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Abstract
Let A and B be Hermitian matrices and let C = A + iB. Inequalities and equalities for

the eigenvalues, singular values of the matrices A, B, and C are discussed. Known results
on inequalities are surveyed, new results on equality cases are proved, and open problems
are mentioned.

1 Introduction

Let Mn denote the set of all n × n complex matrices. For any C ∈ Mn, we can write
C = A + iB, in which A = (C + C∗)/2 and B = i(C∗ − C)/2 are both Hermitian. This is
called the Cartesian decomposition of C. We discuss inequalities and equalities involving the
eigenvalues and singular values of A, B, and C. We survey known results on inequalities,
prove new results on equality cases, and mention some open problems.

Given an X ∈ Mn, let s(X) = (s1(X), . . . , sn(X)) be the vector of singular values of X

with s1(X) ≥ · · · ≥ sn(X), and let λ(X) = (λ1(X), . . . , λn(X)) be a vector of eigenvalues of

X. If X is Hermitian, we assume that λ1(X) ≥ · · · ≥ λn(X).

General references on matrix inequalities are [1, 11, 12, 19]. Some equality cases of

matrix inequalities have been studied in [5, 13, 14, 16]. We use the following notation for

majorization in our discussion [19]. For two real vectors x and y in Rn, if the sum of the m
largest entries of x is not larger than that of y for each m = 1, . . . , n, we write

x ≺w y; (1.1)

if, in addition, the sum of all the entries of x is the same as that of y, we write

x ≺ y. (1.2)

1Dedicated to Professor Ando for his seventieth birthday.
2Research supported by an NSF grant.
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The relation (1.1) is called weak majorization; the relation (1.2) is called majorization. De-

note by x ◦ y the entrywise (Hadamard) product of two vectors. Let x↓ and x↑ denote the

vectors obtained from the real vector x by rearranging its entries in descending and ascending
order, respectively.

For a complex vector z = (z1, . . . , zn) we write |z| = (|z1|, . . . , |zn|), Re z = (z + z̄)/2, and

Im z = i(z̄ − z)/2.
Many of our results are valid for compact operators acting on separable Hilbert spaces.

Also, if the results do not involve complex numbers, they are often valid for real matrices or
operators as well.

The following results, which are of independent interest, are used frequently in our study.

Proposition 1.1 Let A, B, and C = A + B be n × n complex matrices, and let s(A) =

(a1, . . . , an), s(B) = (b1, . . . , bn), and s(C) = (c1, . . . , cn). For every integer k ∈ {1, . . . , n},

k∑
j=1

cj ≤
k∑

j=1

(aj + bj). (1.3)

Equality holds in (1.3) for some k if and only if there exist unitary matrices U and V such
that UAV = A1 ⊕ A2 and UBV = B1 ⊕ B2, where A1 and B1 are positive semi-definite
matrices with eigenvalues a1, . . . , ak and b1, . . . , bk, respectively.

Proof. By the singular value decomposition [11, p. 414], we may assume that C =

diag (c1, . . . , ck) ⊕ C2. Let A = (aij) and B = (bij). By [23, Theorem 1], for every integer

k ∈ {1, . . . , n},

k∑
j=1

cj =
k∑

j=1

(ajj + bjj) =
k∑

j=1

ajj +
k∑

j=1

bjj ≤
k∑

j=1

aj +
k∑

j=1

bj. (1.4)

Equality holds in (1.4) if and only if
∑k

j=1 ajj =
∑k

j=1 aj and
∑k

j=1 bjj =
∑k

j=1 bj. The result

follows from [16, Corollary 3.2].

The inequality (1.3) is the triangle inequality for the Ky Fan k-norms [11, Section 3.4].
The key to the rest of the proof of Proposition 1.1 is the case of equality in Von Neumann’s
celebrated trace inequality [12, Section 3.1, Problem 4].

Proposition 1.2 Let A, B, and C = A + B be n × n Hermitian matrices with s(A) =

(a1, . . . , an), s(B) = (b1, . . . , bn), and s(C) = (c1, . . . , cn). For every integer k ∈ {1, . . . , n},

k∑
j=1

cj ≤
k∑

j=1

(aj + bj). (1.5)

Equality holds in (1.5) for some k if and only if there exists a unitary matrix U such that
U∗AU = A1⊕A2⊕A3 and U∗BU = B1⊕B2⊕B3, where A1 and B1 are positive semi-definite
matrices of the same size, A2 and B2 are negative semi-definite matrices of the same size,
and the k × k matrices A1 ⊕ A2 and B1 ⊕ B2 have singular values a1, . . . , ak and b1, . . . , bk,
respectively.
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Proof. The inequality in (1.5) follows from Proposition 1.1. We need to consider only

the case of equality. (⇐) By direct verification.

(⇒) As C is Hermitian, its singular values are the absolute values of its eigenvalues. Let U

be a unitary matrix U such that U∗CU = diag (γ1, . . . , γn) with γ1 ≥ · · · ≥ γr > 0 ≥ γr+1 ≥
· · · ≥ γk satisfying {|γ1|, . . . , |γk|} = {s1(C), . . . , sk(C)}. Then for D = Ir ⊕ −Ik−r ⊕ In−k

we have DU∗CU = diag (cj1 , . . . , cjk
)⊕ C2, where (j1, . . . , jk) is a permutation of (1, . . . , k).

Proposition 1.1 shows that DU∗AU = A1⊕A2 and DU∗BU = B1⊕B2, where A1 and B1 are
positive semi-definite matrices with eigenvalues a1, . . . , ak and b1, . . . , bk, respectively. Since
D(A1⊕A2) = U∗AU is Hermitian, (Ir⊕−Ik−r)A1 is Hermitian. This means that Ir⊕−Ik−r

commutes with A1; so A1 must be in block diagonal form: A1 = A′⊕A′′, where A′ is an r×r
positive semi-definite matrix and A′′ is a (k − r)× (k − r) negative semi-definite matrix. A
similar argument shows that B1 is also of the same form.

