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Abstract

The structure of Schur multiplicative maps on matrices over a field is studied. The result is
then used to characterize Schur multiplicative maps f satisfying f(S) ⊆ S for different subsets S of
matrices including the set of rank k matrices, the set of singular matrices, and the set of invertible
matrices. Characterizations are also obtained for maps on matrices such that Γ(f(A)) = Γ(A)
for various functions Γ including the rank function, the determinant function, and the elementary
symmetric functions of the eigenvalues. These results include analogs of the theorems of Frobenius
and Dieudonné on linear maps preserving the determinant functions and linear maps preserving
the set of singular matrices, respectively.
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1 Introduction

Let Mm,n be the set of m×n matrices over a field F with at least three elements. Define the Schur
product (also known as Hadamard product or entrywise product) of A = [aij ], B = [bij ] ∈ Mm,n by
A ◦B = [aijbij ]. A map f : Mm,n → Mm,n is Schur multiplicative if

f(A ◦B) = f(A) ◦ f(B) for all A,B ∈ Mm,n.

The study of Schur product is related to many pure and applied areas; see [8]. There has been
considerable interest in studying linear maps, additive maps, and multiplicative maps f on matrices
with some special properties such as f(S) ⊆ S for a certain subset of matrices, or Γ(f(A)) = Γ(A)
for a given function Γ on matrices; for example see [7, 10, 11, 13, 15] and their references. In this
paper, we study Schur multiplicative maps on matrices with some of these special properties.

In Section 2, we consider general Schur multiplicative maps f : Mm,n → Mm,n. In particular,
it is shown that under some mild assumptions on the Schur multiplicative map f has the form

(†) [aij ] 7→ P[fij(aij)], where fij : F → F satisfies fij(0) = 0 for each (i, j) pair, and P(X) ∈ Mm,n

is obtained from X by permuting its entries in a fixed pattern.
∗The first and third authors were supported by an NSF REU grant. The second author was supported by a USA

NSF grant and a HK RCG grant.
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The result is then used to study Schur multiplicative maps which map rank k matrices to rank
k matrices for a given value k. In particular, our results include the characterization of those Schur
multiplicative maps that preserve the rank function, and those Schur multiplicative maps that map
the set of singular (respectively, invertible) square matrices to itself. In Section 4, we study Schur
multiplicative maps on square matrices which preserve functions related to eigenvalues including
the determinant function and the spectrum. We also characterize maps on matrices of the form
(†) that preserve some special sets and functions. These results include analogs of the theorems
of Frobenius and Dieudonné on linear maps preserving the determinant functions and linear maps
preserving the set of singular matrices, respectively.

In our discussion, let Jm,n denote the m× n matrix with all entries equal to 1, and let 0m,n be
the m × n matrix with all entries equal to 0. Denote by B = {E11, E12, . . . , Em,n} the standard
basis for Mm,n. When m = n, we use the notation Mn, Jn, 0n, etc. The set of nonzero elements in
F is denoted by F∗.

A square matrix is a monomial matrix if each row and each column has exactly one nonzero
entry. A monomial matrix is a permutation matrix if all the nonzero entries equal to the unity in
F.

2 Schur Multiplicative Maps

The structure of a Schur multiplicative map f : Mm,n → Mm,n can be quite arbitrary if one does
not impose any additional assumptions on f . In general, one can define f(A) = [fij(A)], where
fij : Mm,n → F is any Schur multiplicative map. For example, one can define f(A) = B for a fixed
matrix B satisfying B◦B = B; another example is to define f(A) = Jm,n if a11 6= 0 and f(A) = E11

otherwise. On the other hand, if one imposes some mild conditions on a Schur multiplicative map,
then its structure will be more tractable as shown in the following.

Theorem 2.1 Let f : Mm,n → Mm,n. The following conditions are equivalent.

(A1) f is Schur multiplicative, f(0m,n) = 0m,n, and f(Eij) 6= 0m,n for each (i, j) pair.

(A2) f is Schur multiplicative and f−1[{0m,n}] = {0m,n}.

(A3) There is a mapping P : Mm,n → Mm,n such that P(A) is obtained from A by permuting its

entries in a fixed pattern, and a family of multiplicative maps fij : F → F satisfying f−1
ij [{0}] = {0}

such that
f([aij ]) = P ([fij(aij)]) .

Proof. Note that a matrix X ∈ Mm,n satisfies X ◦ X = X if and only if all the entries of X

belong to {0, 1}.
Assume that (A1) holds. Suppose there is X with nonzero (i, j) entry such that f(X) = 0m,n.

Then f(Eij) = f(Eij ◦ X/xij) = f(Eij/xij) ◦ f(X) = 0m,n, which is a contradiction. Thus,
f−1[{0m,n}] = {0m,n}. We see that (A2) holds.

Suppose (A2) holds. Consider X ∈ B = {Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Then f(X) =
f(X) ◦ f(X). So, all entries of f(X) lie in {0, 1}, and f(X) 6= 0 by assumption (A2). For any
X, Y ∈ B with X 6= Y , we have f(X)◦f(Y ) = f(0m,n) = 0m,n. Thus, f(X) and f(Y ) have nonzero
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entries in different positions. As a result, for each X ∈ B, f(X) has exactly one non-zero entry.
Thus, f(B) = B.

We can apply a map P : Mm,n → Mm,n such that P(A) is obtained from A by a fixed permu-
tation of the entries of A so that P(f(Eij)) = Eij for all (i, j). It remains to show that there are
fij : F → F such that P(f(A)) = [fij(aij)] for any A = [aij ].

Replace f by the map A 7→ P−1(f(A)), where P−1(P(X)) = X for all matrices X. If we can
prove the conclusion for the modified map, then the same conclusion will be valid for the original
map. So, we assume that P is the identity map, i.e., f(Eij) = Eij for all (i, j) pairs. Now, fix an
(i, j) pair. For any a ∈ F, f(aEij) = f(aEij) ◦ f(Eij) = bEij for some b ∈ F. Define fij : F → F
such that f(aEij) = fij(a)Eij . Since f−1[{0m,n}] = {0m,n}, fij(x) = 0 if and only if x = 0. Also,
for any a, b ∈ F,

fij(ab)Eij = f(abEij) = f(aEij) ◦ f(bEij) = fij(a)fij(b)Eij .

Suppose A = [aij ] and f(A) = [bij ]. Then

bijEij = Eij ◦ f(A) = f(Eij ◦A) = fij(aij)Eij .

Thus, we see that f(A) = [fij(aij)], and the conclusion holds.
The implication (A3) ⇒ (A1) is clear. 2

Corollary 2.2 Let f : Mm,n → Mm,n. The following are equivalent.
(A4) f is Schur multiplicative and injective.
(A5) Condition (A3) in Theorem 2.1 holds with the additional assumption that fij is injective

for each (i, j) pair.

Proof. Suppose f is Schur multiplicative and injective. Since f(0m,n) = f(0m,n) ◦ f(0m,n), all
entries of f(0m,n) lie in {0, 1}. Let S be the set of (i, j) pairs such that the (i, j) entry of f(0m,n)
equals 1. Then for any X ∈ Mm,n, we have

f(0m,n) = f(X ◦ 0m,n) = f(X) ◦ f(0m,n).

Hence the (i, j) entry of f(X) equals 1 for each (i, j) ∈ S.
For (i, j) 6= (p, q), we have f(Eij) 6= f(Epq) and f(Eij◦Epq) = f(0m,n). Thus, f(Eij) and f(Epq)

cannot have a common nonzero entry at the (r, s) position if (r, s) /∈ S. Because f is injective,
f(Eij) 6= f(0m,n). Thus, every f(Eij) has at least one nonzero entry at a position (r, s) /∈ S. Since
Eij and Ep,q cannot have nonzero entry at any (r, s) position with (r, s) /∈ S, we need at least mn

pairs of (r, s) /∈ S to accommodate the nonzero entries of f(Eij). Hence, we conclude that S = ∅,
i.e., f(0m,n) = 0m,n, and each f(Eij) has exactly one nonzero entry equal to 1. So, condition (A1)
of Theorem 2.1 holds and f has the form described in (A3). Since f is injective, for x 6= y in F we
have seen that f(xEij) 6= f(yEij) and hence fij(x) 6= fij(y). So, fij is injective for each (i, j) pair.

