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Abstract
Several general techniques on linear preserver problems are described. The first one is

based on a transfer principle in Model Theoretic Algebra that allows one to extend linear
preserver results on complex matrices to matrices over other algebraically closed fields of
characteristic 0. The second one concerns the use of some simple geometric technique to
reduce linear preserver problems to standard types so that known results can be applied.

The third one is about solving linear preserver problems on more general (operator) algebras

by reducing the problems to idempotent preservers. Numerous examples will be given to
demonstrate the proposed techniques.
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1 Introduction

An active research topic in matrix theory is the linear preserver problems (LPP) that deal

with the characterization of linear operators on matrix spaces with some special properties

such as leaving certain functions, subsets or relations invariant. One may see [37] for an

extensive survey and see [27] for a gentle introduction of the subject. As mentioned in [27],

in the study of LPP one may focus on one specific question (see [37, Chapter 3]) or a family

of related questions (see [37, Chapters 2 and 4]). Also, one may focus on general techniques

that can cover many different LPP (see e.g. [27, Sections 5 and 6]). In fact, there are a

number of well-developed techniques for studying LPP. To name a few examples, we have

(I) the projective geometry technique (see [37, Chapter 4 and Section 8.5]),

(II) the algebraic geometry technique (see [12, 18, 26]),

(III) the differential geometry technique (see [27, Section 6] and its references),

(IV) the duality technique (see [27, Section 6] and its references),

(V) the group theory technique (see [11, 13, 14, 17, 38, 43] and [37, Section 8.4]),

(VI) the functional identity technique (see [4]).

In this paper, we describe three more general techniques for studying LPP.

First, we discuss how to use a transfer principle in Model Theoretic Algebra to extend
linear preserver results on complex matrices to matrices over other algebraically closed fields
of characteristic 0.

In the study of LPP, many results were first obtained for complex matrices, and then
extended to matrices over other fields or rings. Sometimes it is easy to do the extension, but
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in some cases a great deal of effort is needed to achieve the goal. In Section 2, we show that
using the transfer principle in Model Theoretic Algebra provides an efficient mean to do the
job in many situations. Of course, another obvious advantage of this approach is: one can
use all kinds of complex analysis techniques to prove results for the complex case and extend
them to other fields whenever the transfer principle is applicable.

It is worth noting that a standard procedure of studying LPP on matrix spaces over an

arbitrary field (or even ring) is to solve the corresponding problem in the algebraic closure of

the field and then deduce the results for the original problem. Of course, precautions have
to be taken in the processes of “going up”, i.e., extending the problem to the algebraically
closed field, and “coming back”, i.e., specializing the result to the original field. Thus, having
results on algebraically closed fields is useful in studying LPP on arbitrary fields.

Another common scheme for solving LPP is to reduce the given question to some well
studied LPP such as the rank preserver or nilpotent preserver problems so that known results
can be applied. In Section 3, we discuss a geometric technique that can be used to do the

reduction. As one can see in (i) – (iii), geometric techniques have often been used in the

study of LPP. The technique we are going to introduce is linear algebraic and elementary in
nature and does not require too much additional knowledge of other areas. Yet, examples
will be given to show that the technique can be used to deduce some non-trivial results
effectively.

Finally, we consider LPP on infinite dimensional spaces or other general algebras. In
Chapter 4, we show that an efficient way to study LPP in infinite dimensional case is to
reduce the problem to idempotent preserver problem.

The following notation will be used in our discussion.

Mm,n(F) - the space of m× n matrices over the field F,

Mn(F) - Mn,n(F),

{E11, E12, . . . , Emn} - standard basis for Mm,n(F),

σ(A) - spectrum of A ∈ Mn(F).

2 A Transfer Principle

In this section, we discuss how to use a transfer principle in Model Theoretic Algebra to
study LPP. It is worth noting that there were attempts to apply the transfer principle to

prove some results in Algebraic Geometry, see [44] and also [39]. Let us begin by introducing

some basic terminology. Our main references are [10, 22, 40].

Definition 2.1 First order sentences in the language of fields are those mathematical state-
ments which can be written down using only

(a) Variables denoted by x, y, . . . varying over the elements of the field;

(b) The distinguished elements “0” and “1”;

(c) The quantifiers “for all” (∀) and “there exists” (∃);
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(d) The relation symbol “=”;

(e) The function symbols “+” and “·”;

(f) Logical connectives: ¬ (negation), ∧ (and), ∨ (or), → (implies), and ↔ (equivalent).

(g) The separation symbols: left square bracket “ [” and right square bracket “ ]”.

First order conditions or properties are those conditions or properties describable in first
order sentences.

Definition 2.2 Two fields F1 and F2 are elementarily equivalent if and only if the set of all
first order statements that are true in F1 is the same as the set of all first order statements
that are true in F2.

We have the following result (see [22, Theorem 1.13]).

Theorem 2.3 [transfer principle] Two algebraically closed fields F1 and F2 are elementar-

ily equivalent if and only if char(F1) = char(F2). Consequently, if a first order property

holds in one algebraically closed field it holds in each algebraically closed field of the same
characteristic.

Let us describe the general idea of how to apply the transfer principle to extend linear
preserver results on complex field to general algebraically closed field of characteristic 0 in
the following.

Suppose we want to prove that the linear preservers of a certain first order property L on
m×n matrices over F have a specific form describable in first order sentences. We formulate
the following assertion concerning the field F as follows: “Given positive integers m and n,

if a linear map φ : Mm,n(F) → Mm,n(F) has the preserving property P then φ is of the

specific form.” Here, of course, the preserving property P can be expressed as: “For every

A ∈ Mm,n(F) we have: A has property L implies that φ(A) has property L.” Since one can

identify φ as a family of (mn)2 elements in F acting on mn tuples of elements in F under the

usual rule of linear map, that involves only multiplications and additions of the elements, it
is evident that the assertion can be formalized by first order statements in the language of
fields. Therefore, if we can obtain the result for complex matrices, then the transfer principle
will ensure that the same result holds for any algebraically closed field of characteristic 0.