2 Eigenvalues

In this section, we survey some results and problems involving the eigenvalues of the Hermi-
tian matrices A and B, and those of the matrix C = A + iB. The majorization relations in
the following theorem were proved in [7, 2], and the equality cases were treated in [16].

Theorem 2.1 Suppose x, y ∈ Rn and z ∈ Cn.

(a) There exists a C ∈ Mn such that λ(C) = z and λ(C +C∗) = 2x if and only if Re z ≺ x.

(b) There exists a C ∈ Mn such that λ(C) = z and iλ(C∗−C) = 2y if and only if Im z ≺ y.

Furthermore, suppose A, B ∈ Mn are Hermitian, C = A + iB, and 1 ≤ k < n.

(i)
∑k

j=1 Re λj(C) =
∑k

j=1 λj(A) if and only if C is unitarily similar to C1 ⊕ C2, where

C1 ∈ Mk satisfies λ(C1) = (λ1(C), . . . , λk(C)) and λ(C1 + C∗
1) = 2(λ1(A), . . . , λk(A)).

(ii)
∑k

j=1 Im λj(C) =
∑k

j=1 λj(A) if and only if C is unitarily similar to C1 ⊕ C2, where

C1 ∈ Mk satisfies λ(C1) = (λ1(C), . . . , λk(C)) and iλ(C∗
1 −C1) = 2(λ1(B), . . . , λk(B)).

Problem 2.2 Determine necessary and sufficient conditions on x, y ∈ Rn and z ∈ Cn for
the existence of a C = A + iB ∈ Mn with λ(A) = x, λ(B) = y, and λ(C) = z.

Clearly, the conditions
Re z ≺ x and Im z ≺ y (2.1)

are necessary, but they are not sufficient even for 2× 2 matrices.

Example 2.3 Take x = (1, 1), y = (2, 0), and z = (1 + i, 1 + i). If C = A + iB ∈ M2 has

λ(A) = (1, 1) and λ(B) = (2, 0), then A = I2, so C is normal with eigenvalues 1 + 2i and 1.

Here is an additional necessary condition obtained in [15] (see also [20] and [10]).
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Theorem 2.4 Let A, B ∈ Mn be Hermitian and let C = A+iB. Write λ(A) = x, λ(B) = y,

and λ(C) = z. Then

Re (z2
1 , . . . , z

2
n) ≺ (x ◦ x)↓ − (y ◦ y)↑, (2.2)

i.e.,

(
(Re z1)

2 − (Im z1)
2, . . . , (Re zn)2 − (Im zn)2

)
≺
(
λ1(A

2)− λn(B2), . . . , λn(A2)− λ1(B
2)
)
.

For n = 2, (2.1) and (2.2) are necessary and sufficient conditions for the existence of

C = A + iB with λ(A) = x, λ(B) = y, and λ(C) = z. However, they are not sufficient if

n ≥ 3; see [15].

Example 2.5 Let x = (100, 4, 0), y = (4, 0, 0), and z = (100 + 3i, 3 + i, 1). Then x, y, z

satisfy (2.1) and (2.2). Suppose A, B, and C = A + iB ∈ M3 are such that A and B are

Hermitian, λ(A) = x, λ(B) = y, and λ(C) = z. Then there exists a unitary U such that

U∗CU is in upper triangular form with diagonal entries 100 + 3i, 3 + i, 1. Then the (1, 1)

entry of U∗AU is 100, which is its largest eigenvalue. So, U∗AU = [100]⊕A2. Since U∗CU is

upper triangular and 100 + 3i is its (1, 1) entry, it follows that 3 is the (1, 1) entry of U∗BU
and is the only nonzero entry in the first column, which is impossible.

To date, Problem 2.2 is still open for n ≥ 3.

3 Singular Values

In this section, we focus on relations between the singular values of Hermitian matrices A
and B, and those of C = A + iB. For general X, Y ∈ Mn and Z = X + Y , there are index
sets P, Q,R ⊂ {1, . . . , n} of the same size such that

∑
r∈R

sr(Z) ≤
∑
p∈P

sp(X) +
∑
q∈Q

sq(Y ).

One can describe a collection of such index sets in terms of Schubert calculus (or Littlewood-

Richardson rules in combining Young’s diagrams) so that these inequalities completely de-
termine the relations among the singular values of matrices X,Y, Z such that Z = X + Y ;
see the survey [9] on this and several related topics, and see [3] for an exposition of these
ideas at a more elementary level. For simplicity, we focus on some basic inequalities that
are used frequently in applications such as perturbation theory and the theory of norms.
In most of these applications, it suffices to consider the following standard inequalities of
Thompson [24, Theorem 3]:

Whenever 1 ≤ i1 < · · · < im ≤ n and 1 ≤ j1 < · · · < jm ≤ n are such that im + jm−m ≤
n, we have

m∑
r=1

sir+jr−r(Z) ≤
m∑

r=1

sir(X) +
m∑

r=1

sjr(Y ).
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We apply some of these general results to our special case C = A + iB, and analyze the
equality cases. For notation simplicity, throughout this section we assume that

s(C) = (c1, . . . , cn), s(A) = (a1, . . . , an) and s(B) = (b1, . . . , bn)

as in Propositions 1.1 and 1.2. The majorization relations in the following theorem were
proved in [7]. We study the equality cases.