The implication (A5) ⇒ (A4) is clear. 2
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Remark 2.3 As we will see in the subsequent discussion, in the study of preserver problems we
can sometimes assume only

(A0) f : Mm,n → Mm,n is Schur multiplicative and f(0m,n) = 0m,n,

together with some preserving property to conclude that f has the form (†) with some additional
nice structure. In some problems, we believe that one can even remove the assumption that
f(0m,n) = 0m,n in (A0). On the other hand, we will see that the assumption (A1) or (A0) are
indispensable in certain problems.

Note also that our result and proof are valid if F is replaced by an integral domain D.

3 Rank preservers

Linear maps, additive maps, and multiplicative maps on matrices mapping the set of rank-k ma-
trices to itself have been studied by many researchers; e.g., see [2, 3, 13, 15] and their references.
In this section, we characterize Schur multiplicative maps that map the set of rank-k matrices to
itself. We begin with rank one preservers.

Theorem 3.1 Suppose f : Mm,n → Mm,n is a Schur multiplicative map. Then f(0m,n) = 0m,n

and f maps rank one matrices to rank one matrices if and only if there exist permutation matrices
P ∈ Mm and Q ∈ Mn, and a multiplicative map τ : F → F satisfying τ(F∗) ⊆ F∗ such that

(a) f has the form [aij ] 7→ P [τ(aij)]Q, or

(b) m = n and f has the form [aij ] 7→ P [τ(aij)]tQ.

Proof. First we consider the implication (⇐). Note that A ∈ Mm,n has rank one if and only if
there are x1, . . . , xm, y1, . . . , yn ∈ F such that A = [aij ] = [x1, . . . , xm]t[y1, . . . , yn]. Thus, for any
injective multiplicative map τ : F → F, we have

[τ(aij)] = [τ(xi)τ(yj)] = [τ(x1), . . . , τ(xm)]t[τ(y1), . . . , τ(yn)]

with rank one. By this observation, the implication (⇐) is clear.
Next, we consider the converse. By the given assumption, f satisfies condition (A1) in Theorem

2.1 and hence its conclusion. Thus, f has the form (†). Without loss of generality, we may assume
that m ≤ n. The case n < m can be proved by similar arguments. Since f(X) has rank one
for X =

∑n
j=1 E1j , we see that the nonzero entries of f(X) lie in the same row, or in the same

column if m = n. We may assume that the former case holds. Otherwise, replace f by a map of
the form A 7→ f(A)t. Note that if we can prove the result for the modified map, the conclusion
will be valid for the original map. Then there exist permutation matrices P ∈ Mm and Q ∈ Mn

so that f(E1j) = PE1jQ for j = 1, . . . , n. Replace f by the map A 7→ P tf(A)Qt so that we have
f(E1j) = E1j for j = 1, . . . , n. Now, consider f(X) for X =

∑m
i=1 Ei1. Since f(E11) = E11 and f

maps rank one matrices to rank one matrices, we see that f(X) = X. There exists a permutation
matrix R ∈ Mm such that f(Ei1) = REi1 for i = 1, . . . ,m. We may replace f by the map
A 7→ Rtf(A), and assume that f(Ei1) = Ei1 for i = 1, . . . ,m. For any (i, j) with i 6= 1 and j 6= 1,
since f(X) has rank one for X = E11 + E1j + Ei1 + Eij , we see that f(Eij) = Eij . Furthermore,
for any 1 ≤ j ≤ n and a ∈ F the matrix f(X) has rank one for X = aE11 + aE1j + E21 + E2j , we
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see that f11(a) = f1j(a). Similarly, we can show that fi1(a) = f11(a) for all a ∈ F. Finally, for any
(i, j) with i 6= 1 and j 6= 1, since f(X) has rank one for X = E11 + E1j + aEi1 + aEij with a ∈ F,
fij(a) = fi1(a) = f11(a) for all a ∈ F. Our conclusion follows. 2

The conclusion of Theorem 3.1 may fail if the Schur multiplicative map does not maps 0m,n

to itself. For example, we can choose a fixed rank one matrix B satisfying B ◦ B = B and define
f(A) = B for all A ∈ Mm,n. Then f is Schur multiplicative and maps rank one matrices to rank
one matrices.

Next, we show that one can get a similar conclusion for maps on matrices of the form (†) even
though fij is not assumed to be multiplicative a priori.

Theorem 3.2 Suppose f : Mm,n → Mm,n has the form (†). Then f maps rank one matrices to
rank one matrices if and only if there exist invertible monomial matrices P ∈ Mm and Q ∈ Mn

and a multiplicative map τ : F → F satisfying τ(F∗) ⊆ F∗ such that
(a) f has the form [aij ] 7→ P [τ(aij)]Q, or
(b) m = n and f has the form [aij ] 7→ P [τ(aij)]tQ.

Proof. The implication (⇐) can be verified as in the proof of Theorem 3.1.
We consider the converse. Assume that f has the form (†) and maps rank one matrices to rank

one matrices. Without loss of generality, we may assume that m ≤ n. Since f(X) has rank one
for X =

∑n
j=1 E1j , we see that the nonzero entries of f(X) lie in the same row, or in the same

column if m = n. We may assume that the former case holds. Otherwise, replace f by a map
of the form A 7→ f(A)t. Then there exist permutation matrices P ∈ Mm and Q ∈ Mn so that
f(E1j) = Pf1j(1)E1jQ for j = 1, . . . , n. Let D = diag (f11(1), f12(1), . . . , f1n(1)). Since f(E1j) has
rank 1, we see that f1j(1) 6= 0 for j = 1, . . . , n. Replace f by the map A 7→ P−1f(A)Q−1D−1 so that
we have f(E1j) = E1j for j = 1, . . . , n. Now, consider f(X) for X =

∑m
i=1 Ei1. Since f(E11) = E11

and f maps rank one matrices to rank one matrices, there exists an invertible monomial matrix
R ∈ Mm such that f(Ei1) = REi1 for i = 1, . . . ,m. We may replace f by the map A 7→ R−1f(A),
and assume that f(Ei1) = Ei1 for i = 1, . . . ,m. For any (i, j) with i 6= 1 and j 6= 1, since f(X) has
rank one for X = E11 + E1j + Ei1 + Eij , we see that f(Eij) = Eij .

Note that for any (i, j) pair and any nonzero a ∈ F, f(aEij) = fij(a)Eij has rank one, and
thus fij(a) 6= 0. Furthermore, for any 1 ≤ j ≤ n and any a ∈ F the matrix f(X) has rank
one for X = aE11 + aE1j + E21 + E2j , we see that f11(a) = f1j(a). Similarly, we can show that
fi1(a) = f11(a) for all a ∈ F. Finally, for any (i, j) with i 6= 1 and j 6= 1, since f(X) has rank one
for X = E11 + E1j + aEi1 + aEij with a ∈ F, fij(a) = fi1(a) = f11(a) for all a ∈ F.

Let f11 = τ . For any a, b ∈ F, let X = E11 + aE12 + bE21 + abE22. Since f(X) has rank one,
we see that τ(ab) = τ(a)τ(b). So, τ is multiplicative. 2

Next, we characterize maps f : Mm,n → Mm,n of the form (†) which map the set of rank k

matrices to itself for 1 < k < min{m,n}. It turns out that such maps will preserve the ranks of all
matrices, and have very nice structure. The result will be used to characterize Schur multiplicative
maps which preserve rank k matrices in Corollary 3.4

Theorem 3.3 Let 1 < k < min{m,n}. Suppose f : Mm,n → Mm,n has the form (†). The following
are equivalent.
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(a) rank (f(A)) = rank (A) for all A ∈ Mm,n.

