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0 Introduction

Let H be a Hilbert space with the inner product (-, -), and let £(#) be the algebra of bounded
linear operators on H. For A € L(H), let

W(A) ={(Az,z) : x € H,(z,x) =1}

be the numerical range of A.
The following result was proved (in a slightly different form) in [15], and extended in [12],

see also [11], to certain classes of unbounded operators:

Theorem 0.1 If A € L(H) and W (A) does not contain any negative real numbers, then for
every positive integer p there erists a unique B, € L(H) such that BP = A and

W(B)C{z=re®eC:r>0, \a\gg}.

Using techniques of linear algebra, Theorem 0.1 (for p = 2), was proved for finite dimensional
H in [9], [10], [8], [16].

Taking cue from Theorem 0.1, in this note we prove results concerning existence and
uniqueness of roots of elements in a Banach algebra, under suitable hypotheses on numerical
ranges. The proofs of our main results — Theorems 1.2 and 2.8, — make heavy use of the
techniques from [15]. Since the latter paper is available in Russian only, we decided to include
at least some details rather than merely give a reference. We hope that readers will find that
convenient.

IResearch of all authors was supported by NSF grants.



1 Banach algebras setting

All Banach algebras will be assumed complex and unital with the unit e such that ||e|| = 1.
Let A be a Banach algebra. For every element a € A, define the Banach algebra numerical
range V (a) as follows:

V(a) = {f(a): fe S} CC

where S is the set of bounded linear functionals f on A4 such that f(e) = ||f|| = 1 (such

functionals are called states of A). This notion is standard, see, e.g., [1], [2] and references
there. Numerical ranges of Banach algebra elements come up in a variety of settings, see,
e.g., [20] for results concerning nearly Hermitian elements.

We begin with some elementary properties of V (a).
Proposition 1.1 (1) The set V(a) is closed, convez, and bounded.
(2) o(a) € V(a).
(3) If \ € C\ V(a), then ||(Ae — a)7t|| < d~1, where d is the distance from X\ to V (a).
(4) If A = L(H), then V (a) is the closure of W (a), for every a € L(H).

Properties (1),(2), and (4) are proved in [1]; (3) is proved in [21].
The following result was proved in [15] for the case A = L(H).

Theorem 1.2 Let A be a Banach algebra, and let a € A be such that
V(a) does not contain any negative real numbers. (1.1)

Let A(a) be the closed unital subalgebra of A generated by a and e. Then for every w,
0 < w < 1, there exists b, € A(a) such that

bw1+w2 Zf wp+wy <1
by, bu, =< @ ifwi+wy=1 (1.2)
abwl—I—Oszl Zf w1 + o) > 1

and .
o(b,) C{re? € C: r >0, |0] < wr}.

If in addition a is invertible and w = % 15 the reciprocal of an integer, then b, with the above
properties in unique.

Proof. We may assume, using compactness and convexity of V'(a) and the hypothesis (1.1),

that there exist @, 0 < @ < 7, and R > 0, and 4, 0 < § < min{«, R}, such that V(a) is
contained in the set

{z=re? €C:0<r<R-6,-a+6<0<a-7}



(If it happens that the real line is tangential to V (a) at zero, we replace a with e'"a for some
7 sufficiently close to zero; then b, is replaced with e¢™“a.) Let T' be the positively oriented
contour composed of a part of the circle of radius R centered at zero, and of two symmetric
line segments that connect zero with the circle, as follows:

F:{z:Reiee(C: —a<f<a}

U{z:reme(C:OSTSR}U{z:re_mEC:OSrSR}.

If p,v are positive real numbers smaller then R, we let I, , be the curve obtained from I
by cutting out segments with endpoint zero of lengths y and v from the two symmetric line
segments:

Fu,,,:{zzRewEC: —a<f<a}
U{z=re?ecC: p<r<R}U{z=re™ecC:v<r<R}.