Theorem 3.1 Suppose A, B ∈ Mn are Hermitian and C = A + iB. Then

(a1, . . . , an) ≺w (c1, . . . , cn) and (b1, . . . , bn) ≺w (c1, . . . , cn).

Moreover, for any given k ∈ {1, . . . , n},

(a)
∑k

j=1 aj =
∑k

j=1 cj if and only if C is unitarily similar to DP ⊕ C0, where D ∈ Mk is

a diagonal orthogonal matrix, P ∈ Mk is positive semi-definite, and tr P =
∑k

j=1 cj;

(b)
∑k

j=1 bj =
∑k

j=1 cj if and only if C is unitarily similar to iDP ⊕ C0, where D ∈ Mk is

a diagonal orthogonal matrix, P ∈ Mk is positive semi-definite, and tr P =
∑k

j=1 cj.

Proof. (a) Suppose
∑k

j=1 aj =
∑k

j=1 cj. Let U be a unitary matrix such that

U∗AU = diag (d1, . . . , dk)⊕ A2

with |dj| = aj for j = 1, . . . , k. If U∗CU = (cij) then

k∑
j=1

cj =
k∑

j=1

aj ≤
k∑

j=1

|cjj| ≤
k∑

j=1

cj.

Thus, cjj = dj for all j = 1, . . . , k. By Theorem 3.1 in [16], C = C1 ⊕ C0 with C1 ∈ Mk and

there exists a diagonal orthogonal matrix (signature matrix) D ∈ Mk such that DC1 = P is

positive semi-definite with eigenvalues c1, . . . , ck. Hence C1 = DP with tr P =
∑k

j=1 cj.

Conversely, suppose U is unitary, U∗CU = DP ⊕ C0, D ∈ Mk is a diagonal orthogonal

matrix, and P is positive semi-definite with tr P =
∑k

j=1 cj. If U∗AU = (aij) then

k∑
j=1

cj = tr P =
k∑

j=1

|ajj| ≤
k∑

j=1

aj ≤
k∑

j=1

cj.

The proof of (b) is similar.

Theorem 3.2 Suppose A, B ∈ Mn are Hermitian and C = A + iB. For every integer
k ∈ {1, . . . , n},

k∑
j=1

cj ≤
k∑

j=1

(aj + bj). (3.1)

Equality holds in (3.1) for some integer k if and only if there exists a unitary matrix U such
that one of the following conditions holds:
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(a) U∗CU = diag (α1, . . . , αs) ⊕ diag (iβ1, . . . , iβt) ⊕ 0n−s−t, where k ≥ s + t, and αj and

βj are real numbers satisfying |αj| = aj, |βj| = bj, j = 1, . . . , k.

(b) U∗CU =
(

a1Ik b1Ik

−b1Ik −a1Ik

)
⊕ C ′.

Proof. (⇐) By direct verification.

(⇒) We use induction on n. The result is obvious when n = 1. Assume that n ≥ 2,
and that the result is true for all matrices of size less than n. Suppose A and B are nonzero
n × n Hermitian matrices. By Proposition 1.1, there exist unitary matrices U and V such
that U∗AV = A1 ⊕ A2 and iU∗BV = B1 ⊕ B2, where A1 and B1 are positive semi-definite
matrices with eigenvalues a1, . . . , ak and b1, . . . , bk, respectively. We may further assume that
A1 = diag (a1, . . . , ak). Let ui, vi denote the i-th columns of U and V , respectively. Since
u∗1Av1 = a1, we have 3 cases:

(i) v1 is an eigenvector of A corresponding to the eigenvalue a1 and u1 = v1;

(ii) v1 is an eigenvector of A corresponding to the eigenvalue −a1 and u1 = −v1;

(iii) v1 = e+ + e−, where e+ and e− are eigenvectors of A corresponding to the eigenvalues
a1 and −a1, respectively, and u1 = e+ − e−.

Suppose case (i) holds. Since B is Hermitian and B1 is positive semi-definite, we must

have u∗1Bv1 = 0 and hence B1 = (0)⊕B′
1. If k = 1, the result follows.

Now suppose k > 1. Write U∗AV = (a1)⊕A′, iU∗BV = (0)⊕B′, and U∗CV = (a1)⊕C ′.
Since c1 = a1 and bk = 0, we have

s1(C
′) + · · ·+ sk−1(C

′) = c1 + · · ·+ ck − a1

= a2 + · · ·+ ak + b1 + · · · bk−1

= s1(A
′) + · · · sk−1(A

′) + s1(B
′) + · · ·+ sk−1(B

′).

By the induction assumption, A′ and B′ satisfy one of the conditions (a) or (b). However, if

A′ and B′ satisfy (b), we have b1 = s1(B
′) = · · · = sk(B

′) = bk = 0, which is a contradiction.

Thus A′ and B′ satisfy (a).

Next, suppose case (ii) holds. We may replace A and B by −A and −B and the result

follows from case (i).

Finally, suppose case (iii) holds. Let E+ and E− denote the eigenspaces of A correspond-
ing to eigenvalues a1 and −a1, respectively. Let r = k if a1 = · · · = ak, and let r = s
if s < k and a1 = · · · = as > ar+1. If dimE− < r then, as v1, . . . , vr are orthonormal

vectors in E+ ⊕ E−, we have dimE+ + dim(span{v1, . . . , vr}) > dimE+ + dimE− and hence

span{v1, . . . , vr}∩E+ 6= {0}. Thus, there exists an r×r unitary matrix W such that the first

column of V (W ⊕ I) is in E+. Replacing U and V by U(W ⊕ I) and V (W ⊕ I), respectively,

we are back to case (i), and the result follows.
Now suppose dimE− ≥ r. Using the same argument, we may also assume dimE+ ≥ r.

