj,k]
p−1
j,k=1 we may assume that

Ak,j0 = 0 for k = j0 +1, . . . , p−1 and Aj0,k = 0 for k = 1, . . . , j0−1. (if it happens that
Ap,p has one of the forms (IV) or (V), we apply the induction hypothesis to [Aj,k]

p
j,k=2

and argue similarly). Partition the matrix [Aj,k]
p
j,k=j0

as follows:

(5.1) [Aj,k]
p
j,k=j0

=

 Aj0,j0 0 0
0 C 0

Ap,j0 D Ap,p

 ,

where

C = [Aj,k]
p−1
j,k=j0+1, D = [Ap,j0+1 Ap,j0+2 . . . Ap,p−1] .

Since A is ICRN, it is easy to see that the matrix [Aj,k]
p
j,k=j0

is also ICRN. For any

positive matrix X = [Xu,v]
3
u,v=1 of appropriate size, partitioned conformably with (5.1),

we have(
X ◦ [Aj,k]

p
j,k=j0

)−1
=

 (X1,1 ◦ Aj0,j0)
−1 0 0

0 (X2,2 ◦ C)−1 0
Q ∗ (X3,3 ◦ Ap,p)

−1

 ,

where

Q = −(X3,3 ◦ Ap,p)
−1(X3,1 ◦ Ap,j0)(X1,1 ◦ Aj0,j0)

−1,

and

ray (Q) = Ap,j0 .

On the other hand,([
X1,1 X1,3

X3,1 X3,3

]
◦

[
Aj0,j0 0
Ap,j0 Ap,p

])−1

=

[
(X1,1 ◦ Aj0,j0)

−1 0
Q (X3,3 ◦ Ap,p)

−1

]
,

and therefore the ray-pattern

[
Aj0,j0 0
Ap,j0 Ap,p

]
is ICRN. By Lemma 4.1 Ap,j0 = 0. Per-

muting the j0-th and p-th block rows and columns of A, we obtain a block diagonal
matrix [ ∗ 0

0 Aj0,j0

]
,

and an application of the induction hypothesis completes the proof in this case.
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Step 2. Thus, we assume from now on in the proof that the blocks Aj,j have forms
(I), (II), (III), and therefore q = p in our notation. Using the induction hypothesis we
assume also that

A1,1 0 0 . . . 0
A2,1 A2,2 0 . . . 0

...
...

. . . . . .
...

Ap−1,1 Ap−1,2 Ap−1,3 . . . Ap−1,p−1

 =


B1,1 0 0 . . . 0
B2,1 B2,2 0 . . . 0

...
...

. . . . . .
...

Bp−1,1 Bp−1,2 Bp−1,3 . . . Bp−1,p−1

 ,

where the Bj,k’s have the properties described in the theorem.
We prove the property (β) first. As an intermediate step, the following statement

will be proved:

(A) For every index i, 2 ≤ i ≤ p − 1, either the blocks Ai,1, . . . , Ai,i−1 are all zeros,
or the blocks Ai+1,1, . . . , Ap,i are all zeros, or both.

Arguing by contradiction, suppose there exist an index i0, 2 ≤ i0 ≤ p− 1, such that
not all blocks Ai0,1, . . . , Ai0,i0−1 are zeros and not all blocks Ai0+1,i0 , . . . , Ap,i0 are zeros.
We select the smallest i0 with these properties. Because of the induction hypothesis
made above,

(5.2) Ai0+1,i0 = 0, . . . , Ap−1,i0 = 0, Ap,i0 6= 0.

The matrix [Aj,k]
p
j,k=i0

can be partitioned as follows:

(5.3) [Aj,k]
p
j,k=i0

=

 Ai0,i0 0 0
0 C 0

Ap,i0 D Ap,p

 ,

analogously to (5.1), and as in the proof of Step 1, we conclude that the submatrix[
Ai0,i0 0
Ap,i0 Ap,p

]
is ICRN. Thus, by Lemma 4.1 the cases when Ai0,i0 = Ap,p = ±1 cannot occur. Denot-
ing by nj (nj ∈ {1, 2}) the size of the block Aj,j, and applying a similarity transforma-
tion

A 7→ (h⊕ g)A(h⊕ g)−1,

where h ∈ Gni0
, g ∈ Gnp , we may assume, in view of the same Lemma 4.1, in addition

to the assumptions already made, that the block Ap,i0 has the following structure:

(α′) if Ai0,i0 = −Ap,p = ±1, then Ap,i0 = 1;

(β′) if Ai0,i0 = ±1 and Ap,p =

[
0 1
1 0

]
, then Ap,i0 =

[
1

∓1

]
;

(γ′) if Ai0,i0 =

[
0 1
1 0

]
and Ap,p = ∓1, then Ap,i0 = [1 ± 1];

(δ′) if Ai0,i0 = Ap,p =

[
0 1
1 0

]
, then Ap,i0 =

[
1 z

−z −1

]
for some z ∈ Ω.
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Let X = [Xi,j]
p
i,j=1 be a positive matrix partitioned conformably with the partition

of A. Partition (X ◦ A)−1, again conformably with that of A:

(X ◦ A)−1 =


Q1,1 0 0 . . . 0
Q2,1 Q2,2 0 . . . 0

...
...