(b) f maps rank k matrices to rank k matrices.

(c) There are invertible monomial matrices P ∈ Mm and Q ∈ Mn, and a field monomorphism
τ : F → F such that one of the following holds.

(c.i) f has the form A 7→ P [τ(ai,j)]Q.

(c.ii) m = n and f has the form A 7→ P [τ(ai,j)]tQ.

Note that for rank preservers f , we have f(0m,n) = 0m,n. Thus, one may further relax the
assumption that fij(0) = 0 for all (i, j) pairs in (†), and conclude that conditions (b) and (c) are
equivalent.

Proof. The implications (c) ⇒ (a) ⇒ (b) are clear. We focus on the proof of (b) ⇒ (c). Without
loss of generality, we may assume that m ≤ n. The proof for the case n < m is similar. We divide
the proof into several assertions.

Assertion 1 There is a diagonal matrix D ∈ Mm and permutation matrices P ∈ Mm and Q ∈ Mn

such that f(Ejj) = PDEjjQ for j = 1, . . . ,m.
Consider D = {Ejj : 1 ≤ j ≤ m}. If X is a sum of k matrices in D, then k = rank (X) =

rank (f(X)). So, f(X) must have k nonzero entries lying on k distinct rows and k distinct columns.
Thus, the m non-zero entries of f(

∑m
j=1 Ejj) lie on m different rows and m different columns.

Hence, there are permutation matrices P ∈ Mm and Q ∈ Mn such that f(Ejj) = Pfjj(1)EjjQ for
j = 1, . . . ,m. Let D = diag (f11(1), . . . , fmm(1)). Then we get the desired conclusion.

By Assertion 1, we may replace f by the map A 7→ D−1P tf(A)Qt and assume that f(Ejj) = Ejj

for j = 1, . . . ,m. We will make this assumption in the rest of the proof.

Assertion 2 For any (i, j) pair, fij(F∗) ⊆ F∗.
Let a ∈ F∗, and let X = aEij +

∑
s∈S Ess for a subset S of {1, . . . ,m}\{i, j} with k−1 elements.

Since f(X) has rank k, we see that fij(a) 6= 0.

Assertion 3 For any 1 ≤ i < j ≤ m, we have f(Eij + Eji) = bijEij + b−1
ij Eji for some bij ∈ F∗.

For simplicity, assume that (i, j) = (1, 2), and X = E12 +E21. If Y = X +
∑k

j=3 Ejj , then f(Y )

has rank k. So, f(X) = f12(1)Epq + f21(1)Ers for some p 6= q and r 6= s. If Y =
∑k+1

j=1 Ejj + X,

then f(Y ) has rank k. Thus, p, q, r, s,∈ {1, . . . , k + 1}; otherwise, the leading (k + 1) × (k + 1)
matrix of f(Y ) will be invertible so that f(Y ) has rank larger than k. Furthermore, we must have
(p, q) = (s, r) and f(X) = bEpq + b−1Eqp for some b ∈ F with 1 ≤ p < q ≤ k + 1; otherwise, f(Y )
has rank larger than k. Now, for any s ∈ {3, . . . , k + 1}, we have k = rank (Z) = rank (f(Z)) for
any Z ∈ {Y − Ess − E11, Y − Ess − E22}. It follows that p, q /∈ {3, . . . , k + 1}, i.e., {p, q} = {1, 2}.
So, f(X) = bE12 + b−1E21 as asserted.

Assertion 4 There is an invertible diagonal matrix D ∈ Mm such that one of the following holds.

(i) f(Eij) = D−1Eij(D ⊕ In−m) for all 1 ≤ i ≤ m and 1 ≤ j ≤ m.

(ii) f(Eij) = D−1Eji(D ⊕ In−m) for all 1 ≤ i, j ≤ m.
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By Assertion 3, f(Eij + Eji) = bijEij + b−1
ij Eij for all (i, j) pairs with 1 ≤ i, j ≤ m. Let D−1 =

diag (1, b21, b31, . . . , bm1). Then f(X) = D−1X(D ⊕ In−m) for X = E1j + Ej1 for j = 2, . . . ,m.
Replace f by the map A 7→ Df(A)(D−1 ⊕ In−m). Then

(i)’ f(E12) = E12, or (ii)’ f(E12) = E21.

Assume (i)’ holds. We prove that (i) holds accordingly as follows. First, consider f(E1j) for
j = 3, . . . ,m. Consider A = E11 + E12 + E1j + E22 + E2j + Ej2 + Ejj +

∑
s∈S Ess, where S is a

subset of {3, . . . , n} \ {j} with k − 2 elements. Then k = rank (A) = rank (f(A)). If f(E1j) = Ej1,
then f(A) have rank k + 1, which is a contradiction. Thus, f(X) = X for X ∈ {E1j , Ej1}.

Now, suppose 1 /∈ {i, j}. Let A = E11 + E1i + E1j + Ei1 + Eii + Eij + Ejj +
∑

s∈S Ess, where

S is a subset of {2, . . . , n} \ {i, j} with k − 2 elements. Then k = rank (A). If f(Eij) = b−1
ij Eji,

then rank (f(A)) = k + 1, which is a contradiction. So, f(Eij) = bijEij . If bij 6= 1, consider
B = E11 + E1i + E1j + Ei1 + Eii + Eij + Ej1 +

∑
s∈S Ess, where S is a subset of {2, . . . , n} \ {i, j}

with k − 2 elements. Then rank (B) = k < k + 1 = rank (f(B)), which is a contradiction. So, we
conclude that f(X) = X for X ∈ {Eij , Eji}. Our proof of (i) is complete.

If condition (ii)’ holds, we can prove (ii) by a similar argument.

Assertion 5 Suppose m < n. Then condition (ii) in Assertion 4 cannot hold, and there is an
invertible monomial matrix Q ∈ Mn such that f(Eij) = EijQ for any 1 ≤ i ≤ m and 1 ≤ j ≤ n.

To prove the above assertion, note that if r > m then f(E1r) = Epq for some q > m because
f(Eij) = Eij for 1 ≤ i, j ≤ m. If p 6= 1, then for A = E1r + E11 +

∑
s∈S Ess, where S is a subset

of {2, . . . , n} \ {p} with k − 1 elements, we see that f(A) has k + 1 linear independent rows and
thus rank (f(A)) = k + 1 and rank (A) = k, which is a contradiction. So, there are b1j ∈ F∗ for
j = m + 1, . . . , n such that {f(E1r) : m < r ≤ n} = {b1rE1r : m < r ≤ n}. We may assume that
f(E1r) = E1r for all m < r ≤ n. Otherwise, replace f by a map of the form A 7→ f(A)Q, where

Q ∈ Mn is a monomial matrix of the form Im ⊕ Q̃ with Q̃ ∈ Mn−m is an invertible monomial
matrix.

To see that condition (ii) cannot hold, consider A = E1,m+1 + E12 + E23 + · · ·+ Ek,k+1. Then
there is b ∈ F∗ such that f(A) = bE1,m+1+E21+E32+· · ·+Ek+1,k has rank k+1 while rank (A) = k,
which is a contradiction. So, at this point, we have f(X) = X for X = Eij for 1 ≤ i, j ≤ m and
X ∈ {E1r : m < r ≤ n}.

Now, for Eij with i > 1 and j > m, consider A = E1i + E1j + Ei1 + Eij +
∑

s∈S Ess, where S

is a subset of {2, . . . , n} \ {i} with k − 2 elements. Since k = rank (A) = rank (f(A)), we conclude
that f(Eij) = Eij .

By the above discussion, we may further replace f by a map of the form A 7→ Pf(A)Q for some
suitable invertible monomial matrices P ∈ Mm and Q ∈ Mn so that the resulting map satisfies

(1) f(Eij) = Eij for all (i, j) pairs, or (2) m = n and f(Eij) = Eji for all (i, j) pairs.