If r < k then r = dimE+ + dimE−, which is not true. We therefore have r = k and hence
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a1 = · · · = a2k. Replacing A and B by iA and iB, we can further assume that b1 = · · · = b2k.
Thus we have c1 + · · ·+ ck = k(a1 + b1) and hence ci = a1 + b1, i = 1, . . . , k.

Since v1 = e+ + e− and u1 = e+ − e−, we have Av1 = a1u1 and Au1 = a1v1 and thus we

know that span{v1, u1} (= (span{e+, e−}) is an invariant subspace of A. Let P = [e+, e−]

and consider P ∗CP = P ∗AP + iP ∗BP (that is, consider the orthogonal projection of C onto

span{v1, u1}). Obviously, we have s1(P
∗CP ) = c1, s1(P

∗AP ) = a1, and s1(P
∗BP ) = b1.

Notice that iu∗1Bv1 = b1 implies iv∗1Bu1 = −b1. As u1 and v1 are linearly independent, we

deduce that s2(P
∗BP ) = b1. Thus, we are now dealing with the case in which n = 2, k = 1,

A has eigenvalues a1 and −a1, and B has singular values b1 = b2.

Let A =

(
a1 0
0 −a1

)
. If B = ±b1I2 then c1 =

√
a2

1 + b2
1 < a1 + b1. Thus we may assume

that B has eigenvalues b1 and −b1. With a suitable unitary similarity, we may assume that

iB =

(
ib t
−t −ib

)
and t ≥ 0. Then C =

(
a1 + ib t
−t −a1 − ib

)
. A computation reveals

that b1 =
√

b2 + t2 and c1 =
√

a2
1 + b2 + t2 + 2a1t. Consequently, a1 + b1 = c1 if and only if

b = 0 and t = b1.
Our argument shows that we can find a unitary matrix Q whose first two columns are in

span{e+, e−} and Q∗AQ =

(
a1 0
0 −a1

)
⊕ A′ and iQ∗BQ =

(
0 b1

−b1 0

)
⊕ B′. Note that

s2

((
a1 b1

−b1 −a1

))
< a1 + b1. Thus, A′ and B′ satisfy

s1(A
′ + B′) + · · ·+ sk−1(A

′ + iB′) = s1(A
′) + · · ·+ sk−1(A

′) + s1(B
′) + · · ·+ sk−1(B

′).

By the induction assumption, we can conclude that A′ and B′ satisfy one of the conditions
(a) or (b). In this case, since we have a1 = · · · = a2k and b1 = · · · = b2k, A′ and B′ satisfy

(b).

In [1], it was proved that

(c1, . . . , cn) ≺w

√
2(|a1 + ib1|, ..., |an + ibn|). (3.2)

It was conjectured in [1] and was proved recently in [25] that

(|a1 + ib1|, ..., |an + ibn|) ≺w

√
2(c1, . . . , cn). (3.3)

We now study the equality cases in the following theorem.

Theorem 3.3 Suppose A, B ∈ Mn are Hermitian and C = A + iB. Then (3.2) and (3.3)

hold. For any given k ∈ {1, . . . , n},

(a)
∑k

j=1 cj =
√

2
∑k

j=1 |aj + ibj| if and only if C is unitarily similar to one of the following

forms:

7



(a.i) diag (γ1, . . . , γr)⊕ idiag (γr+1, . . . , γ2r)⊕ 0n−2r, where 2r ≤ k and γ1, . . . , γ2r ∈ R

satisfy |γj| = |γr+j| for j = 1, . . . , r,

(a.ii)

(
0 cIk

0 0

)
⊕ C ′, where s1(C

′) ≤ c;

(b)
√

2
∑k

j=1 cj =
∑k

j=1 |aj + ibj| if and only if C is unitarily similar to one of the following

forms:

(b.i) c1 (D1 ⊕ iD2 ⊕ C ′), where D1 and D2 are k× k diagonal orthogonal matrices and

s1(C
′) ≤ 1,

(b.ii)

(
0 c1

0 0

)
⊕ · · · ⊕

(
0 cp

0 0

)
⊕ 0n−2p, where 2p ≤ k.

Proof. (a) For any 1 ≤ k ≤ n, we have

k∑
j=1

cj ≤
k∑

j=1

aj +
k∑

j=1

bj =
k∑

j=1

(aj + bj) ≤
k∑

j=1

√
2|aj + ibj| (3.4)

So,
∑k

j=1 cj =
√

2
∑k

j=1 |aj + ibj| if and only if both of the inequalities in (3.4) become

equalities. The second inequality is an equality if and only if ai = bi, i = 1, . . . , k. The result
follows from Theorem 3.2.

(b) (⇐) By direct verification.

(⇒) We divide the proof into three cases.

Case 1. k = 1. Assume c1 > 0. We have a1 ≤ c1 and b1 ≤ c1. Hence |a1 + ib1| ≤
√

2c1 and
equality holds if and only if a1 = b1 = c1. We now suppose that a1 = b1 = c1. Let x be
a unit eigenvector of A corresponding to an eigenvalue with absolute value a1. Let V be a
unitary matrix with x as its first column. Then the (1, 1) entry of V ∗CV is x∗Ax + ix∗Bx.

As |x∗Ax| = c1, we deduce that x∗Bx = 0 and furthermore that V ∗CV = (x∗Ax) ⊕ C ′

and V ∗AV = (x∗Ax) ⊕ A′. Thus V ∗BV = (0) ⊕ B′ and hence Bx = 0. Let y be a unit
eigenvector of B corresponding to an eigenvalue with absolute value b1. As before, we have
Ay = 0. Thus x and y are orthogonal because they are eigenvectors of A corresponding to
different eigenvalues. Let U be a unitary matrix with x and y as its first two columns. Then
U∗CU = diag(±c1,±ic1)⊕ C ′′, as required.