Let us illustrate this scheme in the following. Some details will be given to the proof of
the first result. Then a number of other examples with references will be mentioned with
brief comments.

In [1], Beasley characterized those linear operators on Mm,n(C) mapping the set of rank

r matrices into itself, where r ≤ min{m, n} is a fixed positive integer. His proof depends

heavily on a result on rank r spaces (see Definition 2.8) on complex matrices by Westwick

[45]. Meshulam (see e.g. [28]) later extended the result of Westwick to algebraically closed

fields of characteristic 0, and the rank r matrix preserver result of Beasley was then extended
accordingly. In the following, we illustrate how to extend the result of Beasley to arbitrary
algebraically closed field of characteristic 0 using the transfer principle.
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Theorem 2.4 Let F be an algebraically closed field of characteristic 0. Suppose r, m, n are

positive integers such that r ≤ min{m, n}. If φ is a linear operator acting on Mm,n(F)

mapping the set of rank r matrices into itself, then there exist invertible P ∈ Mm(F) and

Q ∈ Mn(F) such that φ is of the form

X 7→ PXQ or X 7→ PX tQ in the case of m = n. (2.1)

Proof. For the complex case, see [1]. For the general algebraically closed field, we use

the transfer principle. In view of the explanation given above it is enough to show that

for a matrix A ∈ Mm,n(F) (identified with an mn-tuple of elements of F) the property of

being of rank r can be formalized as a first order sentence and also that the forms (2.1) are

describable in first order sentences. The statement “rank A = r” is equivalent to:

(a) there exists an r × r submatrix with non-zero determinant, and

(b) if r < min{m, n} then all determinants of (r + 1)× (r + 1) submatrices are zero.

So, a finite set of expressions involving only +, ·, and our variables must hold true.

To see that the conclusion of the theorem is also describable in first order sentences, one

needs only to check the existence of collections of m2 and n2 elements in F corresponding to
the matrices P and Q with det P 6= 0 and det Q 6= 0 so that

(i) φ(X) = PXQ for all m× n matrix X, or

(ii) φ(X) = PX tQ for all m× n matrix X in case m = n. 2

One can specialize the above theorem to the case when m = n = r to get the result

on linear preservers of the general linear group in Mn(F). Alternatively, one can apply the

transfer principle to LPP related to classical groups on Mn(C), see [2, 31, 36], and deduce

the results on more general fields. For instance, we have the following result.

Theorem 2.5 Let Mn(F) be the algebra of n×n matrices over an algebraically closed field F

of characteristic 0. Suppose φ is a linear operator on Mn mapping the general (special) linear

group into itself. Then there exist invertible P, Q ∈ Mn (with det(PQ) = 1) such that φ is

of the form

X 7→ PXQ or X 7→ PX tQ.

The transfer principle works well for linear preservers of relations. One can extend many

results in [18, 19] concerning linear preservers of equivalence relations on complex matrix

spaces to arbitrary algebraically closed fields of characteristic 0. More precisely, we have the
following result.

Theorem 2.6 Let ∼ be any one of the following equivalence relations on matrices:

(a) (Equivalence) A ∼ B in Mm,n(F) if B = PAQ for some invertible P ∈ Mm(F) and

Q ∈ Mn(F);
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(b) (Similarity) A ∼ B in Mn(F) if B = S−1AS for some invertible S ∈ Mn(F);

(c) (t-congruence or orthogonally t-congruence) A ∼ B in Mn(F) (or on symmetric or

skew-symmetric matrices) if B = StAS for some invertible S ∈ Mn(F) (with StS = I).

Then the corresponding linear preserver results on complex matrices are valid for matrices
over any algebraically closed field of characteristic 0.

Note that sometimes we have to restate the hypotheses of the linear preserver results
to see that they are indeed first order conditions. For example, A is similar to B can be

expressed as follows: there exists T ∈ Mn such that det(T ) 6= 0 and det(T )A = adj (T )BT ,

which is a first order condition, here adj (T ) denotes the adjoint of the matrix T .

The transfer principle has been used in [34] to prove the following result on linear pre-

servers of the commutativity relation.

Theorem 2.7 Let F be an algebraically closed field of characteristic 0, and let n ≥ 3.

Suppose φ is a linear operator acting on Mn(F) such that

φ(A)φ(B) = φ(B)φ(A) whenever AB = BA.

Then either the range of φ is commutative or there exists a scalar α, an invertible S and a

linear functional f on Mn(F) such that φ is of the form

X 7→ αS−1XS + f(X)I or X 7→ αS−1X tS + f(X)I. (2.2)

Also, one may consider other LPP arising in applications. In systems theory, notion of

controllability plays an important role, see [25]. Linear controllability preservers over C were

characterized in [16] and the results can be extended to any algebraically closed field F with

characteristic 0.

The transfer principle can also be used to extend results related to LPP. We illustrate
this on the results concerning rank r spaces - an important concept and tool in the study of
rank preservers.

Definition 2.8 Let r, m, n be positive integers such that r ≤ min{m, n}. A linear subspace

V ⊆ Mm,n(F) is called a rank r space if A ∈ V implies either rank A = r or A = 0.

One of the most interesting questions in the theory of rank r spaces important especially

for LPP is what is the maximal dimension of such subspaces. In [45] one can find several

estimates (depending, of course, on m, n, and r) for these maximal dimensions in the complex

case. One readily checks that these results can be formalized as first order sentences. Hence,
we have the following result.

Theorem 2.9 If every rank r space in Mm,n(C) has dimension at most k, then so is an

rank r space in Mm,n(F) for every algebraically closed field F of characteristic 0.
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While the transfer principle works very well with many linear preserver (and related)

problems, it is not applicable to questions involving A∗ - the conjugate transpose of a matrix
A. Here, we discuss a slight extension of the transfer principle that allow us to get around
the problem.

Definition 2.10 A field F is called real closed if F admits an ordering as an ordered field
and no proper algebraic extension has this property.

We have the following result concerning real closed fields (see [42, Chapter XI, §81], and

[22, Theorem 1.16]).