. . . . . .
...

Qp,1 Qp,2 Qp,3 . . . Qp,p

 .

We have

Qp,1 = −(Xp,p ◦ Ap,p)
−1(Xp,1 ◦ Ap,1)(X1,1 ◦ A1,1)

−1

+ (Xp,p ◦ Ap,p)
−1 [Xp,2 ◦ Ap,2 . . . Xp,p−1 ◦ Ap,p−1]

×
[
[Xi,j ◦ Ai,j]

p−1
i,j=2

]−1


X2,1 ◦ A2,1

X3,1 ◦ A3,1
...

Xp−1,1 ◦ Ap−1,1

 (X1,1 ◦ A1,1)
−1.

Since A2,1 = . . . = Ai0−1,1 = 0, the above expression for Qp,1 can be rewritten in the
form

Qp,1 = −(Xp,p ◦ Ap,p)
−1(Xp,1 ◦ Ap,1)(X1,1 ◦ A1,1)

−1

+ (Xp,p ◦ Ap,p)
−1 [Xp,i0 ◦ Ap,i0 . . . Xp,p−1 ◦ Ap,p−1]

×
[
[Xi,j ◦ Ai,j]

p−1
i,j=i0

]−1


Xi0,1 ◦ Ai0,1

Xi0+1,1 ◦ Ai0+1,1
...

Xp−1,1 ◦ Ap−1,1

 (X1,1 ◦ A1,1)
−1.(5.4)

Because of (5.2),

Qp,1 = (Xp,p ◦ Ap,p)
−1(Xp,i0 ◦ Ap,i0)(Xi0,i0 ◦ Ai0,i0)

−1(Xi0,1 ◦ Ai0,1)(X1,1 ◦ A1,1)
−1

+ {terms that are independent of Xp,i0 and of Xi0,1}.(5.5)

We let

W = (Xp,p ◦ Ap,p)
−1(Xp,i0 ◦ Ap,i0)(Xi0,i0 ◦ Ai0,i0)

−1(Xi0,1 ◦ Ai0,1)(X1,1 ◦ A1,1)
−1.

Step 3. Consider the case when all entries of W are nonzero, for some choice of
positive matrices

(5.6) Xp,p, Xp,i0 , Xi0,i0 , Xi0,1, and X1,1.

In view of the conditions (α′) - (γ′) and (a) - (e) (the latter conditions, with Bi,j

replaced by Ai,j are satisfied by the blocks of the matrix [Ai,j]
p−1
i,j=1), this case does not

occur only if

(5.7) A1,1 = Ai0,i0 = Ap,p =

[
0 1
1 0

]
,
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and we will consider separately the case when (5.7) holds true. Let the matrices (5.6)
be fixed so that all entries of W are nonzero. By keeping all other diagonal blocks of
X fixed, and choosing all other nondiagonal blocks of X sufficiently small, we have by
virtue of (5.5) that

(5.8) ‖Qp,1 −W‖ < ε,

for any prescribed ε > 0. On the other hand, since A is ICRN, we have that ray (Qp,1) =
Ap,1 is independent on X, and since all entries of W are nonzero, (5.5) and (5.8) give

(5.9) ray (W ) = Ap,1 (provided W has no zero entries).

(Use here the fact that the ray-pattern projection P is continuous on the set of matrices
with no zero entries.) In particular,

(5.10) the matrix Ap,1 has no zero entries,

and since ray (Qp,1) = Ap,1, it follows that Qp,1 has no zero entries either. Returning to
formulas (5.4) and (5.5), write

Qp,1 = −(Xp,p ◦ Ap,p)
−1(Xp,1 ◦ Ap,1)(X1,1 ◦ A1,1)

−1 + W

+ {terms that are independent of Xp,i0 , of Xi0,1 and of Xp,1}.(5.11)

Keeping in this formula Xp,1, X1,1, and Xp,p fixed, keeping fixed all other diagonal
blocks of X, and letting all other nondiagonal blocks of X tend to zero, we obtain