Case 2. k = n. Let us consider (12) in [1]:

(c2
1 + c2

n, . . . , c
2
n + c2

1)/2 ≺ (a2
1 + b2

1, . . . , a
2
n + b2

n).

Since f(t) =
√

t is strictly concave on [0,∞), we have

1√
2

n∑
j=1

(c2
j + c2

n−j+1)
1
2 ≥

n∑
j=1

|aj + ibj|
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and equality holds if and only if rearrangement of (c2
1 + c2

n, . . . , c
2
n + c2

1)/2 in nonincreasing

order gives (a2
1 + b2

1, . . . , a
2
n + b2

n). Thus, we have

n∑
j=1

|aj + ibj| ≤ 1√
2

n∑
j=1

(c2
j + c2

n−j+1)
1
2 (3.5)

≤ 1√
2

n∑
j=1

(cj + cn−j+1) (3.6)

=
√

2
n∑

j=1

cj

Our assumption implies that (3.5) and (3.6) are equalities. Since
√

a2 + b2 ≤ |a| + |b|
and equality holds if and only if a or b is 0, equality in (3.6) implies that cj = 0 for

j = [n/2] + 1, . . . , n. Hence, rearrangement of (c2
1 + c2

n, . . . , c
2
n + c2

1)/2 in nonincreasing order

is just (c2
1, c

2
1, c

2
2, c

2
2, . . .), which is the same as (a2

1 + b2
1, . . . , a

2
n + b2

n). Thus,

1√
2
cj = |a2j−1 + ib2j−1| = |a2j + ib2j| for j = 1, . . . , [n/2],

and an = bn = 0 if n is odd.
Suppose c1 > 0. Let x be a unit vector such that ||Cx|| = c1, where || · || is the Euclidean

norm. Since C∗C+CC∗ = 2(A2+B2), we have c2
1+x∗CC∗x = 2(x∗A2x+x∗B2x) ≤ 2(a2

1+b2
1).

As c1/
√

2 = |a1 + ib1|, we have C∗x = 0. Let y be a unit vector such that y∗Cx = c1. Since

x∗C∗y = c1, we also have ‖C∗y‖ = c1. As above, we deduce that Cy = 0. As x and y are
eigenvectors of C∗C corresponding to different eigenvalues, x and y are orthogonal. Let U
be a unitary matrix with y and x as its first and second columns, respectively. Then we have

U∗CU =

(
0 c1

0 0

)
⊕ C ′. It is easy to check that C ′ satisfies the hypothesis and so we may

repeat the same argument to conclude the result.
Case 3. 1 < k < n. An elegant proof of the weak majorization relation was given by

Zhan [25]. Our study of equality cases follows his proof given by (in brief):

There exist X,Y ∈ Mn such that C = X + Y and c1 + · · ·+ ck = s1(X) + · · ·+ sn(X) +

ks1(Y ). Let X = P + iQ and Y = E + iF be the Cartesian decompositions of X and
Y , respectively. As the Cartesian decomposition is unique, we know that A = P + E and

B = Q + F . We have
√

2(s1(X) + · · ·+ sn(X)) ≥ |s1(P ) + is1(Q)|+ · · ·+ |sn(P ) + isn(Q)|
and

√
2s1(Y ) ≥ |s1(E) + is1(F )|, and thus

√
2(c1 + · · ·+ ck) ≥

n∑
j=1

|sj(P ) + isj(Q)|+ k|s1(E) + is1(F )|

≥
k∑

j=1

|sj(P ) + isj(Q)|+ k|s1(E) + is1(F )| (3.7)

9



=
k∑

j=1

(|sj(P ) + isj(Q)|+ |s1(E) + is1(F )|)

≥
k∑

j=1

|(sj(P ) + s1(E)) + i(sj(Q) + s1(F ))|

≥
k∑

j=1

|aj + ibj|. (3.8)

From our assumption, we know that all of these inequalities are equalities. In particular,
we know that Y and X are of the forms that we deduced in cases 1 and 2. We now prove
that either X or Y is the zero matrix. Suppose Y is nonzero. If X is nonzero then P and
Q are nonzero. Equality in (3.7) implies that P and Q have rank at most k. From equality

in (3.8), we have sj(P ) + s1(E) = aj, j = 1, . . . , k. It then follows from Proposition 1.2

that s1(E) = · · · = sk(E) and there exists a unitary matrix U such that U∗PU = P1 ⊕ P2,

U∗EU = E1 ⊕E2, where P1 has singular values s1(P ), . . . , sk(P ) and E1 has singular values

s1(E), . . . , sk(E). As P has rank at most k, P2 = 0. Equality in (3.8) also implies that

s1(F ) = · · · = sk(F ). From
√

2s1(Y ) = |s1(E) + is1(F )|, an argument similar to our proof

in Case 1 shows that U∗FU = 0k ⊕ F ′. Then, again using equality in (3.8), we deduce that

U∗QU = 0k⊕Q′ because Q has at most rank k. Then U∗XU = U∗(P1⊕Q′)U , which implies

that X2 is nonzero. However, by Case 2, X2 = 0 and this gives a contradiction. Thus C = X
or C = Y . Suppose C = X and X has rank p. If equality holds, one easily checks that
2p ≤ k. Suppose C = Y . Notice that equality in (3.8) implies that s1(E) = · · · = sk(E) and

s1(F ) = · · · = sk(F ), even when X = 0. Applying Case 1 repeatedly gives the result.