Let 9 > 0 be so small that the spectral radius of a+c¢e is smaller than R, for every ¢ € [0, &¢]-
Consider the following curve integrals:

I v,e) = Zim /F (V)*(Ae — (a+ee) A € A,

where 0 < ¢ < g9, and where (A)* is the analytic branch of the w-th power function defined
by the property that (A)¥ > 0 for A > 0. Define

ey = lim I(u,v,e) € A.

n,v—0

For 0 < ¢ < g the limits a,, exist, and by functional calculus we have

Qe +wo if w1+ wy < 1
Qe Qe = § O+ €€ ifw +w =1 (1.3)
(@4 €e)ae yytwy—1 if wi +wy >1

and '
o(a.,) C{z=re? € C: r >0, —wr < 0 < wr}. (1.4)

To include also the case when ¢ = 0, we argue as follows. Fix u, v, p/,v' € (0, R), and suppose
for simplicity of notation that p' < p, ' < wv. Then

2| I(p,v,€) = I(W', v, €)]| < /I(/\)“III(Ae— (a+ee))~" || dA], (1.5)

where the integral is taken over two line segments

{z=re®eC:p<r<pluU{z=re™@eC: v <r<v}h (1.6)



By Proposition 1.1(3), for A = re*® r > 0 we have

1
rsind’

I(Ae = (a+ee) 7| <

and therefore the right hand side of (1.5) does not exceed

1 1 1
rY————dr + rY————dr = — N —(w¥ + @)Y - (v)*),
/IL'STSM rsind /VISTS,, rsind wsmé(('u) (1) v) ®)%)
which tends to zero as y', u,v',v — 0. Thus, a.,, and in particular ao,, converges in A.

Moreover, the convergence
lim I(p,v,¢)

w,v—0

is uniform in € € [0,&0]. Also, for every fixed pu,v (0 < p,v < R), the convergence

lim [((A)“(Ae — (a+ee))'] = VN)“(Ae—a)”"

e—=0
is uniform on I';, ,, because the spectra o(a + ce), 0 < ¢ < g, are uniformly separated from
', .. By a well known theorem on integrals depending on a parameter (see [6], for example),
we have

e = 1,00 T0ve)
1 .. . w -1
= 5 ul,zleBO - [?_r)%(/\) (Ae — (a+¢ee))™" | dA
1

= — lim (N)?(Ae —a) tdA

27T v —0 Fp,,u

= Qow-

Passing to the limit when ¢ — 0 in (1.3), we obtain equalities (1.2), with b, = ag,-
The proof above shows that a., € A(a) for 0 < ¢ < go. Since the set {z € C: z =

re’, r >0, |a| <wm} is convex, in view of (1.4), also

oo(ae,) C{z€C: z=re", r>0, |a| < wr}, (1.7)

where oy(z) is the spectrum of = € A(a) with respect to the algebra A(a). Let X be the
compact Hausdorff space of maximal ideals of A(a), and let ¥ € C(X), the Banach space
of continuous complex functions on X with the maximum modulus norm, be the Gelfand
transform of x € A(a). Since the Gelfand transform is continuous (for this and other
properties of Gelfand transform used here, see, e.g., [4], or [17, Theorem 3.1.5]), we have

limaz; = a5 (1.8)



Since oy(xz) = o(Z) for every x € A(a), and since the spectrum of an element of C(X)
coincides with its range (as a function on X), it follows from (1.7) and (1.8) that

o(agy) C oo(ap,) = o(@oy) C{z€C: z=1e", r >0, |a <wr}.

Observe that o(ag,) cannot contain points on the open rays {z € C: z = re*™" r > 0},
because this would contradict the hypothesis (1.1), in view of the spectral mapping theorem.

The uniqueness statement follows from the functional calculus: If w = %, where m is a
positive integer, and if ¢, € A is also a w-th power of a with the property

o(c,) C{z €C: z=7re" r>0, |a <wr},
then
cw = h(c) = h(a) = b,, h(z) = 2%,
where in the first equality we have used the property that the functional calculus respects

composition of functions (see, e.g., Section VIL.3 in [5]). O

In general, b, in Theorem 1.2 is not unique: the nxn zero matrix (n > 2) has a continuum
of p-th roots, for p=2,3,....

Corollary 1.3 Denote by Q(a), 0 < a < 7, the set of all elements a € A such that the set
V(a) is contained in the wedge

{z:rewE(C: r>0, —a<f<al
Then for every fized w, 0 < w < 1, there exists a constant K > 0 such that
16w (@) = bu(a”)[| < Klla" — a”||
for every o', 0" € Q(c).