‖Qp,1 −
(
−(Xp,p ◦ Ap,p)

−1(Xp,1 ◦ Ap,1)(X1,1 ◦ A1,1)
−1

)
‖ < ε,

for any prescribed ε > 0. Note that since Ap,1 has no zero entries, and since A1,1 and
Ap,p have the forms (I), (II), or (III), it is easy to see that the matrix

U := −(Xp,p ◦ Ap,p)
−1(Xp,1 ◦ Ap,1)(X1,1 ◦ A1,1)

−1

has no zero entries. Using again the continuity of the ray-pattern projection on the set
of matrices with no zero entries, with U playing the role of W in the above argument,
it follows (letting ε tend to zero) that

(5.12) ray (U) = ray (Qp,1) = Ap,1.

As a result we obtain that the matrix

(5.13)

[
A1,1 0
Ap,1 Ap,p

]
is ICRN.

We now consider several situations that may occur.

(S1) A1,1 = ±1. Then Ai0,i0 6= ±1 (or else the block Ai0,1 would have been zero, by
(a) - (e)), and if Ai0,i0 = ∓1, then Ap,p 6= ∓1 (for a similar reason, in view of (α′) -
(δ′)). Also, by (5.10) and (5.13), Ap,p 6= ±1. Thus, we have the following situations:

(S11) A1,1 = ±1, Ai0,i0 = ∓1, Ap,p =

[
0 1
1 0

]
;
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(S12) A1,1 = ±1, Ai0,i0 =

[
0 1
1 0

]
, Ap,p = ∓1;

(S13) A1,1 = ±1, Ai0,i0 =

[
0 1
1 0

]
, Ap,p =

[
0 1
1 0

]
.

(S2) A1,1 =

[
0 1
1 0

]
. Then Ai0,i0 = Ap,p = ±1 is impossible, and (5.7) is excluded

(so far), so we have the following situations:

(S21) A1,1 =

[
0 1
1 0

]
, Ai0,i0 = ±1, Ap,p = ∓1;

(S22) A1,1 =

[
0 1
1 0

]
, Ai0,i0 = ±1, Ap,p =

[
0 1
1 0

]
;

(S23) A1,1 =

[
0 1
1 0

]
, Ai0,i0 =

[
0 1
1 0

]
, Ap,p = ±1.

We now consider each of the six situations (S11) - (S13), (S21) - (S23) separately.
In these considerations, it will be assumed that the matrices X1,1, Xi0,i0 and Xp,p are
matrices of all 1’s.

Assume (S11), and let X1,1
∗ ∗

Xi0,1 Xi0,i0
∗

Xp,1 Xp,i0 Xp,p

 =


1 ∗ ∗

x2 1 ∗

x4

x5

x6

x7

1 1
1 1

 , x2, . . . , x7 > 0.

By virtue of (a) - (e), (α′) - (δ′), (5.10), and (5.13), we have

Ap,i0 =

[
1

±1

]
, Ai0,1 = [1], Ap,1 =

[
z

∓z

]
, |z| = 1.

A computation shows that

W =

[
∓x7x2

−x6x2

]
, U =

[
x4z

∓x4z

]
.

We have
ray (W ) 6= ray (U),

a contradiction with (5.9) and (5.12).
Assume (S12), and let X1,1

∗ ∗

Xi0,1 Xi0,i0
∗

Xp,1 Xp,i0 Xp,p

 =


1 ∗ ∗

x2

x3

1 1
1 1

∗

x8 x9 x10 1

 , x2, . . . , x10 > 0.

Also,

Ap,i0 = [1 ± 1], Ai0,1 =

[
1
∓1

]
, Ap,1 = [z], |z| = 1.
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A computation shows that W = ±x10x2 ∓ x9x8. Thus, ray (W ) is not constant, a
contradiction with (5.9).

Assume (S13), and let

 X1,1
∗ ∗

Xi0,1 Xi0,i0
∗

Xp,1 Xp,i0 Xp,p

 =


1 ∗ ∗

x2

x3

1 1
1 1

∗

x8

x9

x10 x11

x12 x13

1 1
1 1

 , x2, . . . , x13 > 0.

Also, we have

Ap,i0 =

[
1 u

−u −1

]
for some |u| = 1, or Ap,i0 =

[
0 1

−1 0

]
,

Ai0,1 =

[
1

∓1

]
, Ap,1 =

[
z

∓z

]
for some |z| = 1.

A computation shows that

(5.14) W =

[
x12ux3 ∓ x13x2

−x10x3 ± x11ux2x
−1
1

]
or W =

[
x12x3

±x11x2

]
,

depending on the form of Ap,i0 , and

U =

[
x9z

∓x8z

]
.