The inequalities (3.2) imply that (c2
1, . . . , c

2
n) ≺w 2(a2

1 + b2
1, . . . , a

2
n + b2

n). Recently, it was

proved in [4] that the constant 2 can be removed if A and B are positive semi-definite. We
now study the equality cases.

Theorem 3.4 Suppose A and B are n×n positive semi-definite matrices and C = A + iB.
Then

(c2
1, . . . , c

2
n) ≺ (a2

1 + b2
1, . . . , a

2
n + b2

n).

For any given k ∈ {1, . . . , n},
k∑

j=1

c2
j =

k∑
j=1

(a2
j + b2

j)

if and only if C is unitarily similar to C1⊕C2, s(C1 +C∗
1) = 2(a1, . . . , ak), and s(C∗

1 −C1) =

2(b1, . . . , bk).

Proof. Since tr C∗C = tr (A2 + B2),

k∑
j=1

c2
j =

k∑
j=1

(a2
j + b2

j)
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if and only if
n∑

j=k+1

sj(C
∗C) =

n∑
j=k+1

(a2
j + b2

j).

Suppose X is n× (n− k) and that its columns are orthonormal eigenvectors of C∗C corre-

sponding to the eigenvalues λj(C
∗C) = sj(C

∗C) for j = k + 1, . . . , n. Then

n∑
j=k+1

sj(C
∗C) = tr (X∗C∗CX)

≥ tr (X∗C∗XX∗CX) (3.9)

≥ tr (X∗AXX∗AX) + tr (X∗BXX∗BX)

+itr [(X∗AX)(X∗BX)− (X∗BX)(X∗AX)]

= tr (X∗AXX∗AX) + tr (X∗BXX∗BX)

≥
n∑

j=k+1

{λj(A
2) + λj(B

2)}, (3.10)

where inequality (3.9) follows from the fact that I −XX∗ is positive definite, and inequality

(3.10) follows from the facts that λj(X
∗AX) ≥ λk+j(A) and λj(X

∗BX) ≥ λk+j(B) for

j = 1, . . . , n − k. Thus, equality holds in (3.10) if and only if X∗AX and X∗BX have

eigenvalues λj(A) = sj(A) and λj(B) = sj(B) for j = k+1, . . . , n. If U is unitary and its last

n−k columns are the columns of X, then U∗AU = A1⊕(X∗AX) and U∗BU = B1⊕(X∗BX).
Hence U∗CU has the described form.

Two other sets of majorization relations involving squares of singular values were obtained
in [1] (see also [15]):

(c2
1 + c2

n, . . . , c
2
n + c2

1)/2 ≺ (a2
1 + b2

1, . . . , a
2
n + b2

n), (3.11)

and
(a2

1 + b2
n, . . . , a

2
n + b2

1) ≺ (c2
1, . . . , c

2
n). (3.12)

The equality cases of (3.11) and (3.12) are more complicated as there might not be a unitary
U such that both U∗AU and U∗BU are direct sums when equality holds. This can be seen
from the following example.

Example 3.5 Let A = diag (1,−1), B =
(

0 i
−i 0

)
, and C = A + iB. Then for k = 1,

equality holds in (3.11) and (3.12), but C is not normal and so it is not unitarily similar
to a direct sum. In general, if a1 = · · · = an and b1 = · · · = bn, all the inequalities in the
majorization (3.11) become equalities but C does not have any special reducibility structure.

In the following theorem, we need to impose additional conditions of the form ak > ak+1

and bk > bk+1 in order to study the equality cases of (3.11), and of the form ck > ck+1 in order
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to study those of (3.12). However, for (3.11), there are some cases in which we cannot impose

such conditions for the following reasons. Let (d1, . . . , dn) ≡ (1/2)(c2
1 + c2

n, . . . , c
2
n + c2

1)↓.

Suppose that dk = dk+1. If we assume that d1 + · · ·+dk = (a2
1 + b2

1)+ · · ·+(a2
k + b2

k), then we

have dk ≥ a2
k +b2

k. Together with d1+ · · ·+dk+1 ≤ (a2
1+b2

1)+ · · ·+(a2
k+1+b2

k+1), we must have

ak = ak+1 and bk = bk+1. Thus we cannot assume either that ak > ak+1 or that bk > bk+1

if dk = dk+1. Notice that every element of the set of entries of (c2
1 + c2

n, . . . , c
2
n + c2

1)/2 has

multiplicity at least two except possibly when n is odd and the entry is c2
(n+1)/2 + c2

(n+1)/2.

Theorem 3.6 Suppose A, B ∈ Mn are Hermitian and C = A+ iB. Then (3.11) and (3.12)
hold.

(a) Let (d1, . . . , dn) ≡ (1/2)(c2
1 + c2

n, . . . , c
2
n + c2

1)↓. Suppose that k ∈ {1, . . . , n − 1}, dk >

dk+1, ak > ak+1, and bk > bk+1. Then

k∑
j=1

(a2
j + b2

j) =
k∑

s=1

(c2
js

+ c2
n−js+1)/2 (3.13)

for some integers j1, . . . , jk such that 1 ≤ j1 < · · · < jk ≤ n if and only if C is
unitarily similar to C1 ⊕ C2 with C1 ∈ Mk such that s((C1 + C∗

1)/2) = (a1, . . . , ak),

s((C1 − C∗
1)/2) = (b1, . . . , bk), and

∑k
j=1 sj(C1C

∗
1 + C∗

1C1) =
∑k

s=1(c
2
js

+ c2
n−js+1).