Assertion 6 There is a field monomorphism τ : F → F such that fij = τ for every (i, j) pair.
First, for any a ∈ F, consider A = aE11 + aE1j + E21 + E2j +

∑
s∈S Ess, where S is a subset of

{3, . . . ,m} with k− 1 elements. Since k = rank (A) = rank (f(A)), we have f11(a) = f1j(a). Hence
f1j = f11 for j = 2, . . . , n. Similarly, we can show that fii = fij for any j ∈ {1, . . . , n} \ {i}.
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Next, for any a ∈ F consider A = aE11 + aEj1 + E21 + Ej2 +
∑

s∈S Ess, where S is a subset of
{3, . . . ,m} with k− 1 elements. Since k = rank (A) = rank (f(A)), we have f11(a) = fj1(a). Hence
fj1 = f11 for j = 2, . . . ,m. Similarly, we can show that fii = fri for any r ∈ {1, . . . ,m} \ {i}.

By the arguments in the above two paragraphs, we conclude that there is τ : F → F such that
fij = τ for all (i, j) pairs.

Suppose τ(a) = τ(b) for some a 6= b in F. Let A = E11 + aE12 + E21 + bE22 +
∑k+1

j=3 Ejj .

Then rank (A) = k > k − 1 = rank (f(A)), which is a contradiction. So, τ is injective. Now,

let A = E11 + aE12 + bE21 + abE22 +
∑k+1

j=3 Ejj . Then k = rank (A) = rank (f(A)) implies that

τ(ab) = τ(a)τ(b) for all a, b ∈ F.
Finally, let

A = E11 + aE12 + (a + b)E13 + E21 + bE23 + E32 + E33 +
∑
s∈S

Ess

for some subset S of {4, . . . , n} with k − 2 elements. Then k = rank (A) = rank (f(A)). Since

f(A) = E11 + τ(a)E12 + τ(a + b)E13 + E21 + τ(b)E23 + E32 + E33 +
∑
s∈S

Ess,

this implies τ(a + b)− τ(b) = τ(a), or equivalently τ(a + b) = τ(a) + τ(b). Thus, τ is also additive,
and the result follows. 2

Corollary 3.4 Let 2 < k < min{m,n} and f : Mm,n → Mm,n.
(1) If f is Schur multiplicative, then (b) and (c) in Theorem 3.3 are equivalent with the addi-

tional requirement in condition (c) that P and Q are permutation matrices.
(2) If f is Schur multiplicative and has the form (†) (or satisfies any of the conditions (A1) –

(A3) in Theorem 2.1), then conditions (a) – (c) in Theorem 3.3 are equivalent with the additional
requirement in condition (c) that P and Q are permutation matrices.

Proof. Suppose f is Schur multiplicative. Clearly, (c) ⇒ (b) ⇒ (a).
If (b) holds, then condition (A1) in Theorem 2.1 holds, and hence f has the form (†). We can

then apply Theorem 3.3 to get condition (c) for some invertible monomial matrices P and Q. Now,
if X ◦ X = X, i.e., X has entries in {0, 1}, then so is f(X). Thus, we see that P and Q can be
chosen to be permutation matrices in condition (c).

If f is Schur multiplicative and has the form (†), we can apply Theorem 3.3 and the argument
in the last paragraph to get the conclusion. 2

The conclusion in Corollary 3.4 (2) is not valid if we just assume that f is Schur multiplicative
and f(0m,n) = 0m,n. For instance, one can define f by f(0m,n) = 0m,n and f(A) = B for all other
A, where B ∈ Mm,n is any rank k satisfying B ◦ B = B. Then f maps all rank k matrices to a
rank k matrix, but f does not have the structure described in Theorem 3.3 (c).

One can examine the proof and see that condition (b) in Theorem 3.3 (and also Corollary 3.4
can be replaced by any one of the following conditions.

(b.1) f(A) has rank at most k whenever A ∈ Mm,n has rank k.
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(b.2) f(A) has rank at most k whenever A ∈ Mm,n has rank at most k.

In particular, the conclusion holds for those functions which map singular matrices to singular
matrices when m = n. This can be viewed as an analog of the linear preserver result of Dieudonné
[4].

Next, we consider preservers of full rank matrices.

Theorem 3.5 Suppose 2 ≤ m ≤ n and f : Mm,n → Mm,n has the form (†). If f maps rank m

matrices to rank m matrices, then there exist invertible monomial matrices P ∈ Mm and Q ∈ Mn,
and maps fij : F → F such that fij(F∗) ⊆ F∗ for all (i, j) pairs and one of the following holds:

(a) f has the form [aij ] 7→ P [fij(aij)]Q.

(b) m = n and f has the form [aij ] 7→ P [fij(aij)]tQ.

If one of the fij is surjective, then there is an injective multiplicative map τ : F → F such that
fij = τ for all (i, j) pairs; furthermore, if m ≥ 3, then τ is a field automorphism.

Proof. We divide the proof into several assertions.
Assertion 1 There are invertible monomial matrices P ∈ Mm and Q ∈ Mn such that f(X) = PXQ

for X ∈ {Ejj : 1 ≤ j ≤ m}.
To prove the assertion, let X =

∑m
j=1 Ejj . Since rank (f(X)) = rank (X) = m, we see that

f(X) has nonzero entries on m distinct rows and columns. So, there are permutation matrices
P ∈ Mm and Q ∈ Mn such that f(Ejj) = Pfjj(1)EjjQ for j = 1, . . . ,m. We may replace f by the
map A 7→ P−1f(A)Q−1 for suitable invertible monomial matrices P ∈ Mm and Q ∈ Mn so that
f(Ejj) = Ejj for j = 1, . . . ,m.

Assertion 2 Assume m < n. There are invertible monomial matrices P ∈ Mm and Q ∈ Mn

such that f(X) = PXQ for X ∈ {Ejj : 1 ≤ j ≤ m} ∪ {E1j : m < j ≤ n}. Moreover, f(Eij) =
fij(1)PEijQ.

By Assertion 1, we may assume that f(Ejj) = Ejj for j = 1, . . . ,m. For any r > m, consider
X = E1r +

∑m
s=2 Ess. Assume that f(E1r) = f1r(1)Epq. Since rank (f(X)) = rank (X) = m and

f(Ejj) = Ejj , it is impossible to have p > 1 or q ≤ m. It follows that f(E1r) = f1r(1)E1q for some
q > m. Thus, we may further modify f by a map of the form A 7→ f(A)(Im ⊕ Q) for a suitable
invertible monomial matrix Q ∈ Mn−m so that

f(X) = X for X ∈ {Ejj : 1 ≤ j ≤ m} ∪ {E1j : m < j ≤ n}. (3.1)

If n = m+1, consider X = Ei,m+1 +
∑

j 6=i Ejj . Since rank (f(X)) = rank (X) = m, we see that
f(Ei,m+1) = fi,m+1(1)Ei,m+1 for all i > 1. Now, suppose n > m + 1. Consider f(E2j) for j > m.
Let X = E1r + E2j +

∑m
s=3 Ess with r > m and r 6= j. Assume that f(E2j) = f2j(1)Epq. Since

rank (f(X)) = rank (X) = m and and condition (3.1) holds, we see that p = 2, q 6= r, and q > m.
Because the argument holds for all r > m with r 6= j, we conclude that f(E2j) = f2j(1)E2j . Using
the same argument, we can prove that f(Eij) = fij(1)Eij for all i > 1 and j > m as asserted.

Next, we turn to f(Eij) for 1 < i ≤ m, 1 ≤ j ≤ m with i 6= j. The result is clear if
m = 2. Assume m ≥ 3 and f(Eij) = fij(1)Epq. Let X = Eij + Ej,m+1 +

∑
s∈S Ess, where

S = {1, 2, ...m} \ {i, j}. By the conclusion above f(Ej,m+1) = fj,m+1(1)Ej,m+1. Since m =
rank (f(X)) = rank (X) and (3.1) holds, we see that (p, q) = (i, j).
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Assertion 3 Assume that m = n. Then there are invertible monomial matrices P,Q ∈ Mn such
that (i) f(Eij) = Pfij(1)EijQ for all (i, j) pairs, or (ii) f(Eij) = Pfij(1)EjiQ for all (i, j) pairs.