If W has the second form in (5.14), then clearly ray (W ) 6= ray (U), a contradiction. If
W has the first form in (5.14), then ray (W ) is not constant (which happens if u 6= −1
in the case of upper signs, or if u 6= 1 in the case of lower signs), or ray (W ) is constant
and ray (W ) 6= ray (U) (which happens if the signs are lower and u = 1), or ray (W ) is
constant and ray (W ) = ray (U) (which happens if the signs are upper and u = −1), but

then ray (W ) =

[
−1
−1

]
, a contradiction in all cases; in the latter case, a contradiction

is obtained with ray (W ) = Ap,1.
The cases (S21) and (S23) can be reduced to (S11) and (S13), respectively, by taking

transposed matrices, and then permuting rows and columns appropriately to get lower
triangular forms. Thus, we obtain a contradiction in the cases (S21) and (S23).

Assume (S22), and let

 X1,1
∗ ∗

Xi0,1 Xi0,i0
∗

Xp,1 Xp,i0 Xp,p

 =


1 1
1 1

∗ ∗

x5 x6 1 ∗

x8 x9

x10 x11

x12

x13

1 1
1 1

 , x5, . . . , x13 > 0.

Here,

Ai0,1 = [1 ∓ 1], Ap,i0 =

[
1

∓1

]
,
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and the property that the matrix

[
A1,1 0
Ap,1 Ap,p

]
is ICRN together with Ap,1 not having

zero entries imply that

Ap,1 =

[
u v

−v −u

]
for some u, v with |u| = |v| = 1. A computation shows that

W =

[
±x13x6 −x13x5

−x12x6 ±x12x5

]
and U =

[
x11u x10v
−x9v −x8u

]
.

Clearly, ray (W ) 6= ray (U), a contradiction again.

Step 4. Consider the so far excluded case when (5.7) holds true. Applying a
transformation

A 7→ (h⊕ I)A(h⊕ I)−1, h ∈ G2,

the block Ai0,1 may be transformed to the form

(5.15)

[
1 z

−z −1

]
, z ∈ Ω.

Thus we assume that Ai0,1 and Ap,i0 have the form (5.15).
Assume first that at least one of Ai0,1 and Ap,i0 has the form (5.15) with |z| = 1. Then

for some choice of the matrices Xi,j, i, j ∈ {1, i0, p}, i 6= j, still keeping the matrices
Xi,i, i ∈ {1, i0, p} all 1’s, the matrix W has no zero entries, and we may repeat the
arguments of Step 3. Thus, the properties obtained in Step 3 are valid. In particular
the matrix [

A1,1 0
Ap,1 Ap,p

]
is ICRN, and therefore (also because Ap,1 has no zero entries) we have

Ap,1 =

[
u v

−v −u

]
, |u| = |v| = 1.

Let

Ai0,1 =

[
1 z

−z −1

]
, z ∈ Ω, Ap,i0 =

[
1 w

−w −1

]
, w ∈ Ω,

where not both z and w are zero. As in Step 3, we compute W and U and obtain a
contradiction with one of the properties of W and U . We let

 X1,1
∗ ∗

Xi0,1 Xi0,i0
∗

Xp,1 Xp,i0 Xp,p

 =


1 1
1 1

∗ ∗

x5 x6

x7 x8

1 1
1 1

∗

x13 x14

x15 x16

x17 x18

x19 x20

1 1
1 1

 , x5, . . . , x20 > 0.
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A computation shows that

(5.16) W =

[
−x20x6z + x19wx8 −x20x5 + x19wx7z
x18wx6z − x17x8 x18wx5 − x17x7z

]
, U =

[
x16u x15v

−x14v −x13u

]
.

If ray (W ) is not constant (i.e., independent of xj as long as W has no zero entries), we
obtain a contradiction with (5.9). If ray (W ) is constant, then its off diagonal entries
must be both negative, whereas the off diagonal entries of U are negative multiples of
each other (or are equal to zero if v = 0). Thus, ray (W ) 6= ray (U), a contradiction
again, with (5.9) and (5.12).

Step 5. We take up the remaining case when (5.7) holds true, and

Ai0,1 = Ap,i0 =

[
1 0
0 −1

]
.

Partition the positive matrix X = [Xi,j]
p
i,j=1 and (X ◦ A)−1 = [Qi,j]

p
i,j=1 conformably

with (4.3), and fix X1,1, Xi0,i0 , and Xp,p to be the matrices of all 1’s. Then Qp,1 takes
the form (cf. (5.11)):

Qp,1 = −
([

0 1
1 0

]
(Xp,1 ◦ Ap,1)

[
0 1
1 0

])
+ W

+ {terms that are independent of Xp,i0 , of Xi0,1 and of Xp,1},(5.17)

where

W =

[
0 1
1 0

]
(Xp,i0 ◦ Ap,i0)

[
0 1
1 0

]
(Xi0,1 ◦ Ai0,1)

[
0 1
1 0

]
.