(b) Suppose that k ∈ {1, . . . , n− 1} and ck > ck+1. Then

k∑
j=1

c2
j =

k∑
s=1

(a2
js

+ b2
n−js+1)

for some integers j1, . . . , jk such that 1 ≤ j1 < · · · < jk ≤ n if and only if C is
unitarily similar to C1⊕C2, C1 ∈ Mk has singular values c1, . . . , ck, s((C1 + C∗

1)/2) =

(aj1 , . . . , ajk
), and s((C1 − C∗

1)/2) = (bn−jk+1, . . . , bn−j1+1).

Proof. (a) (⇐) Direct verification.

(⇒) Since CC∗ + C∗C = 2(A2 + B2), by (1.3) and [24, Theorem 2], we have

k∑
j=1

[sj(A
2) + sj(B

2)] ≥
k∑

j=1

sj(A
2 + B2) =

k∑
j=1

sj(CC∗ + C∗C)/2 ≥
k∑

j=1

(c2
js

+ c2
n−js+1)/2.

The equality (3.13) ensures that

k∑
j=1

sj(A
2 + B2) =

k∑
j=1

(
sj(A

2) + sj(B
2)
)
.

By Proposition 1.2 and the fact that A2 and B2 are positive semi-definite, we conclude that

there exists a unitary matrix U such that U∗A2U = A1 ⊕A2 and U∗B2U = B1 ⊕B2 so that

12



s(A1) = (a2
1, . . . , a

2
k) and s(B1) = (b2

1, . . . , b
2
k). Thus, the span of the first k columns of U is

a direct sum of eigenspaces of A corresponding to the eigenvalues λj(A
2) for j = 1, . . . , k.

We see that U∗AU = Ã1 ⊕ Ã2 is also in block form. Similarly, U∗BU = B̃1 ⊕ B̃2. Since

k∑
j=1

sj((C1C
∗
1 + C∗

1C1)/2) =
k∑

j=1

sj(A1 + B1) =
k∑

s=1

(c2
js

+ c2
n−js+1),

the matrix C1 = Ã1 + iB̃1 satisfies the specified condition.
(b) (⇐) Direct verification.

(⇒) We have

k∑
j=1

c2
j =

k∑
s=1

(a2
js

+ b2
n−js+1) ≤

k∑
j=1

λi((CC∗ + C∗C)/2) ≤
k∑

j=1

c2
j .

Since the inequalities are equalities, Proposition 1.2 ensures that there exists a unitary matrix

U such that U∗C∗CU = D1 ⊕ D2, U∗CC∗U = E1 ⊕ E2, and s(D1) = s(E1) = (c2
1, . . . , c

2
k).

Thus, the matrix formed by the first k rows (respectively, columns) of U∗CU has singular
values c1 ≥ · · · ≥ ck. Thus, there exist unitary matrices V1 ∈ Mk and V2 ∈ Mn−k such that

C1 = (V1 ⊕ V2)U
∗CU has rows with `2 norm equal to c1 ≥ · · · ≥ cn. Note that the matrix

formed by the first k columns of C1 still has singular values c1 ≥ · · · ≥ ck. Thus, there
exist unitary matrices V3 ∈ Mk and V4 ∈ Mn−k such that C2 = (V1 ⊕ V2)U

∗CU(V3 ⊕ V4)
has columns with `2 norm equal to c1 ≥ · · · ≥ cn. In particular, C2 = DX = Y D for some
unitary matrices X and Y with D = diag (c1, . . . , cn). By considering the Euclidean norms
of the rows and columns of DX and Y D, one sees that X and Y are direct sums of square
blocks according to the multiplicities of the diagonal entries of D. One can now check that
(V1 ⊕ In−k)U

∗CU(V ∗
1 ⊕ In−k) has the desired form.

We conclude this section with the following open problems.

Problem 3.7 Let a, b, c ∈ Rn be nonnegative vectors. Determine necessary and sufficient
conditions on these vectors for the existence of Hermitian matrices A and B, and C = A+iB
satisfying

(i) s(C) = c and s(A) = a, or

(ii) s(C) = c and s(B) = b, or

(iii) s(A) = a, s(B) = b, and s(C) = c.

We give partial results for these problems, including the 2× 2 case, in the next section.
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4 Eigenvalues and Singular Values

In this section, we consider relations among the eigenvalues of Hermitian matrices A and B
and the singular values of the matrix C = A + iB. The inequalities in the following were
proved in [8] and [22] and, following the proofs there, the equality cases can be easily verified.

Theorem 4.1 Suppose A, B ∈ Mn are Hermitian, C = A + iB, and 1 ≤ j ≤ n.

(ai) If λj(A) ≥ 0 then λj(A) ≤ sj(C). Equality holds if and only if C is unitarily similar

to [λj(A)]⊕ C1 with λj(A) ≥ sj(C1).

(aii) If λj(A) ≤ 0 then λj(A) ≤ sn−j+1(C). Equality holds if and only if C is unitarily

similar to [λj(A)]⊕ C1 with |λj(A)| ≥ sn−j+1(C1).

(bi) If λj(B) ≥ 0 then λj(B) ≤ sj(C). Equality holds if and only if C is unitarily similar

to [iλj(B)]⊕ C1 with λj(B) ≥ sj(C1).

(bii) If λj(B) ≤ 0 then λj(B) ≤ sn−j+1(C). Equality holds if and only if C is unitarily

similar to [iλj(B)]⊕ C1 with |λj(B)| ≥ sn−j+1(C1).

Problem 4.2 Let a, b, c ∈ Rn, and suppose c has nonnegative entries. Determine necessary
and sufficient conditions for the existence of Hermitian matrices A and B, and C = A + iB
satisfying

(i) s(C) = c and λ(A) = a, or

(ii) s(C) = c and λ(B) = b, or

(iii) λ(A) = a, λ(B) = b, and s(C) = c.

Theorem 4.1 gives the following partial answer for this problem, which is also a partial
answer to Problem 3.7.