The proof may be obtained as a by-product of the proof of Theorem 1.2. Note that [15]
gives (in a slightly different set-up) a numerical value of the constant K.

2 Hermitian Banach *-algebras setting

Theorem 1.2 does not provide information about the numerical range of b,,. The right setting
for such results is in the Hermitian Banach *-algebras, with the numerical range changed to
the *-numerical range. We recall the basic definitions; [17], [18] are compehensive reference
works on this subject. A Banach algebra A is called Banach *-algebra if a conjugate linear
involution * : A — A is introduced in A such that (zy)* = y*z* for all x,y € A. Then
e* = e. If Ais a Banach *-algebra, an element x € A is called Hermitian if x = z*. A
Banach *-algebra is called Hermitian Banach *-algebra if every Hermitian element has real
spectrum. In the rest of this section, A will stand for a fixed Hermitian Banach *-algebra.

The standard functional calculus leads to the following well-known statement.
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Lemma 2.1 A Hermitian element with positive spectrum admits a Hermitian square root.

Denote by S, the set of bounded linear functionals f on A such that f(e) = ||f|| =1 and
f(zz*) > 0 for every z € A.
The *-numerical range of a € A is defined as follows:

Vi(a) ={f(a) : feS}CC

Clearly, Vi(a) C V(a). If A is a C*-algebra, then in fact V,(a) = V(a). For any Banach

*-algebra, the set V,(a) is compact and convex. It is easy to verify that f(z*) = f(z) for

every f € S, and every x € A. Therefore, for any Hermitian b € A, V,(b) C R. For the
converse statement to hold, that is, for all elements x € A with real *-numerical range to be
Hermitian, it is necessary and sufficient that

Vi(z) ={0}, z=12" = z=0.

The latter property holds if and only if the involution * is essential (see [7]), and is of course
valid for C'*-algebras, as well as in many other instances. However, it is not required for our
considerations.

An element z € A is called uniformly positive if there exists ¢ > 0 such that z > ¢ for
every z € V,(z). The set of uniformly positive elements is a convex cone.

Proposition 2.2 If b € A is invertible, then b*b is uniformly positive.

Proof.  Choose a positive § < [[(bb*)"||. Then the element e — §(bb*)~" is Hermitian.
Its spectrum lies in the 1-neighborhood of 1 and, being real, is therefore positive. Due to
Lemma 2.1, there exists a Hermitian square root = of e — §(bb*) ™. Consequently,

b*b — de = b*(e — 6(bb*) )b = b*2%b = (xb)*(xb).
From the definition of S, then
0 < f(b"b—de) = f(b"b) — 0 for any f € S..

In other words, V. (b*b) C [§, +00). O

Elements of the form 6*b with invertible b are, of course, invertible. The following example
shows that, in general, uniformly positive elements do not have to be invertible.

Example 2.3 Let A be the algebra of 2 x 2 matrices with the conjugate transpose as the
involution *, and with the norm

||a|| = max{¢;(az) : ¢1(x) < 1}.
Identify f € A* with elements in A such that
f(a) = (a, f) :==tr(af*),
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where tr a stands for the trace of a matrix a. It is well known that the dual norm of /; is the
£ norm, and (see [1, Chapter 3]) the set S of states is the convex hull of the set of extreme
vector states, i.e.,

S=conv{yzr":y € Ex,x €&,y =1}, (2.1)

where “conv” denotes “the convex hull of”, and

500 = {(yl,yg)t S (C2 : |y1‘ = |y2| = ]_} and 51 = {($1,$2)t € (C2 B ‘,’E1| + ‘ZEQ‘ = ]_}

Thus
V(a) = conv{y*azr :y € Ex,x € &1, y"x =1}

Since f € S is an element of S, if and only if
f(a*a) = (a*a, f) >0 for all a € A,
we see that S, consists of all the positive semidefinite matrices in S, and
Vila) ={(a, f) : f € 5.}

consists of all the numbers of the form (a, f), where f is a positive semidefinite matrix in S.