Let

Xi0,1 =

[
x1 x2

x3 x4

]
, Xp,1 =

[
x5 x6

x7 x8

]
, Xp,i0 =

[
x9 x10

x11 x12

]
, Ap,1 =

[
z1 z2

z3 z4

]
.

A computation shows that the matrix Qp,1 has the form

(5.18) Qp,1 =

[
−x8z4 −x7z3 − x12x1

−x6z2 − x9x4 −x5z1

]
+ { . . . },

where the ellipse stands for terms that are independent of x1, . . . , x12.
Let us analyze (5.18). Regardless of the value of z2, the (2, 1) entry of[

−x8z4 −x7z3 − x12x1

−x6z2 − x9x4 −x5z1

]
+ { . . . }

is nonzero for some x6, x9, x4. Fix these values, and (for a given ε > 0) select the
blocks of X other than Xi,j, i, j ∈ {1, i0, p}, so that

(5.19) ‖Qp,1 −
[
−x8z4 − x12x2 −x7z3

−x6z2 −x5z1 − x9x3

]
‖ < ε.

Since ray (Qp,1) = Ap,1, passing to the limit in (5.19) as ε −→ 0 we obtain that

−x6z2 − x9x4 = cz3
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for some positive c, as long as −x6z2 − x9x4 6= 0. Thus,

(5.20) z2 = −z3 = 1.

Applying a similar argument to the (1, 2) entry of Qp,1 we obtain z3 = −z2 = 1, a
contradiction with (5.20).

This completes the proof of the statement (A) for the matrix A (after a similarity
A 7→ gAg−1, for some g ∈ G).

Property (β) is now deduced without difficulties. Still using the induction hypothesis,
assume that

A = [Aj,k]
p−1
j,k=1 = [Bj,k]

p−1
j,k=1,

where the Bj,k’s have the properties as in Theorem 4.2, and let t be such that each of

[Ai,j]
t
i,j=1 and [Ai,j]

p−1
i,j=t+1 is a direct sum of matrices of forms (I), (II), and (III). If for

some index s ≥ t+1 it happens that Ap,s 6= 0, then by the already proven part we have

A1,s = 0, . . . , As−1,s = 0.

If s = t + 1, then the block [Ai,j]
t+1
i,j=1 is a direct sum of matrices of forms (I), (II), and

(III). If s > t + 1, then we interchange in A the s-th and (t + 1)-th block rows, and the
s-th and (t + 1)-th block columns, resulting in a matrix whose (t + 1) × (t + 1) block
upper left corner is a direct sum of matrices of forms (I), (II), and (III). Continuing
this process we eventually obtain a matrix B with property (β).

Property (γ) will follow by elementary considerations from Property (β) (cf. the
proof of Lemma 4.1) once we show that all ray-patterns[

Bi,i 0
Bj,i Bj,j

]
1 ≤ i ≤ t < j ≤ p,

are ICRN. To this end, let X be a positive matrix of the same size as B, and partition:

(X ◦B)−1 = [Yk,m]pk,m=1.

It is clear from property (β) that for fixed i, j (1 ≤ i ≤ t < j ≤ p) we have

Yj,i = −(Xj,j ◦Bj,j)
−1(Xj,i ◦Bj,i)(Xi,i ◦Bi,i)

−1,

and by the ICRN property of B it follows that

(5.21) ray (Yj,i) = Bj,i.

On the other hand, Yj,i is also the off-diagonal block of the matrix([
Xi,i Xi,j

Xj,i Xj,j

]
◦

[
Bi,i 0
Bj,i Bj,j

])−1

,

and the ICRN property of

[
Bi,i 0
Bj,i Bj,j

]
follows from (5.21).

Finally, the converse part of Theorem 4.2 is verified in a straightforward way, taking
into account that the ray-pattern B given by (4.4) with the property (β) is ICRN if



20 CHI-KWONG LI AND LEIBA RODMAN

and only if each of the 2 × 2 blocks

[
Bi,i 0
Bj,i Bj,j

]
, where 1 ≤ i ≤ t < j ≤ p, is ICRN

(see the preceding paragraph).