By Assertion 1, we may assume that f(Ejj) = Ejj for all j. Consider X = Eij + Eji +∑
s/∈{i,j} Ess. Since m = rank (X) = rank (f(X)), we see that either

(i)’ f(Eij) = fij(1)Eij and f(Eji) = fji(1)Eji, or
(ii)’ f(Eij) = fij(1)Eji and f(Eji) = fji(1)Eij .

Assume f(E12) = f12(1)E12; otherwise replace f by the map A 7→ f(A)t. We will prove that
conclusion (i) holds. To this end, let X = E12 +E2j +Ej1 +

∑
s∈S Ess, where S = {3, . . . ,m} \ {j}.

Then m = rank (A) = rank (f(A)). If f(Ej1) = fj1(1)E1j , then f(A) will only have m− 1 nonzero
columns so rank (f(A)) < m, which is a contradiction. Thus, condition (i) holds for (i, j) pairs with
i = 1 or j = 1. Now, for X = Eij with 1 /∈ {i, j} and i 6= j, consider X = E1i+Eij +Ej1+

∑
s∈S Ess,

where S = {2, . . . ,m} \ {i, j} with m− 3 elements. Since m = rank (A) = rank (f(A)), we see that
condition (i) holds.

By Assertions 2 and 3, we get the first conclusion of the theorem, namely, f has the form
[aij ] 7→ P [fij(aij)]Q or m = n and f has the form [aij ] 7→ P [fij(aij)]tQ, We finish the proof by
establishing the following.

Assertion 4 Suppose there is (p, q) such that fpq is surjective. Then fij = fpq for each (i, j) pair,
and fpq is injective multiplicative. Furthermore, if m ≥ 3 then fpq is a field isomorphism.

Assume condition (a) holds. (If (b) holds, replace f by the map A 7→ f(A)t and apply a similar
argument.) We may further assume that P = Im and Q = In in condition (a); otherwise, replace f

by the map A 7→ P−1f(A)Q−1. Moreover, we assume that (p, q) = (1, 1), i.e., f11 is a surjective map.
Otherwise, we may find a pair of permutation matrices R ∈ Mm and S ∈ Mn such that RE11S =
Epq, and replace the map f by the map A 7→ Rtf(RAS)St. Furthermore, we may replace f by the
map A 7→ f(A)/f22(1) and assume that f22(1) = 1. Let D1 = diag (f12(1), 1, f32(1), . . . , fm2(1))
and D2 = diag (f21(1), 1, f23(1), . . . , f2n(1)). We may replace f by the map A 7→ D−1

1 f(A)D−1
2 and

assume that
f(X) = X for X ∈ {Ei2 : 1 ≤ i ≤ m} ∪ {E2j : 1 ≤ j ≤ n}.

We claim that fi1 = f11 for all i > 1. To see this, let a ∈ F and let {s3, . . . , sm} = {1, . . . ,m}\{1, i}.
If b 6= a, then Y = bE11 +aEi1 +E21 +Ei2 +

∑m
k=3 Esk,k has rank m and so has f(Y ) = f11(b)E11 +

fi1(a)Ei1 + E21 + Ei2 +
∑m

k=3 fsk,k(1)Esk,k. It follows that f11(b) 6= fi1(a) whenever b 6= a. Since
f11 is surjective, fi1(a) is in the range of f11. Thus, f11(a) = fi1(a).

Next, we show that f1j = f11 for all j > 1. To see this, let a ∈ F and let {s3, . . . , sm} be an
m−2 element subset of {1, . . . , n}\{1, j}. If b 6= a, then Y = bE11 +aE1j +E21 +E2j +

∑m
j=3 Ej,sj

has rank m and so has f(Y ) = f11(b)E11 + f1j(a)E1j + E21 + E2j +
∑m

k=3 fk,sk
(1)Ek,sk

. It follows
that f11(b) 6= f1j(a) whenever b 6= a. Since f11 is surjective, f1j(a) is in the range of f11. Thus,
f11(a) = f1j(a).

Now, consider fij with i, j > 1. Let a ∈ F, {r3, . . . , rm} = {1, . . . ,m} \ {1, i}, and {s3, . . . , sm}
be an m − 2 element subset of {1, . . . , n} \ {1, j}. If b 6= a, then Z = bE11 + bEi1 + bE1j +
aEij +

∑m
k=3 Erk,sk

has rank m and so has f(Z) = f11(b)E11 + f11(b)Ei1 + f11(b)E1j + fij(a)Eij +∑m
k=3 frk,sk

(1)Erk,sk
. It follows that

f11(b) 6= fij(a) whenever b 6= a. (3.2)
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Since f11 is surjective, fij(a) is in the range of f11. Thus, f11(a) = fij(a).
At this point, we may assume that fij = f11 = τ for all (i, j) pairs, with τ(0) = 0 and

τ(1) = f11(1) = 1.
Now, we show that τ is multiplicative. Let a, b ∈ F. If a = 0 or b = 0, then τ(ab) = 0 = τ(a)τ(b).

If ab 6= 0, then for any c 6= ab, the matrix X = cE11 + aE12 + bE21 +
∑m

j=2 Ejj has rank m,
and so is f(X) = τ(c)E11 + τ(a)E12 + τ(b)E21 +

∑n
j=2 Ejj . Thus, τ(c) 6= τ(a)τ(b). Since τ is

surjective, τ(a)τ(b) is in the range of τ . Thus, τ(ab) = τ(a)τ(b). Note that for b 6= a, we have
τ(b) = f11(b) 6= fij(a) = τ(a) by (3.2). Thus, τ is injective.

Finally, suppose m ≥ 3. Let a, b ∈ F. If a = 0 or b = 0, then τ(a + b) = τ(a) + τ(b). Suppose
ab 6= 0. Let c 6= a + b. X = E11 + aE12 + cE13 + E21 + bE23 + E32 + E33 +

∑m
s=4 Ess. Then X has

rank m and so is f(X) = E11 + τ(a)E12 + τ(c)E13 + E21 + τ(b)E23 + E32 + E33 +
∑m

s=4 Ess. Thus,
τ(c) − τ(b) 6= τ(a), or equivalently τ(c) 6= τ(a) + τ(b). Since τ is surjective, τ(a) + τ(b) is in the
range of τ . Thus, τ(a + b) = τ(a) + τ(b). 2

Corollary 3.6 Suppose f is Schur multiplicative and has the form (†). Then the conclusion of
Theorem 3.5 holds with the additional restriction that fij is multiplicative for each (i, j) pair, P

and Q are permutation matrices.

Clearly, the conclusion of Corollary 3.6 holds if f is Schur multiplicative and satisfies any of
the conditions (A1) – (A3) in Theorem 2.1. However, the conclusion is no longer valid if we just
assume that f is Schur multiplicative. For instance, one can define f such that f(0m,n) = 0m,n and
f(A) = B for all other A, where B is any rank m matrix satisfying B ◦B = B.

4 Preservers of determinant and other functions of eigenvalues

Linear maps, additive maps and multiplicative maps of determinants and functions of eigenvalues
have been studied by researchers; see [5, 6, 16]. In this section, we study Schur multiplicative maps
preserving determinant and related functions. In most cases, we obtain results for maps of the form
(†), and then use them to study Schur multiplicative maps. We begin with an analog of the result
of Frobenius [6] on linear preservers of the determinant function.

Theorem 4.1 Suppose f : Mn → Mn has the form (†). Then f satisfies det(f(A)) = det(A) for
all A if and only if there are monomial matrices P and Q satisfying det(PQ) = 1 such that f has
the form

A 7→ PAQ or A 7→ PAtQ.