Theorem 2.11 Real closed field is not algebraically closed, but the extension of a real closed

field with the square root of (−1) is algebraically closed. Moreover, any two real closed fields

are elementarily equivalent.

Now, let us consider those algebraically closed fields obtained by extending a real closed

field with the square root of (−1). It then follows that all F[
√
−1] are elementarily equivalent.

In F[
√
−1], we can consider the involution (a+ b

√
−1)∗ = a− b

√
−1 as in the complex field.

Furthermore, we can define the conjugate transpose A∗ of a matrix A. With this settings,
many linear preserver results on properties or invariants involving complex conjugate can be
transferred to such algebraically closed fields. We mention a few examples in the following,

see [19].

Theorem 2.12 Let F be an algebraically closed field obtained by extending a real closed field

with the square root of (−1). Suppose ∼ is any one of the following equivalence relations on

matrices over F:

(a) (Unitary Equivalence) A ∼ B in Mm,n(F) if B = UAV for some invertible U ∈ Mm(F)

and V ∈ Mn(F) satisfying U∗U = Im and V ∗V = In;

(b) (∗-Congruence and Unitary Similarity) A ∼ B in Mn(F) if B = S∗AS for some

invertible S ∈ Mn(F) (satisfying S∗S = In);

(c) (Con-Similarity) A ∼ B in Mn(F) B = S−1AS for some invertible S ∈ Mn(F).

Then the corresponding linear preserver results on complex matrices are valid for matrices
over F.

Similarly, one may extend the results on linear preservers of the unitary group, see [3, 29].

There are many other examples of linear preservers and related problems for which the
transfer principle or the extended transfer principle are applicable. We will let the readers
explore them.
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3 A Geometric Technique

In this section we discuss some techniques of reducing a linear preserver problem to some
well-known cases. Such ideas of treating LPP have been used by many researchers. The real
question is whether we can find a systematic and efficient way to do the reduction. Here, we
propose a very simple linear algebraic method and show that it is indeed very useful despite
its simple nature.

To describe our scheme, we need the following definition.

Definition 3.1 Suppose S is a set of matrices in Mm,n(F). For a non-negative integer r,

let Tr(S), or simply Tr if the meaning of S is clear in the context, be the set of matrices

A ∈ Mm,n(F) such that there exists C ∈ S satisfying C +αA ∈ S for all but at most r scalar
α.

The set Tr can be viewed as the set of all possible “directions” or “slopes” of “punctured
lines” lying in S with at most r missing points.

Now, suppose we are interested in studying linear operators φ such that

φ(S) ⊆ S or φ(S) = S. (3.1)

Evidently, such a φ also satisfies

φ(Tr) ⊆ Tr

for any nonnegative integer r. If Tr has a simple structure, say, it is the set of rank k
matrices or a union of similarity orbits of nilpotent matrices, then we can use the well

studied results on rank preservers (see e.g. [1] and Theorem 2.4 in the previous section) or

nilpotent preservers (see e.g., [26, Lemma 2.5]) to help solve the original problem.

In the following, we illustrate how to reduce some LPP to nilpotent preserver problems

using the proposed scheme. Note that similar ideas have been used by other authors [23, 26,

41]. We need one more definition.

Definition 3.2 Let S be a union of similarity orbits in Mn(F). We say that S has property

(Nr) if the set Tr in Definition 3.1 is a subset of nilpotent matrices.

Theorem 3.3 Let F be an algebraically closed field of characteristic 0, and let S ⊆ Mn(F)

be a union of similarity orbits. Suppose

(a) S 6⊆ FI has property (Nr) for some positive integer r, or

(b) S contains a non-scalar diagonal matrix and has property (Nr) for some nonnegative
integer r.

If φ is an invertible linear operator on Mn(F) satisfying φ(S) ⊆ S, then there exist a nonzero

c ∈ F and A, B ∈ Mn(F) with A invertible such that φ is of the form

X 7→ cAXA−1 + (tr X)B or X 7→ cAX tA−1 + (tr X)B.
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Proof. Suppose (a) holds. Let r be a positive integer such that Tr associated with S
is a subset of nilpotent matrices. Now, suppose C is a non-scalar matrix in S. We may
assume that C is in the Jordan canonical form. Assume first that C is diagonal. Then

C = diag (λ1, . . . , λn) with λk 6= λk+1 for some positive integer k, 1 ≤ k ≤ n − 1. Clearly,

C + αEk,k+1 is similar to C for every scalar α. So, Ek,k+1 ∈ Tr. If C is not diagonal, then

C = D + N with D diagonal and N 6= 0 having non-zero elements only on the first upper
diagonal. As D +N +αN is similar to D +N for every α 6= −1 we have N ∈ Tr. Therefore,
Tr contains a nonzero nilpotent. If N ∈ Tr then the similarity orbit of N is a subset of Tr.

So, Tr 6= {0} is a (finite) union of similarity classes of nilpotent matrices.

Now, if φ is an invertible linear operator satisfying φ(S) ⊆ S, then we already know

that φ(Tr) ⊆ Tr, and consequently, φ(Tr) ⊆ Tr. Here, Tr denotes the Zariski closure of Tr.

In particular, rank one nilpotents are mapped into nilpotents. As rank one nilpotents span

Mn(F)′, the subspace of all matrices with zero trace, we conclude that Mn(F)′ is invariant

under φ. Therefore by [26, Lemma 2.5] φ is of the asserted form on trace zero matrices.

Now, putting B = (1/n)(φ(I)− cI), we get the conclusion.

Similarly, one can prove the proposition if (b) holds. 2

We will now show that the hypotheses of Theorem 3.3 are satisfied in many cases. Let S
be a union of similarity orbits of matrices. Assume also that there are 2n distinct elements

λ1, . . . , λ2n ∈ F such that σ(A) ∩ {λ1, . . . , λ2n} = ∅ for any A ∈ S. Then S has property

(N1). Indeed, assume that for a matrix N ∈ Mn(F) there exists C ∈ S such that C+αN 6∈ S
for at most one scalar. If such a scalar exists we denote it by α0. Consider

det(λI − C − µN) = f(λ, µ) = p0(λ) + p1(λ)µ + . . . + pn(λ)µn.