6. Inertias and Jordan forms of matrices with ICRN ray-patterns

We start with inertia considerations. Let Y ∈ Mn(C), and assume that Y has no
eigenvalues on the imaginary axis. We define the inertia In Y = {i−(Y ), i+(Y )}, where
i−(Y ) (resp., i+(Y )) is the number of eigenvalues of Y (counted with multiplicities) in
the open left (resp., right) halfplane. Thus, i−(Y ) + i+(Y ) = n.

Lemma 6.1. Let A be an ICRN ray-pattern, and let Cone (A) be the cone generated
by A. Then the spectrum of every Y ∈ Cone (A) does not intersect the imaginary axis.
Moreover, there exist two nonnegative integers i±(A), depending on A only, that sum
up to n such that

In Y = {i−(A), i+(A)}
for every Y ∈ Cone (A).

Proof. Let Y ∈ Cone (A), and arguing by contradiction assume Y x = iλx for some
nonzero x and λ ∈ R \ {0}. Then

Y −1x = −i
1

λ
x.

Now (
1

|λ|
Y + |λ|Y −1

)
x = 0,

which is impossible because

1

|λ|
Y + |λ|Y −1 ∈ Cone (A),

and therefore
1

|λ|
Y + |λ|Y −1 is invertible in view of the inverse closeness property of

A. The second statement of the lemma follows easily from the first, using a standard
argument that involves arcwise connectedness of Cone (A) and continuity of eigenvalues
of Y . �

We define the inertia of an ICRN ray-pattern A as the numbers i±(A) introduced in
Lemma 6.1. The inertia of ICRN ray-patterns are described as follows.

Theorem 6.2. If A is an n × n ICRN ray-pattern, then trace A is an integer of the
same parity as n, |trace A| ≤ n, and

i±(A) =
n± trace A

2
.

In particular, all matrices in Cone (A) are stable (i.e., all eigenvalues have negative real
parts) if and only if A = −I.



INVERSE CLOSED RAY-NONSINGULAR CONES 21

Proof. In view of Theorem 4.2, we need only to prove the result for each of the five
forms (3.1). For the first four forms this is immediate, for the form (V) it follows from
Lemma 6.3 below (which will be also used in the proof of the next theorem). �

Next, we turn to the eigenvalues and Jordan forms of matrices in Cone (A). We first
establish two lemmas.

Lemma 6.3. Let

Y =


0 0 a b
0 0 c −d
e f 0 0
g −h 0 0

 , a, b, c, d, e, f, g, h > 0.

Then:

(1) Y has no eigenvalues with zero real part;
(2) if λ is an eigenvalue of Y , then so is −λ, and the algebraic multiplicities of −λ

and of λ are the same;
(3) if λ = µ + iν ∈ C, µ, ν ∈ R, is an eigenvalue of Y , then |ν| < |µ|.

Conversely, if (λ1, λ2, λ3, λ4) is a quadruple of not necessarily distinct complex numbers,
which is closed under negation and complex conjugation, and satisfies

|Im λj| < |Re λj|, j = 1, 2, 3, 4,

then there exist a, b, c, d, e, f, g, h > 0 such that

(6.1) σ(Y ) = {λ1, λ2, λ3, λ4}.

Proof. (1) follows from Lemma 6.1, because

A :=


0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0


is an ICRN. The characteristic polynomial of Y is computed to be

λ4 + λ2(−dh− cf − ae− bg) + (aedh + adfg + behc + bcfg).

Thus, (2) follows. Moreover, Re (λ2) > 0 for every eigenvalue λ of Y . Property (3) now
follows.

For the converse statement observe that by letting f = d = h = c and e = b = g = a,
the characteristic polynomial of Y takes the form

λ4 + λ2(−2c2 − 2a2) + 4a2c2 = (λ2 − 2a2)(λ2 − c2),

and therefore for every quadruple of nonzero real numbers (λ1, λ2, λ3, λ4) which is closed
under negation there exist a, b, c, d, e, f, g, h > 0 such that (6.1) holds. Next, fix µ > 0,
and let

d = h = c = f = a = e =
√

µ, g =
µ

b
.
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Then the characteristic polynomial of Y is

λ4 + λ2(−4µ) + (2µ2 + µ
√

µ(b +
µ

b
)),

and therefore for eigenvalues λ0 of Y we have

λ2
0 = 2µ± i

√
µ
√

µ(b +
µ

b
)− 2µ2.

Clearly, by a suitable choice of µ > 0 and b > 0, λ2
0 can be made equal to any nonreal

complex number z = α + iβ with positive real part α. Indeed, let µ = α/2 and b a
positive solution of the quadratic equation

b2 − 2
√

µb + µ− β2

µ
√

µ
= 0.