Proof. The (⇐) is clear. We consider the converse. Note that f(In) = P is a monomial matrix
with determinant 1. Replacing f by the mapping A 7→ P−1f(A), we may assume that f(In) = In.
Furthermore, we may replace f by a map of the form A 7→ Qtf(A)Q for a suitable permutation
matrix Q, so that f(Ejj) = Ejj for j = 1, . . . , n. Now, for any a ∈ F,

a = det(In + (a− 1)Ejj) = det(f(In + (a− 1)Ejj)) = fjj(a).

So, fjj(a) = a for all a ∈ F.
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Next, we show that f(Eij + Eji) = γijEij + γ−1
ij Eji for all 1 ≤ i < j ≤ n. For simplicity,

assume that (i, j) = (1, 2). Then −1 = det(X) = det(f(X)) for X = E12 + E21 +
∑n

j=3 Ejj . Thus,

f(E12 + E21) = γ12E12 + γ−1
12 E21. Let D = diag (1, γ12, . . . , γ1n). We may replace f by the map

A 7→ D−1f(A)D, and assume that f(X) = X for all X = E1j + Ej1 with 2 ≤ j ≤ n.
Now, for Xa = aE12 + E21 +

∑n
j=3 Ejj , we have −a = det(Xa) = det(f(Xa)). We see that one

of the following holds.

(i) f(E12) = E12, f(E21) = E21, and f12(a) = a for all a ∈ F, or
(ii) f(E12) = E21, f(E21) = E12, and f21(a) = a for all a ∈ F.

We may assume that (i) holds. Otherwise, replace f by the map A 7→ f(A)t.
We are done if n = 2. Assume that n ≥ 3. For j ≥ 3, let S = {3, . . . , n} \ {j}, and Xj =

E12 + E1j + E2j + Ej1 + Ej2 +
∑

s∈S Ess. Then Xj has determinant 1 and so does f(Xj) =

E12 + E1j + γ2jE2j + Ej1 + γ−1
2j Ej2 +

∑
s∈S Ess. It follows that γ2j = 1. Next, note that Xa =

E12 + E1j + aE2j + Ej1 + Ej2 +
∑

s∈S Ess has determinant a and so does f(Xa). We conclude that
f(aE2j) = aE2j and f(Ej2) = Ej2. Since det(f(Ya)) = det(Ya) for Ya = E21 + E1j + E2j + Ej1 +
aEj2 +

∑
s∈S Ess, we see that f(aEj2) = aEj2. Now, note that Za = aE1j + E21 + Ej2 +

∑
s∈S Ess

has determinant a and so does f(Za). We conclude that f(aE1j) = aE1j and f(Ej1) = Ej1.
Furthermore, Ua = aEj1 + E12 + E2j +

∑
s∈S Ess has determinant a and so does f(Ua). We

conclude that f(aEj1) = aEj1.
We are done if n ≤ 3. Otherwise, consider j ≥ 4 and S = {1, 4, . . . , n} \ {j}. Let Xa =

E23 + aE3j + Ej2 +
∑

s∈S Ejj . Using the fact that a = det(Xa) = det(f(Xa)), we conclude that
f(aE3j) = aE3j . Using the matrix Ya = E32 +aEj3 +E2j +

∑
s∈S Ejj , we see that f(aEj3) = aEj3.

We can repeat the above argument until we conclude that f(aEij) = aEij for all (i, j) pairs. 2

If f is Schur multiplicative of the form (†), then one easily show that conclusion of Theorem
4.1 holds with the additional restriction that P and Q are permutation matrices. In the following,
we show that one can obtain the same conclusion for Schur multiplicative maps f : Mn → Mn such
that f(0n) = 0n and det(f(A)) = det(A) for all A ∈ Mn, if n ≥ 3. For n = 2, one can define f by(

a b
c d

)
7→

(
a bc
1 d

)
.

Then f will be Schur multiplicative and preserves determinant. [In fact, it preserves all eigenvalues.]

Theorem 4.2 Suppose n ≥ 3 and f : Mn → Mn is Schur multiplicative such that f(0n) = 0n and
det(f(A)) = det(A) for all A ∈ Mn. Then there are permutation matrices P,Q ∈ Mn such that f
has the form

A 7→ PAQ or A 7→ PAtQ.

Proof. Suppose f satisfy the hypothesis of the theorem. We will show that f also satisfies
condition (A1) of Theorem 2.1. So, f has the form (†), and we can apply Theorem 4.1 to get the
desired conclusion. We divide our proof into several assertions.

Assertion 1 The function f maps the set Sn of permutation matrices back to itself bijectively.
Suppose R ∈ Sn. Let S = E12 + E23 + . . . + En,n−1 + En1 be the basic circulant, and let

T = {R,RS,RS2, . . . RSn−1). For any two distinct X, Y ∈ T ,
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(1) X ◦X = X implies f(X) ◦ f(X) = f(X) so that all entries of f(X) belongs to {0, 1};

(2) X ◦ Y = 0n implies f(X) ◦ f(Y ) = f(X ◦ Y ) = f(0n) = 0n so that the nonzero entries of
f(X) must be disjoint from the nonzero entries of f(Y ).

(3) ±1 = det(X) = det(f(X)) so that f(X) has at least n nonzero entries on distinct rows and
columns.

Consequently, f(X) must have exactly n nonzero entries, and therefore each f(X) is a permu-
tation matrix. In particular f(R) is a permutation matrix. For two distinct permutation matrices
R1, R2, the condition f(R1) = f(R2) implies that 1 = det(f(R1) ◦ f(R2)) = det(R1 ◦ R2) = 0, a
contradiction. Therefore f(Sn) = Sn.

Assertion 2 Two matrices R1, R2 ∈ Sn satisfy R1 ◦R2 = 0n if and only if f(R1) ◦ f(R2) = 0n.
Recall that a permutation matrix is a derangement if none all its diagonal entries are zero, and

there is a fixed number, say, dn, for n×n derangements by basic combinatorial theory. Now consider
N (R) = {X : X ∈ Sn, R ◦X = 0n} = {X : RXt is a derangement}. Then N (R) has dn elements
and so has N (f(R)). For X ∈ N (R), we have 0n = R ◦X, so that 0n = f(R ◦X) = f(R) ◦ f(X),
and then f(X) ∈ N (f(R)). So f(N (R)) ⊆ N (f(R)). Since each set has dn elements, the sets must
be equal. Then for any permutation matrix Z, Z /∈ N (R) if and only if f(Z) /∈ N (f(R)). So for
any permutations R1, R2, we have R1 ◦R2 = 0n if and only if f(R1) ◦ f(R2) = 0n.

Assertion 3 The function f satisfies condition (A1) in Theorem 3.1.
Note that for n ≥ 3, each Eij can be written as Eij = R1 ◦R2 for a pair of permutations R1, R2.

Therefore f(Eij) = f(R1) ◦ f(R2) 6= 0n. So f satisfies (A1), and by Theorem 2.1, f is of the form
(†), so we can apply Theorem 4.1 and conclude that f has the asserted form. 2

We believe that in the theorem one may even remove the assumption that f(0n) = 0n to get
the same conclusion. It would be nice to prove or disprove this.

If F is algebraically closed, then det(A) is the product of the eigenvalues of A. Researchers
have studied linear preservers of other elementary symmetric functions of the eigenvalues; see
[1, 9, 12, 14]. Denote by Ek(A) the kth elementary symmetric function of the eigenvalues of
A ∈ Mn. Then En(A) = det(A), and Ek(A) equals the sum of the k × k principal minors of
A. Defining Ek(A) as the sum of the k × k minors of A, we can study Ek(A) even if F is not
algebraically closed. We have the following result.

Theorem 4.3 Suppose f : Mn → Mn has the form (†) and 3 ≤ k < n. Then Ek(A) = Ek(f(A))
for all A if and only if there is an invertible monomial matrix P and a scalar γ ∈ F satisfying
γk = 1 such that f has the form

A 7→ γPAP−1 or A 7→ γPAtP−1.