Observe that p0(λ) is a monic polynomial of degree n, and all other pj have degree at most

n−1. In particular, each pj, j = 1, 2, . . . , n, either vanish at at most n−1 points from the set

{λ1, . . . , λ2n}, or it is zero. We claim that pj(λ) ≡ 0 for all j = 1, 2, . . . , n. If this is not true,

then there exist distinct γ1, . . . , γn+1 ∈ {λ1, . . . , λ2n} so that for every m ∈ {1, . . . , n + 1}
we have pj(γm) 6= 0 for some j > 0. Then it is possible to find µm so that f(γm, µm) = 0,

or equivalently, γm ∈ σ(C + µmN). It follows that µm = α0, m = 1, . . . , n + 1. This further

implies that the polynomial λ 7→ f(λ, α0) has at least n+1 distinct zeroes which is impossible

since it is of degree n. Thus, we see that

det(λI − C − µN) = p0(λ)

for all µ ∈ F. Hence σ(C +µN) = σ(C) for all µ ∈ F. Suppose N has r nonzero eigenvalues

with r > 0. Then we may put N in triangular form and see that the coefficient of λn−rµr

is nonzero, contradicting the fact that f(λ, µ) = p0(λ). Thus r = 0, i.e., N is a nilpotent

matrix.
Recall that A ∈ Mn(F) is a potent matrix if Ak = A for some integer k ≥ 2 and is of

finite order if Ak = I for some positive integer k. The above remark yields that S1, the set of
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all n×n potent matrices, as well as S2, the set of all n×n matrices of finite order are unions

of similarity orbits with property (N1). More general, if the field F is uncountable, then the

union of spectra of elements of any countable family of similarity orbits is countable, and

hence this family has property (N1). In particular, if (pk) is a sequence of polynomials, then

the set of all matrices satisfying pk(A) = 0 for some positive integer k is a union of similarity

orbits and has property (N1).

Let S denote the set of matrices in Mn(C) having zero trace and n distinct eigenvalues.

This is certainly a union of similarity orbits. We will see that it has property (N0). In order

to prove this we recall that for given matrices A and B the pencil P (α, β) = αA + βB is

said to have the L-property if the eigenvalues of P (α, β) are linear in α, β (see [32, 33]). It

is known (see [15, p. 103]) that if P (α, 1) is diagonalizable for any complex number α then

P (α, β) possess the L-property. Assume that for a matrix N ∈ Mn(C) there exists C ∈ S
such that C + αN ∈ S for all scalars α. Then C + αN is diagonalizable for every scalar
α, and so, the pencil αN + βC has L-property. If N has two different eigenvalues, then
by L-property it is possible to find α such that C + αN has an eigenvalue with algebraic
multiplicity two. This contradiction shows that all eigenvalues of N are equal. Clearly, N
has trace zero, and so, it must be a nilpotent.

We will now apply Theorem 3.3 and above remarks to reprove some linear preserver
results and also to obtain some new ones. To simplify the description of our results, we list

five types of linear operators on Mn(F) in the following.

(1) There exist invertible A, B ∈ Mn(F) such that φ is of the form

X 7→ AXB or X 7→ AX tB.

(2) There exist an invertible A ∈ Mn(F) such that φ is of the form

X 7→ AXA−1 or X 7→ AX tA−1.

(3) There exist an invertible A ∈ Mn(F) and a nonzero c ∈ F such that φ is of the form

X 7→ cAXA−1 or X 7→ cAX tA−1.

(4) There exist an invertible A ∈ Mn(F), a nonzero c ∈ F and a linear functional f on

Mn(F) such that φ is of the form

X 7→ cAXA−1 + f(X)I or X 7→ cAX tA−1 + f(X)I.

(5) There exist a nonzero c ∈ F and A, B ∈ Mn(F) with A invertible such that φ is of the

form
X 7→ cAXA−1 + (tr X)B or X 7→ cAX tA−1 + (tr X)B.
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Corollary 3.4 Let F be an algebraically closed field of characteristic 0. Suppose φ is an

invertible linear operator on Mn(F).

(a) Let K be a proper nonempty subset of F. Suppose σ(φ(A)) ⊆ K whenever σ(A) ⊆ K.

If K 6= {0},F \ {0}, then φ is of the form (4) where f(X) = dtr X for some scalar d.

If K = F \ {0} then φ is of the form (1). If K = {0} then φ is of the form (5).

(b) If φ maps the set of matrices having exactly n distinct eigenvalues into itself, then it

is of the form (4).

(c) If φ maps the set of potent matrices into itself, then it is of the form (3) where c is a

root of unity.

(d) If φ maps the set of matrices of finite order into itself, then it is of the form (3) where

c is a root of unity.

(e) Suppose F is uncountable and S ⊆ Mn(F) is a finite or countable union of similarity

orbits such that S 6⊆ FI. If φ(S) ⊆ S then φ is of the form (5).

Several remarks are in order. The result (a) in full generality is new, although most of

the special cases were known before. If we take the special case that K = F \ {0} we get the

classical result on linear maps preserving invertibility [31]. The case where the complement

of K has at least n elements follows from the results and proofs in [23] where one can find

also some other results on linear maps preserving eigenvalue location. The assertions (b), (c),

and (d) were proved in [38] using deep results on overgroups of algebraic groups. When F is a

complex field (c) was obtained in [6] without the nonsingularity assumption. The statement

(e) is an extension of the main theorem in [26] where only finite unions of similarity orbits

were treated. The results on linear preservers of similarity orbits extend and unify a lot of

known LPP results (see [26]). In particular, we can apply them to obtain results on linear

maps preserving matrices annihilated by a given polynomial. We will omit the details here as
we will study this problem in the next section. Of course, the applicability of the reduction
technique presented in this chapter is not restricted only to the above assertions.