Lemma 6.3 is proved. �

Lemma 6.4. (a) Suppose B1 = [Bi,j]
q
i,j=1 is a block lower triangular matrix in the form

(4.4) satisfying the conditions (1) – (2) of Theorem 4.2. Let X be a matrix with positive
entries such that λ ∈ R \ {0} is an eigenvalue of X ◦ B. Then X ◦ B is similar to a
matrix of the form T ⊕ U , where

(6.2) T =


λIα 0 0 0
0 λIx 0 0
0 R1 λIγ 0
R2 R3 0 λIy

⊕

−λIβ 0 0 0

0 −λIx 0 0
0 S1 −λIδ 0
S2 S3 0 −λIy

 ,

and none of ±λ is an eigenvalue of U .
(b) If T has the form (6.2) with λ 6= 0, for some matrices Rj, Sj (j = 1, 2, 3) of

suitable sizes, then the Jordan form of T consists of blocks of the forms:

[λ], [−λ],

[
λ 1
0 λ

]
,

[
−λ 1

0 −λ

]
with multiplicities r1, s1, r2, s2, respectively, such that

(6.3) r1 + 2r2 ≥ s2 and s1 + 2s2 ≥ r2.

Proof. Note that X ◦B has the form

(6.4)

[
C1,1 0
C2,1 C2,2

]
,

such that each of C1,1 and C2,2 is a direct sum of 1× 1 and 2× 2 matrices. Applying a
block permutation similarity, we can assume that

C11 = U1 ⊕ λIα ⊕−λIβ ⊕X ′ and C22 = λIγ ⊕−λIδ ⊕ Y ′ ⊕ U2,

such that none of ±λ is an eigenvalue of U1 or U2, and each of X ′ and Y ′ is a direct
sum of 2 × 2 real matrices with zero diagonal and eigenvalues ±λ. Thus, X ′ and Y ′

are similar to the matrices λ(Ix ⊕ −Ix) and λ(Iy ⊕ −Iy), respectively. We may apply
a similarity transformation to [Ci,j]

2
i,j=1 so that X ′ and Y ′ are changed to λ(Ix ⊕−Ix)

and λ(Iy ⊕−Iy), respectively.
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We now write (6.4), after a transformation as indicated above, as the block lower
triangular matrix V = [Vi,j]

10
i,j=1 such that

[Vi,j]
5
i,j=1 = U1 ⊕ λIα ⊕−λIβ ⊕ λIx ⊕−λIx

and

[Vi,j]
10
i,j=6 = λIγ ⊕−λIδ ⊕ λIy ⊕−λIy ⊕ U2.

By property (β) of Theorem 4.2, we see that V6,2 and V7,3 are zero blocks.
Next, we show that one can apply a sequence of block permutation similarity trans-

formations to the matrix [Vi,j]
10
i,j=1 that convert all Vi,j to zero except for

V6,4, V7,5, V8,2, V8,4, V9,3, V9,5, V10,1,

and keep the blocks V6,2 and V7,3 zeros. Then by a block similarity transformation, the
resulting matrix will be similar to T ⊕ U with

U =

[
U1 0

V10,1 U2

]
,

and with T given by (6.2). In the following, all block matrices having the same size as
V are partitioned according to the 10×10 block form of V . Suppose 1 ≤ i ≤ 5 < j ≤ 10
are such that (i, j) /∈ {(6, 2), (7, 3), (10, 1)}, and Vi,i and Vj,j have no common eigenvalue.
Let W = [Wi,j]

10
i,j=1 be obtained from I (having the same size as V ) by changing its (j, i)

block Wj,i = Vj,i(Vj,j − Vi,i)
−1. Here note that Vi,i or Vj,j is a scalar matrix. Then the

(j, i) block of W−1V W is zero, and this transformation will not change other blocks in
the matrix V . Hence, we can apply a number of such similarity transformations until
we get all the desired zero blocks.

For part (b), let T be given by (6.2) with λ 6= 0. Then the Jordan form of T has
Jordan blocks of size at most 2. This follows from a general fact that the Jordan form
of a matrix

Z =

[
λI 0
Y λI

]
consists of blocks of size at most 2, and the number of Jordan blocks of size 2 is
equal to the rank of Y . (This fact is easily proven by using a rank decomposition

Y = W1

[
Irank Y 0

0 0

]
W2, where W1, W2 are invertible.) Now, to prove (6.3), note

that

r1 + 2r2 = α + γ + x + y and s1 + 2s2 = β + δ + x + y;

moreover, r2 and s2 are equal to the ranks of the matrices

α x[
0 R1

R2 R3

]
γ
y

and
β x[
0 S1

S2 S3

]
δ
y

,
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respectively. Now,

r2 = rank

[
R1

R3

]
+ rank [R2 R3]− rank R3

≤ x + y − rank R3

≤ x + y + β + δ

= s1 + 2s2.