If f is Schur multiplicative of the form (†), then the above conclusion holds with the additional
restriction that the matrix P is a permutation matrix and µ = 1.

Proof. The implication (⇐) is clear. For the converse, consider any k element subset S of
{1, . . . , n}, and X =

∑
j∈S Ejj . Since 1 = Ek(X) = Ek(f(X)) we see that f(X) is the sum of k
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nonzero matrices in {γEjj : 1 ≤ j ≤ n, γ ∈ F} with distinct j. Thus, there exists a permutation
matrix P ∈ Mn such that f(Ejj) = γjPEjjP

t for j = 1, . . . , n. Since

1 = Ek(X) = Ek(f(X)) =
∏
s∈S

γs

for any k element subset S of {1, . . . , n}, we see that γ1 = · · · = γn = γ such that γk = 1.
Replace f by the map A 7→ P tf(A)P/γ so that we may assume that f(Ejj) = Ejj for j =

1, . . . , n. Now, for any a ∈ F,

a = Ek

aE11 +
k∑

j=2

Ejj

 = Ek

f

aE11 +
k∑

j=2

Ejj

 = f11(a).

So, f11(x) = x for all x ∈ F. Similarly, we can show that fjj(x) = x for all x ∈ F.

Next, we show that f(Eij + Eji) = γijEij + γ−1
ij Eji for all (i, j) pairs. For simplicity, assume

that (i, j) = (1, 2). For any subset S of {3, . . . , n} with k− 2 elements, consider XS = E12 + E21 +∑
j∈S Ejj . We have −1 = Ek(XS) = Ek(f(XS)). Thus, f(E12 + E21) = γ12Epq + γ21Ers satisfies

{p, q, r, s} ∩ S = ∅. As this is true for all subsets S of {3, . . . , n} with k − 2 elements, we conclude

that f(E12+E21) = γ12E12+γ21E21. Since -1 = Ek(X) = Ek(f(X)) for X = E12+E21+
∑k

j=3 Ejj ,
we see that γ12γ21 = 1.

Let D = diag (1, γ12, γ13, . . . , γ1n). Replace f by the map A 7→ Df(A)D−1 so that we can
assume that f(X) = X for X ∈ {Ejj : 1 ≤ j ≤ n} ∪ {E1j + Ej1 : 2 ≤ j ≤ n}. Now, consider

Xa = aE12 + E21 +
∑k

j=3 Ejj with a ∈ F. Since Ek(Xa) = Ek(f(Xa)), one of the following holds.

(i) f(E12) = E12, f(E21) = E21, and f12(a) = a for all a ∈ F, or
(ii) f(E12) = E21, f(E21) = E12, and f12(a) = a for all a ∈ F.

We may assume that (i) holds. Otherwise, replace f by the mapping A 7→ f(A)t.
For j ≥ 3, let S be an k − 3 element subset of {3, . . . , n} \ {j}, and Xj = E12 + E1j + E2j +

Ej1 + Ej2 +
∑

s∈S Ess. Then 1 = Ek(Xj) = Ek(f(Xj)) where f(Xj) = E12 + E1j + γ2jE2j + Ej1 +

γ−1
2j Ej2 +

∑
s∈S Ess. It follows that γ2j = 1. Next, note that

a = Ek(Xa) = Ek(f(Xa)) for Xa = E12 + E1j + aE2j + Ej1 + Ej2 +
∑
s∈S

Ess.

We conclude that f(aE2j) = aE2j and f(Ej2) = Ej2. It follows that f2j(a) = a. Since

a = Ek(f(Ya)) = Ek(Ya) for Ya = E21 + E1j + E2j + Ej1 + aEj2 +
∑
s∈S

Ess,

we see that f(aEj2) = aEj2. Now, note that

a = Ek(Za) = Ek(f(Za)) for Za = aE1j + E21 + Ej2 +
∑
s∈S

Ess.

We conclude that f(aE1j) = aE1j and f(Ej1) = Ej1. Furthermore,

a = Ek(Ua) = Ek(f(Ua)) for Ua = aEj1 + E12 + E2j +
∑
s∈S

Ess.

14



We conclude that f(aEj1) = aEj1.
We are done if n ≤ 3. Otherwise, consider j ≥ 4 and let S be a k − 3 element subset of

{1, 4, . . . , n} \ {j}. Note that

a = Ek(Xa) = Ek(f(Xa)) for Xa = E23 + aE3j + Ej2 +
∑
s∈S

Ess.

We conclude that f(aE3j) = aE3j . Next note that

a = Ek(Ya) = Ek(f(Ya)) for Ya = E32 + aEj3 + E2j +
∑
s∈S

Ess,

We conclude that f(aEj3) = aEj3.
We can repeat the above argument until we conclude that f(aEij) = aEij for all (i, j) pairs.
The proof for Schur multiplicative maps satisfying (A1) is similar and simpler. 2

Note that E1(A) is the trace function. It is easy to prove that a map f : Mn → Mn has the
form (†) and satisfies E1(A) = E1(f(A)) for all A ∈ Mn if and only if {f(Ejj) : 1 ≤ j ≤ n} =
{Ejj : 1 ≤ j ≤ n} and, for each j ∈ {1, . . . , n} we have fjj(x) = x for all x ∈ F. Moreover, a
Schur multiplicative map f : Mn → Mn satisfying (A1) also satisfies E1(A) = E1(f(A)) for all
A ∈ Mn if and only if f has the form described in Theorem 2.1 with the additional condition that
{f(Ejj) : 1 ≤ j ≤ n} = {Ejj : 1 ≤ j ≤ n} and, for each j ∈ {1, . . . , n} we have fjj(x) = x for all
x ∈ F.

For E2(A), there are a lot of linear preservers; see [9, 14]. In our case, we have the following.

Theorem 4.4 Suppose 2 < n and f : Mn → Mn has the form (†). Then E2(A) = E2(f(A)) if and
only if

(a) there is µ = ±1 such that µfjj is the identity map on F for all j with

{f(Ejj) : 1 ≤ j ≤ n} = {µEjj : 1 ≤ j ≤ n}, and

(b) fij(a)fji(b) = ab for any a, b ∈ F with

{f(Eij + Eji) : 1 ≤ i < j ≤ n} = {Eij + Eji : 1 ≤ i < j ≤ n}.

If f is a Schur multiplicative map of the form (†), then the above conclusion holds with the additional
restriction that fij is multiplicative in condition (b), and µ = 1 in condition (a).

Proof. Note that for A = (aij), we have E2(A) = E2(a11, . . . , ann) −
∑

1≤i<j≤n aijaji. By this
observation, the implication (⇐) follows.

For the converse, note that a = E2(aEii + Ejj) = E2(f(aEii + Ejj)) for any a ∈ F and i 6= j.
We see that {f(Ejj) : 1 ≤ j ≤ n} = {Ejj : 1 ≤ j ≤ n} and there is µ = ±1 so that µfjj is the
identity map on F for each j ∈ {1, . . . , n}.

Now, −ab = E2(aEij + bEji) = E2(f(aEij + bEji)) = E2(fij(a)Epq + fji(b)Ers) for some
(p, q), (r, s) pairs with p 6= q and r 6= s. We see that (p, q) = (s, r) and fij(a)fji(b) = ab for all
x ∈ F. The result follows.

One can readily verify the last assertion concerning Schur multiplicative maps. 2
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By Theorem 4.3, one can easily determine the structures of eigenvalue preservers on Mn with
n ≥ 4. Here we show that they have the same structure as the preservers of the spectrum (not
counting multiplicities of the eigenvalues) of matrices. Note that if F is not algebraically closed,
A ∈ Mn may not have eigenvalues in F. In such case, we may assume that the spectrum of A is
the empty set.

Theorem 4.5 Let Γ(A) denote the set of eigenvalues (counting multiplicities) or the spectrum of
A ∈ Mn. Suppose f : Mn → Mn satisfies (†). Then f satisfies Γ(f(A)) = Γ(A) for all A ∈ Mn if
and only if there is an invertible monomial matrix Q such that f has the form

A 7→ Q−1AQ or A 7→ Q−1AtQ.