Sometimes, one has to modify slightly the approaches presented in Theorem 3.3 to study
a certain linear preserver problem and in many cases it is possible to simplify this approach
considerably. For example, in the case that F is an uncountable algebraically closed field
of characteristic 0 the problem of characterizing linear maps preserving potent matrices can
be reduced to the problem of characterizing linear maps preserving nilpotents using the
following short argument. Assume that N is a nilpotent matrix. Without loss of generality
we can assume it is strictly upper triangular. Let D be a diagonal matrix with different

roots of unity on the diagonal. Then D + λN is a potent matrix for every scalar λ (it has

n different eigenvalues all of them being roots of unity). So, its image is potent. Therefore,

for every λ there exists an integer r > 1 (depending on λ) such that

(φ(D) + λφ(N))r − φ(D)− λφ(N) = 0.
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There are uncountably many λ’s, so there is an integer r0 > 1 such that the above equation

with r = r0 holds for infinitely many λ’s, and hence, for all λ’s. It follows that φ(N) is

nilpotent as desired.

Now, we are ready to present the Proof of Corollary 3.4.
To avoid trivial considerations, we assume that n ≥ 2.

We will divide the proof of (a) into two cases. In the case that the complement of K

has at least 2n elements we denote by S the set of all matrices X satisfying σ(X) ⊆ K. By

Theorem 3.3 and the remark following it, we see that φ is of the form (5). So, we are done if

K = {0}. In order to complete the proof in the first case we have to show that if K contains

a nonzero element then B is a scalar matrix, or equivalently, φ(I) is a scalar matrix. We

will use an idea similar to that in [23]. After applying similarity and going to transposes, if

necessary, we may assume that φ is of the form φ(X) = cX + (tr X)B. Next, we recall the

statement saying that for given scalars µ1, . . . , µn a nonscalar matrix T is similar to a matrix

whose diagonal entries are µ1, . . . , µn if and only if tr T = µ1+. . .+µn [24]. Choose a nonzero

α ∈ K and assume that φ(αI) = C is not a scalar matrix. Choose µ1 from the complement

of K and µ2, . . . , µn ∈ F such that tr C = µ1 + . . . + µn. There exists an invertible S such

that S−1CS has main diagonal µ1, . . . , µn. Let N be a nilpotent such that S−1NS is strictly

upper triangular and S−1CS + S−1NS is lower triangular. Then σ(αI + c−1N) ⊆ K, while

µ1 ∈ σ(φ(αI + c−1N)). This contradiction completes the proof in our first case.

It remains to consider the case that the complement of K has at most 2n elements,

say λ1, . . . , λk. Clearly, φ−1 maps the algebraic set of matrices X satisfying det((λ1I −
X) . . . (λkI −X)) = 0 into itself. By [12, Lemma 1] φ−1 maps this set onto itself. In other

words, we have σ(X) ⊆ K if and only if σ(φ(X)) ⊆ K.

We will now characterize rank one matrices using our geometric scheme. In particular,
we prove the following lemma.

Lemma 3.5 Let K be a proper subset of F with a finite complement, K = F \ {λ1, . . . , λk}.
Then for a nonzero T ∈ Mn(F) the following two statements are equivalent:

(a) rank T = 1.

(b) For every X ∈ Mn(F) satisfying σ(X) ⊆ K we have σ(X + αT ) ⊆ K for all but at

most k scalars α.

Proof. If T has rank one then it is similar either to a scalar multiple of E11, or to E12.

In both cases det(X + αT − λjI) considered as a polynomial in α has degree at most one.

Its constant term det(X −λjI) is nonzero whenever σ(X) ⊆ K. So, it has at most one zero.

Now, (b) follows easily.

Assume now that (b) holds. We want to show that rank T = 1. Assume on the contrary

that T has rank at least two. Then up to a similarity T has the upper triangular block form

T =
[
P Q
0 R

]

11



where P is

(i)
[
a b
0 c

]
with a and c (possibly equal) nonzero,

(ii)

 a 0 0
0 0 1
0 0 0

 with a nonzero, (iii)

 0 1 0
0 0 1
0 0 0

 , or (iv)


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

Let µ1, µ2, µ3 ∈ K, τ, τ1, τ2 ∈ F, and define X by

X =
[
Y 0
0 µ3I

]

where Y is

(i)
[
µ1 0
0 µ2

]
, (ii)

 µ1 0 0
0 µ1 0
0 τ µ1

 , (iii)

 µ1 0 0
0 µ1 0
1 0 µ1

 , or (iv)


µ1 0 0 0
τ1 µ1 0 0
0 0 µ1 0
0 0 τ2 µ1

 ,

depending on whether P satisfies (i) – (iv), respectively. Then σ(X) ⊆ K. Clearly, for

i = 1, . . . , k, we have λi ∈ σ(X + αT ) whenever one of the linear equations µ1 + αa = λi,

µ2 + αc = λi is satisfied; or one of the equations µ1 + αa = λi, (µ1 − λi)
2 = τα is satisfied;

or (µ1 − λi)
3 = −α2; or one of the equations (µ1 − λi)

2 = τ1α, (µ1 − λi)
2 = τ2α is satisfied,

respectively. It is now not difficult to show that µ1, µ2, µ3, τ, τ1, and τ2 can be chosen in such

a way that σ(X + αT ) ∩ {λ1, . . . , λk} 6= ∅ for at least k + 1 different scalars α. 2

The consequence of this characterization of matrices of rank one is that φ maps the set of

rank one matrices into itself. So, φ must be of the form (1) (see e.g. [1, 30] and Theorem 2.4

in the previous section). If K = F \ {0} we are done. So, assume that the complement of K

contains a nonzero element, say λ1. After going to transposes, if necessary, we may assume

that φ(X) = AXB, X ∈ Mn(F). We want to show that BA is a scalar multiple of the

identity. It is enough to prove that BAx and x are linearly dependent for every x ∈ Fn. The

linear map X 7→ XBA = A−1φ(X)A has the same eigenvalue location preserving property

as φ. Assume that there exists x ∈ Fn such that x and BAx are linearly independent.