Similarly, one can prove that s2 ≤ r1 + 2r2. �

We are now ready to describe the Jordan form of matrices X◦A, where X is entrywise
positive and A is an ICRN ray-pattern.

Theorem 6.5. Let K be an n× n matrix in the Jordan form. Then K is similar to a
matrix X ◦A, where X is entrywise positive and A is an ICRN ray-pattern, if and only
if K has blocks of the following types only (perhaps after a permutation of the Jordan
blocks of K):

(1) [λ], λ ∈ R \ {0};
(2) [

λ 1
0 λ

]
⊕ [−λ], λ ∈ R \ {0};

(3) [
λ 1
0 λ

]
⊕

[
−λ 1

0 −λ

]
, λ ∈ R \ {0};

(4) [
λ 1
0 λ

]
⊕

[
λ 1
0 λ

]
⊕

[
−λ 1

0 −λ

]
, λ ∈ R \ {0}.

(5) [
λ 0
0 λ

]
⊕

[
−λ 0

0 −λ

]
, λ = µ + iν, 0 < ν < µ.

Proof. The “only if” part. By Theorem 4.2 and Lemma 6.3, we see that the Jordan
form corresponding to nonreal eigenvalues has the form (5).

For a real eigenvalue λ, we can use Theorem 4.2 and Lemma 6.4 to conclude that
the Jordan blocks corresponding to λ have the forms:

(a) [λ], (b) [−λ], (c)

[
λ 1
0 λ

]
, (d)

[
−λ 1

0 −λ

]
with multiplicities r1, s1, r2, s2, respectively, such that r1 + 2r2 ≥ s2 and s1 + 2s2 ≥ r2.
Since s1 + 2s2 ≥ r2, we can use construct matrices of the form (4) and (2) until we
use up all the Jordan blocks of the form (c). If we also used up the Jordan blocks of
the form (d), then we are left with Jordan blocks of the forms (a) and (b), and we
are done. So, suppose that we have not used up all the Jordan blocks of the form (d).
Converting one matrix of the form in (4) to two matrices of the form (3), we can use
up more Jordan blocks of the form (d). If we are not able to use up all the Jordan
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blocks of the form (d) after converting all type (4) matrices to type (3) matrices, then
construct matrices of the form

(2′)

[
−λ 1

0 −λ

]
⊕ [λ],

which is a type (2) matrix with the roles of λ and −λ interchanged. If this still do not
exhaust all the Jordan blocks of the form (d), convert type (3) matrices to

(4′)

[
−λ 1

0 −λ

]
⊕

[
−λ 1

0 −λ

]
⊕

[
λ 1
0 λ

]
,

which is a type (4) matrix with the roles of λ and −λ interchanged. Since r1 +2r2 ≥ s2,
we will exhaust all the Jordan blocks of the form (d) through such conversions. Now,
we see that all the Jordan blocks associated with λ and −λ can be put in the forms
(1), (2), (3), (4), (3′), (4′), and we are done.

The “if” part. For each of the matrices of the form (1) – (4), by Theorem 4.2 one
can find a positive matrix X and an ICRN ray-pattern A such that X ◦ A have the
following forms:

(1) [λ], (2) λ

 0 1 0
1 0 0
2 −1 1

 ,

(3) λ


0 1 0 0
1 0 0 0
3 1 0 1

−2 −1 1 0

 , (4) λ


1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 2 −3 1 0 0
4 5 6 0 0 1

−1 −1 −1 0 1 0

 ,

and Lemma 6.3 shows that one can construct X ◦ A for case (5). A direct sum of the
above matrices will give rise to a matrix with the desired Jordan form structure. �

As it follows from the proof of Theorem 6.5, conditions (1) - (4) of the theorem can
be expressed also as follows: The Jordan blocks corresponding to real eigenvalues of a
matrix of the form X ◦A, where X is entrywise positive and A is an ICRN ray-pattern,
are of size at most two, and if r1(λ) and r2(λ) are the numbers of the Jordan blocks of
X ◦ A of sizes 1 and 2, respectively, corresponding to the real eigenvalue λ, then

(6.5) r1(λ) + 2r2(λ) ≥ r2(−λ).

Note that inequality (6.5) implies that if λ is an eigenvalue of X ◦ A, but −λ is not,
then there are no Jordan blocks of size 2 corresponding to λ; indeed, apply (6.5) with
λ replaced by −λ, and interpret r1(−λ) and r2(−λ) as zeros.
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