If f is a Schur multiplicative map satisfying f(0n) = 0n, then the above conclusion holds with the
additional restriction that Q is a permutation matrix.

Proof. The implication (⇐) is clear. We focus on the converse. If f preserves the set of
eigenvalues, it will preserve the spectrum. Suppose f preserves the spectrum. We will show that f
has the the asserted form.

Let Spec (A) denote the spectrum of A ∈ Mn. Then Spec (Eii) = {1, 0}. By Theorem 2.1,
f(Eii) = Ejk. Since f preserves the spectrum, we see that j = k. Thus f(Eii) = Ejj , and we
can assume that all f(Eii) = Eii by replacing the mapping f with A → Qf(A)Qt for a suitable
permutation matrix Q. For any a in the field consider aEii with Spec (aEii) = {a, 0}. We have
f(aEii) = fii(a)Eii with Spec (fii(a)Eii) = {fii(a), 0}, and therefore we conclude that fii(a) = a.

Now for X = E12+E21+E11+E22 we have Spec (X) = {2, 0}. Since we have already concluded
that the diagonal entries map to themselves, we see that f(E12 + E21) = µ12E12 + µ−1

12 E21. Using

a similar argument, we can prove that f(Eij + Eji) = µijEij + µ−1
ij Eji with µij ∈ F∗ for each (i, j)

pair with i < j. Let D = diag (1, µ12, . . . , µ1n). Replace f by the map A 7→ Df(A)D−1 so that we
have f(X) = X for X ∈ {Ejj : 1 ≤ j ≤ n} ∪ {E1j + Ej1 : 2 ≤ j ≤ n}. We can then consider two
cases:

(i) f(E12) = E12, f(E21) = E21, or (ii) f(E12) = E21, f(E21) = E12

We can assume (i) holds; otherwise, replace f with the mapping A → f(A)t. Observe that
Spec (Xa) = {1 + a, 1, 0} for Xa = E11 + aE12 + E21 + aE22 +

∑n
i=3 Eii. If f12(a) 6= a, then

f(Xa) is non-singular, and 0 6∈ Spec (f(Xa)), which is a contradiction. Therefore f12(a) = a.
Note that f(E1j) = E1j or Ej1 for j > 2. For Xj = E12 + E1j + Ej2 + E2j , Spec (Xj) =

{0,−1, 1} = Spec (f(Xj)). If f(E1j) = Ej1, then Spec (f(Xj)) is a subset of the set of zeros
of the polynomial z(z3 − z − 1), which contains neither 1 nor −1. Therefore f(E1j) = E1j and
f(Ej1) = Ej1. For any a ∈ F, 0 ∈ Spec (Ya) = Spec (f(Ya)) for

Ya = aE11 + Ej1 + aE1j +
n∑

i=2

Eii.

Thus, f(aE1j) = aE1j . Similarly, f(aEj1) = aEj1 for all a ∈ F.
We are done if n = 2. Assume n ≥ 3. For j ≥ 3. Since 0 /∈ Spec (f(Xj)) = Spec (Xj)

for Xj = E12 + E2j + Ej1 +
∑

s∈S Ess with S = {1, . . . , n} \ {1, 2, j}, we see that f(E2j) = E2j ,
and thus f(Ej2) = Ej2. Assume n ≥ 4. For j ≥ 4. Since 0 /∈ Spec (f(Xj)) = Spec (Xj) for
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Xj = E23 + E3j + Ej2 +
∑

s∈S Ess with S = {1, . . . , n} \ {2, 3, j}, we see that f(E3j) = E3j , and
thus f(Ej3) = Ej3. We can repeat the argument until we conclude that f(Eij) = Eij for each (i, j)
pair with i 6= j. Moreover, for any (i, j) pair with i 6= j, since 0 ∈ Spec (f(Y )) = Spec (Y ) for
Y = aEij + Eji + aEii +

∑
s 6=i Ess, we see that f(aEij) = aEij for any a ∈ F. Thus, f has the

asserted form.
Next, we consider Schur multiplicative maps satisfying f(0n) = 0n. Consider T = T1 ∪ T2 such

that T1 = {Ejj : 1 ≤ j ≤ n} and T2 = {Eij + Eji : 1 ≤ i, j ≤ n}. Then f(X) = f(X ◦ X) =
f(X) ◦ f(X), {1, 0} = Spec (X) = Spec (f(X)) for X ∈ T1 and {1,−1} ⊆ Spec (X) = Spec (f(X))
for X ∈ T2. Thus, f(X) is nonzero with entries in {0, 1}. For any X 6= Y in T , 0 = f(X ◦ Y ) =
f(X)◦f(Y ), i.e., f(X) and f(Y ) have nonzero entries in disjoint positions. Clearly, it is impossible
to have more than n(n− 1)/2 matrices with more than one nonzero entries in f(T ). Thus, at least
n matrices in T have exactly one nonzero entry. Since none of these matrices have spectrum equal
to {0}, we see that there are exactly n such matrices, which are the matrices in T1. As a result, we
see that f(T1) = T1. Consequently, f(X) has at least two nonzero entries for each X ∈ T . Since
the nonzero entries can only lie in the off-diagonal positions, we see that f(X) has exactly two
nonzero entries for each X ∈ T2. Since {1,−1} ⊆ Spec (X) = Spec (f(X)), we see that f(X) ∈ T2.
Hence f(T2) = T2.

We may assume that f(X) = X for all X ∈ T1. Otherwise, we may replace f by a map
of the form A 7→ Pf(A)P t for a suitable permutation P . Note that for any 1 ≤ j < k ≤ n,
if X = Ejj + Ejk + Ekj + Ekk then X ◦ X = X and 2 ∈ Spec (X); moreover, Y ∈ T satisfies
{1,−1} ⊆ Spec (X ◦ Y ) if and only if Y = Ejk + Ekj . It follows that f(X) ◦ f(X) = f(X) and
2 ∈ Spec (f(X)); moreover, Z ∈ f(T ) satisfies {1,−1} ⊆ (f(X)◦Z) if and only if Z = f(Ejk +Ekj).
Hence f(Ejk + Ekj) = Ejk + Ekj . As a result, we have f(X) = X for every X ∈ T .

Next, we show that f(Ejk) ∈ {Ejk, Ekj} for any 1 ≤ j < k ≤ n. For simplicity, we assume
(j, k) = (1, 2). Let X = E12 + E23 + E31. Then Y ∈ T satisfies X ◦ Y = 0 whenever Y /∈
T0 = {E12 + E21, E13 + E31, E23 + E32}. Thus, f(X) ◦ f(Y ) = f(X ◦ Y ) = f(0n) = 0n whenever
Y ∈ T \ T0. Since f(X) = f(X ◦X) = f(X) ◦ f(X) and 1 ∈ Spec (X) = Spec (f(X)), we see that

f(X) ∈ {X, Xt}. Now, for X̂ = E12 + E21, we have E12 = X ◦ X̂, hence f(E12) = f(X) ◦ f(X̂) =

f(X) ◦ X̂ ∈ {E12, E21}.
By the above arguments, we see that f(Eij) 6= 0 for any (i, j) pair. Thus, condition (A1) of

Theorem 2.1 holds. Thus, f has the form (†), and hence satisfies the desired conclusion by the first
part of our proof. 2

Clearly, the conclusions of most of the results in this section are valid if f is Schur multiplicative
and satisfies any of the conditions (A1) – (A3) of Theorem 2.1. If n = 2, the conclusions of the
theorems are not valid if we just assume that f is Schur multiplicative. For example, one may
define f by f(A) = 0 if A is strictly upper or lower triangular, and f(A) = A otherwise. However,
for n ≥ 3, it is unclear whether the conclusions of the theorems hold if we just assume that f is
Schur multiplicative. It would be interesting to prove the results under the weaker assumption, or
give examples showing the the results are not true.
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