Choose β ∈ K, γ ∈ F satisfying λ1γ 6∈ {λ2
1, . . . , λ

2
k}, and a subspace V ⊆ Fn such that

Fn = span {x, BAx}⊕ V . Define X ∈ Mn(F) by XBAx = λ1x, Xx = γBAx, and Xv = βv

for every v ∈ V . Then σ(X) ⊆ K while λ1 ∈ σ(XBA). This contradiction completes the

proof of (a).

In order to prove (b) we define θ by θ(X) = φ(X)−(1/n)tr φ(X)I. Obviously, θ maps the

set of trace zero matrices having n distinct eigenvalues into itself. Applying Theorem 3.3 and

12



the remark following it, we conclude that in the case that F is the field of complex numbers

the mapping θ has to be of the form (5). After multiplying φ by a nonzero constant, applying

a similarity transformation, adding to φ a transformation of the form X 7→ f(X)I, where f

is a linear functional on Mn(C), and going to transposes, if necessary, we may assume that

φ(X) = X + (tr X)B, X ∈ Mn(C). To complete the proof in the complex case we have to

show that B = [bij] is a scalar matrix. If this is not true we may assume, after applying

similarity, that b11 6= b22. It is not difficult to find an upper triangular X having n distinct
eigenvalues satisfying tr X = 1 such that X +B is lower triangular and x11 + b11 = x22 + b22.

Then, of course, φ(X) has less than n eigenvalues. This contradiction completes the proof

in the complex case. To extend this result to the general case we can apply the transfer
principle in the previous section.

The remaining three statements are easy to verify. 2

In the above proof, we have used the proposed geometric scheme to characterize rank
one matrices. In fact, we can use the same idea to characterize invertible linear maps on

Mn(F) that preserve matrices of rank k (or matrices of rank no greater than k), 1 ≤ k < n.

The case k = n is the problem of characterizing linear maps preserving invertibility and was

considered in Corollary 3.4 (a). The set of all matrices of rank no greater than k is the Zariski

closure of the set of all matrices of rank k. So, if φ preserves matrices of rank k, then it

preserves matrices of rank ≤ k. So, we will assume that A ∈ Mk
n(F) implies φ(A) ∈ Mk

n(F).

Here, Mk
n(F) denotes the set of all matrices of rank at most k. By the result of Dixon [12]

φ maps Mk
n(F) onto itself.

We reduce the problem to the problem of rank one preservers. All we have to do is to
prove the following.

Proposition 3.6 Let A ∈ Mn(F) be nonzero, and let 1 < k < n. The following conditions

are equivalent.

(i) rank A = 1.

(ii) There exists T ∈ Mk
n(F) such that T + λA ∈ Mk

n(F) for every scalar λ and for every

T ∈ Mk
n(F) we have either T + λA ∈ Mk

n(F) for every scalar λ or T + λA 6∈ Mk
n(F)

for every nonzero scalar λ.

Proof. Assume first that rank A = 1. We can choose invertible P and Q such that

PAQ = E12. Let T = P−1E11Q
−1. Then T + λA ∈ Mk

n(F) for every λ. Assume now that

T ∈ Mk
n(F) and T + λ0A 6∈ Mk

n(F) for some λ0. Without loss of generality, we can assume

that λ0 = 1. Then
k < rank (T + A) ≤ rank T + rank A ≤ k + 1,

and so, rank T = k and

rank (T + A) = rank T + rank A.

13



We say that T and A are rank additive and it is well-known that this is equivalent to

C(T )∩C(A) = {0} and R(T )∩R(A) = {0}, where C and R denotes the column space and

the row space. But this is further equivalent to C(T )∩C(µA) = {0} and R(T )∩R(µA) = {0}
for every nonzero scalar µ, and consequently,

rank (T + µA) = rank T + rank µA = k + 1

for every nonzero µ. This completes the proof in one direction.

To prove the other direction we assume that rank A = p > 1. If p > 2k, then rank (T +

λA) > k for every T ∈ Mk
n(F) and every nonzero λ. So, (ii) doesn’t hold. If k + 1 ≤ p ≤ 2k

then we can assume as above that A is diagonal with first p diagonal entries 1 and the other
diagonal entries 0. Let T be diagonal with first p − k diagonal entries −1 and the other

diagonal entries 0. Then rank (T + A) = k and rank (T + 2A) > k. It remains to consider

the case that 2 ≤ p ≤ k. Define T to be diagonal with first diagonal entry 0, the second
diagonal entry −1, the next k − 1 diagonal entries 1 and the other diagonal entries 0. Then

rank (T + A) = k and rank (T + 2A) > k. This completes the proof. 2

We remark that the idea of the proof of the above proposition may have been hidden in
the work of other authors. Nonetheless, it helps us to illustrate how to apply the geometric
technique we proposed.

4 Reduction to Idempotent Preservers

The aim of this section is to show that some of LPP can be reduced to the problem of
characterizing linear maps preserving idempotents. The advantage of this technique is that
it can be used also in the infinite-dimensional case as well as to study linear preservers

from Mn(F) into Mm(F) with n different from m. The idea to reduce a linear preserver

problem to the idempotent case has been already used when studying the classical problem

of invertibility preserving maps [7, 8]. The reduction techniques that we will present here

are different from those in [7, 8].

Let us first recall that a C∗-algebra A is of real rank zero if the set of all finite real
linear combinations of orthogonal Hermitian idempotents is dense in the set of all Hermitian
elements of A. Equivalently, the set of Hermitian elements with finite spectrum is dense in
the set of all Hermitian elements of A. Every von Neumann algebra is a C∗-algebra of real

rank zero. In particular, B(H), the algebra of all bounded linear operators on a complex

Hilbert space, has real rank zero. There is a vast literature on such algebras. Usually they

are defined in a more complicated way. We refer to [9] where the above simple definition can

be found.
Let A and B be algebras over a field F. A linear map φ : A → B is called a Jordan

homomorphism if φ(x2) = φ(x)2, x ∈ A. Homomorphisms and antihomomorphisms (linear

maps satisfying φ(xy) = φ(y)φ(x)) are basic, but not the only examples of Jordan homo-

morphisms. Indeed, let each of A and B be a direct sum of two subalgebras, A = A1 ⊕A2
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and B = B1 ⊕ B2, with the operations defined componentwise. If φ1 : A1 → B1 is a homo-
morphism and φ2 : A2 → B2 is an antihomomorphism then φ1 ⊕ φ2 : A → B is a Jordan
homomorphism.