Suppose
14 2
a=|5 1

Then 5 is an eigenvalue of a and (a, p) = 5 for a positive semidefinite p if and only if p = a/5.
Clearly, a/5 ¢ S. Furthermore, since S has the form (2.1), if f = (fi;) € S then |fi2| < | fool.
So, a/5 ¢ S,. As a result, (a,a/5) =5 ¢ V,(a).

One can apply a similar argument to show that the other eigenvalue of a, namely, 0, is
not in V,(a); alternatively, one may consider 5e — a. So, V,(a) is a closed interval in (0, 5).
Thus, a delivers an example of a non-invertible uniformly positive element. Observe also
that yet another familiar property fails on the element a, namely, the uniform positivity of
the products u*au, where a is uniformly positive and u is invertible. To this end, choose
e > 0 such that V,(a —ce) C (0,5). Let u be unitary such that

5—¢ 0
0 —e |

i = u'(a—ce)u = {

Then f = egel € S, and thus, (@, f) = —e € Vi(a). Hence, V.(a —ece) C (0,00) but
Vi(u*(a — ee)u) Z [0, 00).

This example is a manifestation of a general phenomenon described in Theorem 2.4 below.

To formulate it, we need to fix some notation. Let v be a norm on C*. Its dual norm v” on
C" is defined by

v?(y) = max{lz"y|: 2 € C", v(z) =1},



and the norm ||-||, on M,,, the algebra of nxn complex matrices with the conjugate transpose
as the * operation, induced by v is defined by

|la]|, = max{v(az): z € C", v(z) < 1}.

Identify every f € M, with the linear functional a — tr(af*) on M,. Then the set S of
states of (M,, || - ||.) is the convex hull of the set of vector states

R = {yz* € My: 1 = v(z) = vP(y) = 2"y}

(see [14, Corollary 2.2], for example). The set S, consists of matrices in S that are positive
semi-definite.

Theorem 2.4 Let v be a norm on C* not equal to a multiple of the €y norm, and let || - ||,
be the corresponding induced norm on M,. Suppose a* denotes the conjugate transpose of
a € M,. Then there ezists a vector x € C* such that x*zr = tr (z2*) = 1 and zz* ¢ S..
Consequently, b = e — zz* € M, is singular, and V,(b) C (0,00) does not contain the
spectrum of b. Moreover, if there exists a singular matriz in Sy, then there exists a unitary
u such that 0 € V. (ubu*).

Observe that there are many norms v on C" such that S, contains singular matrices. For
example, if v is a symmetric norm on C", then S, always contains Ej;.

Proof. First, note that tr (zy*) < v(y)v?(x) for every =,y € C*. Suppose S, contains zz*
for any vector x € C* with tr (zz*) = 1. Then for any z € C* with tr (zz*) = 1, zz* can
be written as a convex combination of matrices in R. Thus, there exist positive numbers
t1,...,tx summing up to one such that either xz* = :r(z;?:l tjv;)* with v(v;)vP(z) =1, or

*

zr* = (Z?Zl tju;)x* with vP(u;)v(z) = 1. In the former case, we have z = Z?Zl t;vj, and

hence
1=tr(zz") < Zt]tr (zv}) < Zt]VD(l‘)I/(U]) =1,
and
tr (zz*) = thyD(x)y(v]) > vP (z)v(x)

It follows that v?(z)v(z) = 1 (in the latter case, analogous arguments can be used to prove
this equality) for any x € C* with tr (zz*) = 1. In other words, there is a support plane of
the unit norm ball of v in C* at z/v(z) with normal vector in the direction of z. This can
only happen if v is a multiple of the /5 norm (this fact is a particular case of a much more
general result [13, Theorem 3]), which is a contradiction.

Now, suppose © € C" satisfies tr (zz*) = 1 and zz* ¢ S,, and suppose b = e — zz*.