Theorem 4.3 Suppose a, b, c ∈ Rn, and suppose that c has nonnegative entries.

(i) Suppose a is nonnegative. Then there exist Hermitian matrices A and B such that

C = A + iB, s(C) = c, and λ(A) = a if and only if c↓ − a↓ is nonnegative.

(ii) Suppose b is nonnegative. Then there exist Hermitian matrices A and B such that

C = A + iB, s(C) = c, and λ(B) = b if and only if c↓ − b↓ is nonnegative.

The general case seems much more difficult. Even for the 2 × 2 case, the answer is
non-trivial; see [15], where the solution given is not in terms of linear inequalities.
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Theorem 4.4 Let c1, c2, α1, α2, β1, β2 ∈ R be such that c1 ≥ c2 ≥ 0, |α1| ≥ |α2|, and

|β1| ≥ |β2|. Then there exist Hermitian matrices A and B such that C = A + iB ∈ M2,

s(C) = (c1, c2), and A and B have eigenvalues α1, α2 and β1, β2, respectively, if and only if

(α2
1 + β2

2 , α
2
2 + β2

1) ≺ (c2
1, c

2
2), (4.1)

and

(c1c2)
2 − ((α1α2)− (β1β2))

2 ≥ max
{
0, δ(α1β2 + α2β1)

2
}

, (4.2)

where δ is the sign of (α1β1 + α2β2)(α1β2 + α2β1). Consequently, there exist Hermitian

matrices A and B such that C = A + iB ∈ M2, s(C) = (c1, c2), s(A) = (|α1|, |α2|), and

s(B) = (|β1|, |β2|) if and only if (4.1) holds and (4.2) holds with δ = −1.

5 Determinantal Inequalities

In this section, we study determinantal inequalities involving Hermitian matrices A and B,
and C = A + iB. We begin with the following observation.

Proposition 5.1 Suppose A, B ∈ Mn are Hermitian matrices such that A is positive defi-
nite. Then

det(A + iB) = det(A)
n∏

j=1

(
1 + sj(A

−1/2BA−1/2)2
)1/2

.

Using this observation, Thompson [22] (see also [8]) proved the following interesting
result.

Theorem 5.2 Suppose A, B ∈ Mn are Hermitian and C = A + iB. Then

| det(C)|2/n ≥ R1/n| det(A)|2/n + | det(B)|2/n,

where the real constant R is arbitrary when A, B, C are all singular; otherwise,

R =
∏
t

|ξ2
t + 1|

|ξt|2 + 1
, (5.1)

where the product extends over all nonreal roots ξt of the equation det(λA−B) = 0. Equality

holds in (5.1) if and only if (a) all the matrices A, B, and C are singular, or (b) all roots of

det(λA−B) = 0 have equal modulus.

The following inequality was proved in [1]. We study the equality case.

Theorem 5.3 Suppose A, B ∈ Mn are Hermitian and C = A + iB. Then

| det(C)| ≤
n∏

j=1

|sj(A) + isn−j+1(B)|. (5.2)

Equality holds in (5.2) if and only if
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(a) rank (A) + rank (B) < n, or

(b) C is unitarily similar to diag (γ1, . . . , γn), with γj = |sj(A) + isn−j+1(B)| for all j.

Proof. We focus on the equality case. The sufficiency part is clear. Suppose equality
holds. If (a) is not true, then because

(s1(A)2 + sn(B)2, . . . , sn(A)2 + s1(B)2) ≺ (s1(C)2, . . . , sn(C)2)

and the products of the entries of the two vectors are equal, [19, Chapter 3, Proposition F.1]
ensures that the vectors have the same entries up to a permutation.

If sj(C) are equal for all j, then C is unitary and condition (b) holds. If not all sj(C) are

equal, let k be the smallest integer such that sk(C) > sk+1(C). By Theorem 3.6 (b), we see

that C is unitarily similar to γ1U1⊕C2, where γ1 = s1(C) and U1 ∈ Mk is unitary. One can
apply an inductive argument to C2 to conclude that C is unitarily similar to γ1U1⊕· · ·⊕γmUm,
where γ1 ≥ · · · ≥ γm ≥ 0 are the distinct singular values of C, and U1, . . . , Um are unitary.
One easily checks that condition (b) holds.

We also have the following (see also [4, Theorem 3]).

Theorem 5.4 Let A, B ∈ Mn be positive semi-definite and C = A+ iB. For 1 ≤ k ≤ n, we
have

n∏
j=k

|sj(C)| ≥
n∏

j=k

|sj(A) + isj(B)|. (5.3)

Equality holds in (5.3) if and only if C is unitarily similar to

C1 ⊕ diag (sk(A) + isk(B), . . . , sn(A) + isn(B)).

Proof. By Theorem 3.4,

n∑
j=p

|sj(C)| ≥
n∑

j=p

|sj(A) + isj(B)|

for p = 1, . . . , n. The inequality (5.3) now follows from [19, Chapter 3, Proposition E.1].

Equality holds in (5.3) if and only if sj(C) = |(sj(A) + isj(B)| for j = k, . . . , n. Thus C is

unitarily similar to

C1 ⊕ diag (sk(A) + isk(B), . . . , sn(A) + isn(B)).

The converse is easy to verify.

Note that the inequality (5.3) need not hold if one of A or B is not positive semi-definite.

Example 5.5 Let C = A + iB with

A =
(

1 0
0 0

)
and B =

(
0 1
1 0

)
.

Then s2(C) = (
√

5 − 1)/2 < 1 = |s2(A) + is2(B)| and s1(C)s2(C) = 1 <
√

2 = |(s1(A) +

is1(B))(s2(A) + is2(B))|.
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