The following theorem whose proof is a slight modification of an idea given in [5, Remark

2.2] and its consequences show that once we reduce a certain linear preserver problem to the

idempotent case we can easily get its solution not only in the matrix case but also in the
infinite-dimensional case.

Theorem 4.1 Let A be a C∗-algebra of real rank zero and B any complex Banach algebra.
Assume that a bounded linear map φ : A → B preserves idempotents. Then φ is a Jordan
homomorphism.

Proof. Pick a Hermitian element h which is a finite real linear combination of orthogonal
Hermitian idempotents, h =

∑n
i=1 tipi, pipj = 0 if i 6= j. Since pi+pj is an idempotent if i 6= j,

we have (φ(pi) + φ(pj))
2 = φ(pi) + φ(pj). This yields φ(pi)φ(pj) + φ(pj)φ(pi) = 0. Using this

relation we see that φ(h2) = φ(h)2. Now, the set of Hermitian elements h, which are finite real

linear combinations of orthogonal Hermitian idempotents, is dense in the set of all Hermitian

elements. Since φ is continuous, we have φ(h2) = φ(h)2 for all Hermitian elements. Replacing

h by h + k where h and k are both Hermitian we get φ(hk + kh) = φ(h)φ(k) + φ(k)φ(h).

Since an arbitrary x ∈ A can be written in the form x = h+ ik with h, k Hermitian, the last

two relations imply that φ(x2) = φ(x)2. This completes the proof. 2

In the special case that A = Mn(C) we get the following result from [5].

Corollary 4.2 Let B be any complex Banach algebra. Assume that a linear map φ :

Mn(C) → B preserves idempotents. Then φ is a sum of a homomorphism and an anti-

homomorphism.

Proof. Since Mn(C) is finite-dimensional φ must be bounded. So, by the previous theorem

it is a Jordan homomorphism. According to [21, Theorem 7] φ is a sum of a homomorphism

and an antihomomorphism. 2

Corollary 4.3 Let F be an algebraically closed field of characteristic 0 and m,n positive

integers. Assume that a nonzero linear map φ : Mn(F) → Mm(F) preserves idempotents.

Then m ≥ n and there exist an invertible matrix A ∈ Mm(F) and nonnegative integers k1, k2

such that 1 ≤ k1 + k2, (k1 + k2)n ≤ m and

φ(X) = Adiag (X, . . . , X, X t, . . . , X t, 0)A−1, X ∈ Mn(F).

Here, diag (X, . . . , X, X t, . . . , X t, 0) denotes the block diagonal matrix in which X appears k1

times, X t appears k2 times, and 0 is a zero matrix of the appropriate size (possibly absent).
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Proof. We will prove here only the special case that F = C. The extension to the general

case can be done using the result in Section 2 as follows. We extend the result (using the

transfer principle) for every pair of positive integers m and n. When extending the result

we do not assume that φ is nonzero. We fix m and n. If m < n then the conclusion is that
φ is zero. If m ≥ n, say m = 5 and n = 2, we have the conclusion that φ is zero OR that φ
is of the desired form with k1 = 1 and k2 = 0 OR φ is of the desired form with k1 = 0 and
k2 = 1 OR φ is of the desired form with k1 = 1 and k2 = 1 OR φ is of the desired form with
k1 = 2 and k2 = 0 OR φ is of the desired form with k1 = 0 and k2 = 2. For each possibility
the desired form can be expressed as a first order sentence.

Now, return to the proof of the complex case. By Corollary 4.2, φ is a sum of a homomor-

phism φ1 and an antihomomorphism φ2. Denote P = φ(In), P1 = φ1(In), and P2 = φ2(In).

Clearly, P = P1 + P2. Moreover, all of these matrices are idempotents. So, we have up to a
similarity

P =

 Ip 0 0
0 Iq 0
0 0 0

 , P1 =

 Ip 0 0
0 0 0
0 0 0

 , P2 =

 0 0 0
0 Iq 0
0 0 0

 ,

where one of Ip or Iq may be zero and some border zeroes may be absent. Consequently, we

have

φ1(X) =

 ϕ1(X) 0 0
0 0 0
0 0 0

 , φ2(X) =

 0 0 0
0 ϕ2(X) 0
0 0 0

 , X ∈ Mn(C),

where ϕ1 is a unital homomorphism of Mn(C) into Mp(C) and ϕ2 is a unital antihomomor-

phism of Mn(C) into Mq(C). Composing an antihomomorphism by the transposition we get

a homomorphism. Thus, in order to complete the proof it is enough to prove that if ϕ is

a unital homomorphism of Mn(C) into Mp(C), where n and p are positive integers, then n

divides p and

ϕ(X) = Bdiag (X, . . . , X)B−1, X ∈ Mn(C),

for some invertible B ∈ Mp(C). Here, diag (X, . . . , X) is a block diagonal matrix where X

appears p/n times.

First note that because ϕ is unital it preserves invertibility. If X and Y are of the
same rank, then there exist invertible matrices T and S such that X = TY S. Conse-

quently, ϕ(X) = ϕ(T )ϕ(Y )ϕ(S) has the same rank as ϕ(Y ). Let ϕ(E11) be of rank r. Then

ϕ(E11), . . . , ϕ(Enn) are all idempotents of rank r satisfying ϕ(Eii)ϕ(Ejj) = 0 whenever i 6= j.

It follows that ϕ(In) = Ip is of rank rn. So, n divides p. Obviously, the map

τ(X) = diag (X, . . . , X) ∈ Mp(C), X ∈ Mn(C),

is a unital algebra homomorphism. By a special case of the Noether-Skolem Theorem [35,

Lemma, p.230] there exists an invertible B ∈ Mp(C) such that ϕ(X) = Bτ(X)B−1, X ∈
Mn(C), as desired. This completes the proof. 2
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Let p be a polynomial. A linear map φ : A → B preserves elements annihilated by p if

p(φ(x)) = 0 whenever p(x) = 0.