Then for any f € S,, which is a positive semidefinite matrix with trace one, we have
tr(bf) =1 —tr(zz*f) > 0. Thus, V,(b) C (0, 00).
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Furthermore, if f € S, is singular, and y € C" satisfies y*y = 1 and fy = 0, then there
exists a unitary u such that uz = y, so that ubu* = e —yy*. Clearly, tr (ubu*f) =1 —y*fy =
0 € Vi(ubu*). O

For many Hermitian Banach *-algebras, however, the situation of Theorem 2.4 does not
occur, that is, all uniformly positive elements there automatically are invertible. This is
true, for instance, for all C*-algebras. The Wiener algebra W of all continuous on the unit
circle functions with absolutely convergent Fourier series and the norm || " ¢;e®?|| = Y |¢;
also has this property (due to Wiener’s theorem, see [7]), though it is not a C*-algebra. Its
continuous analogue — the algebra APW of all almost periodic Bohr functions with absolutely
convergent Bohr-Fourier series, — delivers yet another example of this kind, see [3]. From
now on, we impose the invertibility of uniformly positive Hermitian elements as an additional
requirement on the algebra A under consideration.

Hypothesis 2.5 If a = a* and V,(a) C (0,400), then a is invertible.

One can think of Hypothesis 2.5 as a weaker version of the spectral inclusion property.
As the following proposition shows, it in fact implies the spectral inclusion property for V,
in its full strength.

Proposition 2.6 Assume the Hypothesis 2.5 is satisfied. Then, for any a € A, o(a) C
Vi(a).

Proof.  Let us show first that a uniformly positive Hermitian element a has a positive
spectrum. The spectrum o(a) is a priori real, and does not contain zero due to Hypothesis 2.5.
For any A < 0, Vi.(a—Xe) = Vi(a)— A C (0,400). Thus, a— Ae is uniformly positive together
with a itself, and is therefore invertible.

We now turn to the general case. It suffices to show that all elements a € A with 0 ¢ V,(a)
are invertible. Multiplying a by an appropriate non-zero scalar and using convexity of V,(a),
we may without loss of generality suppose that V,(a) is contained in the open right half
plane C,. But then a = b+ ic where b is uniformly positive, and both b and ¢ are Hermitian.
As was shown earlier, the spectrum of b is positive. According to Lemma 2.1, b admits a
Hermitian square root . Then

1 : -1

cx™ N = iz( !

a=12°+ic=uxz(e+ir” cx” —ie)r.

Since the element z 'cz™!

1

is Hermitian together with x and c¢, its spectrum is real. Thus,
x ez~ — ie is invertible, and so is a.

O

Proposition 2.7 Assume Hypothesis 2.5 is satisfied. Let a € A be invertible and such that

V.(a) is contained in the closed right halfplane. Then V,(a™') is also contained in the closed
right halfplane.



Proof. Write a = b+ic, where b and ¢ are Hermitian. Since f(b) = Rf(a) for all f € S,, the
x-numerical range of b is non-negative. Thus, b + e is uniformly positive, for every ¢ > 0.
Now

(a+ee)(a+cee) ' (a+ce)* = (a+ee)* = (b+ee) —ic,

and (for ¢ > 0 sufficiently close to zero)
(a+ce) ' =(a+ee) ' (b+ee) ((a+ee)™!) —i(a+ee)c((atee)™).

Due to Proposition 2.6, the spectrum of the uniformly positive element b + ce is positive.
Let x be its Hermitian square root which exists due to Lemma 2.1. Then

(a+ee) ' (b+ee) ((a+ ee)_l)* = 22", where z = (a + ce) "'z,

so that its x-numerical range is non-negative. Hence, V,((a+¢e)™"!) is contained in the closed
right halfplane. Passing to the limit when € — 0, we obtain the required property. O

We are now ready to establish the x-numerical range behavior of the fractional powers
considered in Section 1.

Theorem 2.8 Let A be a Banach *-algebra satisfying Hypothesis 2.5, and let a € A be such
that (1.1) holds. Then for every w € (0,1) there exists b, — the wth power of a — such that
Vi(by) lies in the sector

S, ={re?:r >0, 0] <wr}.

In fact, V,(b,) even lies inside a certain sector with the opening wm. For w being a reciprocal
of an integer the element b, satisfying the containment condition Vi (b,) C S, is unique.

Proof. Existence. It suffices to show that for elements a € A with
V(a) C {z: Imz > 0} (2.2)
there exists the wth power of a, say b, such that
Vi(b,) C {re®:r >0, 0 <0 <wr}. (2.3)

Indeed, for any a satisfying (1.1) it would then be possible to use the representation a = age®
with V'(ag) lying in the upper half plane and —7 < a < 0, and then choose the wth power
of a as the product of the wth power of ay by e*.

So, without loss of generality we may suppose (2.2). Temporarily, let us impose a stronger
condition that V' (a) lies in the open upper half plane; this restriction will be removed later.
Under this condition a is of course invertible, and the standard wth power of a, obtained
with the use of functional calculus, can be represented as

b, = L A ((a=Xe)™"+ A7 "e) dA. (2.4)

211 Tr.»
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Here T'g, is the counterclockwise oriented contour consisting of the half circles Re®, re®
(0 <0 < 7) and line segments [r, R|, [-R, —r] with such a choice of (0 <)r < R that o(a)
lies inside T'g,. (Of course, the summand A~'e does not change the value of the integral
(2.4) but it is used to improve the convergence when later we let R — c0.)

Observe that the mirror image —I'g, of the curve I'g, does not contain any singularities
of (@ — Ae)™! + A le in its interior. Thus,

1

T —Tg.,

A ((a=Xxe) ™"+ A7 "e) d. (2.5)

Multiplying (2.4) and (2.5) by €% and e, respectively (at the moment, ¢ is arbitrary;
certain conditions on its choice will be imposed shortly), adding, and taking the limit in the
right hand side when » — 0, R — oo (note that the integrals along the half circles then tend
to zero):

. 1 , e [
ezﬁbw — %(e—zﬁ _ elé)/o x¥ ((a — a:e)_l + x_le) dx
U citerwm) _ ierom)y [ L L
—q w 7 wT w - - =
%(e —e )/_OOW ((a—ze) " +2"e) do =
. o . 0
_ smf/ ¥ ((a _ me)fl +x716) dr — M/ || ((a — 376)71 +afle) dz.
™ 0 d -

Therefore, for any f € S,:

Im f(e*b,) = _sing /00 2“Im f ((a — ze)™") dz
0

™

— M/ z|“Im f ((a — ze)™") dz. (2.6)

T —00

Due to (2.2), Vi(a — ze) (= Vi(a) — x) lies in the upper half plane for any = € R. Applying
Proposition 2.7 to —i(a — ze), we conclude that V, ((a — ze)~!) lies in the lower half plane.
Thus, for all £ € [0, (1 — w)n] formula (2.6) implies that Im f(eb,) > 0. In other words,
(2.3) holds.

Consider now an arbitrary element a € A satisfying (2.2). Think of it as a limit of the

elements a, = a + ice when € | 0. As we just found out, for each of a. the w-th power
constructed as in Theorem 1.2 has *-numerical range satisfying (2.3). Using the continuity

of the w-th power of z as a function of z (Corollary 1.3 applied to —ia) and the continuity
of Vi(2) as a function of z, we see that the same inclusion (2.3) holds after taking the limit.

Uniqueness for w = 1/m, m positive integer. In case of invertible a € A, it follows from
Theorem 1.2. Suppose now that for a (naturally, non-invertible) element a € A satisfying
(1.1) there exist c;,c; € A such that Vi(c;) C Sy, ¢f' = a (j = 1,2). Let by(e,j) = ¢; + ee.
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Then b, (¢, j) is the w-th power of the (invertible) element (c; + ee)™ with V. (b, (€, 7)) C S,
If € is small enough, then (c; + ee)™ satisfies (1.1) together with a, so that b, (e, j) must
satisfy the inequality (Corollary 1.3):

1€ 1) = b (€, 2)[| < Kl(er + €)™ — (o + ee)™[|*.

Letting € | 0 we see that the right hand side of the latter inequality converges to 0 while the
left hand side converges to ||c; — ¢3||- Thus, ¢; = co. O

For the case of square roots, that is, w = 1/2, a different approach to the proof of
Theorem 2.8 is possible. It is based on the Lyapunov’s theorem on the uniform positivity of
the (unique) solution w € A of the equation

wa +a*w = h

for a € A with the spectrum in C,, and in the matrix case was utilized in [9]. A treatment
of Lyapunov’s theorem in the Hermitian Banach *-algebra setting can be found in [19].
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