Corollary 4.4 Let A be a unital C∗-algebra of real rank zero and B any complex unital

Banach algebra. Let p be a complex polynomial, deg p > 1, with simple zeroes (each zero has

multiplicity one). Assume that a linear bounded unital map φ : A → B preserves elements

annihilated by p. Then φ is a Jordan homomorphism. If A = Mn(C), then φ is a sum of a

homomorphism and an antihomomorphism.

Proof. Assume that λ1, . . . , λk are zeroes of p. Let µ be any complex number and
q the monic polynomial with simple zeroes λ1 − µ, . . . , λk − µ. Then φ preserves elements

annihilated by q. Indeed, q(A) = 0 if and only if p(A+µ) = 0. This implies that p(φ(A)+µ) =

0 which is equivalent to q(φ(A)) = 0.

So, without loss of generality we may assume that λ1 = 0 and either: (1) all λj’s are in

the closed left half complex plane and not all of them are on the imaginary axis, or (2) all

λj’s belong to {t i : t ≤ 0} (negative part of the imaginary axis).

Let P be an arbitrary idempotent in A. Then p(λiP ) = 0, and so, p(λiφ(P )) = 0. Let

µ belong to the spectrum of φ(P ). Then λiµ belongs to the spectrum of φ(λiP ) which is

contained in {0, λ2, . . . , λk}. So, for every i and every positive integer s we have

λiµ
s ∈ {0, λ2, . . . , λk}. (4.1)

It follows that µ = 0 or there exists r such that µr = 1. Let r be the smallest positive

integer such that this is true. From the position of the λj’s in the complex plane and (4.1)

we conclude that r = 1. Therefore, the spectrum of φ(P ) is contained in {0, 1}.
We know that

λ2φ(P )[λ2φ(P )− λ2][λ2φ(P )− λ3] · · · [λ2φ(P )− λk] = 0.

Since λ2φ(P )− λj, j ≥ 3, is invertible we have

λ2φ(P )[λ2φ(P )− λ2] = 0.

Thus, φ(P ) is an idempotent. Hence, φ preserves idempotents. The result now follows from

Theorem 4.1 and Corollary 4.2. 2

Corollary 4.5 Let F be an algebraically closed field of characteristic 0 and m, n positive
integers. Let p be a polynomial over F, deg p > 1, with simple zeroes. Assume that a linear

unital map φ : Mn(F) → Mm(F) preserves matrices annihilated by p. Then n divides m

and there exist an invertible matrix A ∈ Mm(F) and nonnegative integers k1, k2 such that

(k1 + k2)n = m and

φ(X) = Adiag (X, . . . , X, X t, . . . , X t)A−1, X ∈ Mn(F).

Here, diag (X, . . . , X, X t, . . . , X t) denotes the block diagonal matrix in which X appears k1

times while X t appears k2 times.
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Proof. Once again we will prove only the special case that F = C. By Corollary 4.4,
φ is a sum of a homomorphism and an antihomomorphism. The result now follows from
Corollary 4.3 and the fact that φ is unital. 2

The special case when m = n was proved in [20] (see also [26]) under the additional

assumption of bijectivity without assuming that φ is unital. In fact, in the special case that
m = n and φ is invertible Howard characterized linear maps preserving matrices annihilated
by any given polynomial. Let us show that in our more general situation the assumption

that p has simple zeroes is indispensable. To see this define φ : Mn(F) → Mn2(n+2)(F) by

φ(X) = φ ((xij)) = (trX/n)(I − ϕ(I)) + ϕ(X)

where ϕ(X) is a block diagonal matrix having on a diagonal n2 blocks Yij, i, j = 1, ..., n,

of the size (n + 2) × (n + 2). Here, the first row of Yij equals (0, xi1, . . . , xin, 0), the last

column of Yij equals (0, x1j, . . . , xnj, 0)t, and all other entries of Yij are zero. Then φ is a

unital linear mapping which preserves square-zero matrices. Even more, it preserves them

in both directions, that is, φ(X) is square-zero if and only if X is square-zero. But clearly,

φ is not a Jordan homomorphism.
Another application of the reduction technique treated in this section is the characteri-

zation of linear maps preserving potent elements.

Corollary 4.6 Let A be a unital C∗-algebra of real rank zero and B any complex unital
Banach algebra. Assume that a linear bounded unital map φ : A → B preserves potent

elements. Then φ is a Jordan homomorphism. If A = Mn(C), then φ is a sum of a

homomorphism and an antihomomorphism.

Proof. We have to prove that φ preserves idempotents. Let p be any idempotent from

A. Then φ(p) is a potent element. So, we have to show that its spectrum is contained in

{0, 1}. Let λ be any element of σ(φ(p)). As p, 1− p, and 1− 2p are all potent elements, the

same must be true for φ(p), 1− φ(p), and 1− 2φ(p). Hence, each of the numbers λ, 1− λ,

and 1− 2λ is either 0 or a root of unity. This is possible only if λ = 0 or λ = 1 as desired. 2

Corollary 4.7 Let F be an algebraically closed field of characteristic 0 and m, n positive

integers. Assume that a linear unital map φ : Mn(F) → Mm(F) preserves potent matrices.

Then n divides m and there exist an invertible matrix A ∈ Mm(F) and nonnegative integers

k1, k2 such that (k1 + k2)n = m and

φ(X) = Adiag (X, . . . , X, X t, . . . , X t)A−1, X ∈ Mn(F).

Here, diag (X, . . . , X, X t, . . . , X t) denotes the block diagonal matrix in which X appears k1

times while X t appears k2 times.
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If we compare the last two results with Corollary 3.4(c) we see that the underlying

algebras here are much more general. However, we have the additional assumption that
φ is unital. In Corollaries 4.6 and 4.7 one can replace the assumption that φ preservers
potent elements by the assumption that it preserves elements of finite order and get the
same conclusion. As the idea of the proof is similar we leave the details to the reader.
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