On numerical ranges and roots

CHI-KWONG LI LEIBA RODMAN ILYA M. SPITKOVSKY¹
Department of Mathematics, College of William and Mary

P.O. Box 8795, Williamsburg, Virginia 23187-8795 ckli@wm.edu lxrodm@math.wm.edu ilya@math.wm.edu

Abstract Existence of the fractional powers is established in Banach algebra setting, in terms of the numerical ranges of elements involved. The behavior of the spectra and (for Hermitian *-algebras satisfying some additional hypotheses) the *-numerical range under taking these powers also is investigated.

Key Words: Root, Hermitian Banach algebra, numerical range.

Mathematics Subject Classification 2000: Primary 46K05. Secondary 15A60, 46H05, 46H30, 47A12.

0 Introduction

Let \mathcal{H} be a Hilbert space with the inner product (\cdot, \cdot) , and let $\mathcal{L}(\mathcal{H})$ be the algebra of bounded linear operators on \mathcal{H} . For $A \in \mathcal{L}(\mathcal{H})$, let

$$W(A) = \{ (Ax, x) : x \in \mathcal{H}, (x, x) = 1 \}$$

be the numerical range of A.

The following result was proved (in a slightly different form) in [15], and extended in [12], see also [11], to certain classes of unbounded operators:

Theorem 0.1 If $A \in \mathcal{L}(\mathcal{H})$ and W(A) does not contain any negative real numbers, then for every positive integer p there exists a unique $B_p \in \mathcal{L}(\mathcal{H})$ such that $B_p^p = A$ and

$$W(B) \subseteq \{z = re^{i\alpha} \in \mathbb{C} : r \ge 0, |\alpha| \le \frac{\pi}{p}\}.$$

Using techniques of linear algebra, Theorem 0.1 (for p = 2), was proved for finite dimensional \mathcal{H} in [9], [10], [8], [16].

Taking cue from Theorem 0.1, in this note we prove results concerning existence and uniqueness of roots of elements in a Banach algebra, under suitable hypotheses on numerical ranges. The proofs of our main results – Theorems 1.2 and 2.8, – make heavy use of the techniques from [15]. Since the latter paper is available in Russian only, we decided to include at least some details rather than merely give a reference. We hope that readers will find that convenient.

¹Research of all authors was supported by NSF grants.

1 Banach algebras setting

All Banach algebras will be assumed complex and unital with the unit e such that ||e|| = 1. Let \mathcal{A} be a Banach algebra. For every element $a \in \mathcal{A}$, define the Banach algebra numerical range V(a) as follows:

$$V(a) = \{ f(a) \colon f \in S \} \subseteq \mathbb{C},$$

where S is the set of bounded linear functionals f on \mathcal{A} such that f(e) = ||f|| = 1 (such functionals are called *states* of \mathcal{A}). This notion is standard, see, e.g., [1], [2] and references there. Numerical ranges of Banach algebra elements come up in a variety of settings, see, e.g., [20] for results concerning nearly Hermitian elements.

We begin with some elementary properties of V(a).

Proposition 1.1 (1) The set V(a) is closed, convex, and bounded.

- (2) $\sigma(a) \subseteq V(a)$.
- (3) If $\lambda \in \mathbb{C} \setminus V(a)$, then $\|(\lambda e a)^{-1}\| \leq d^{-1}$, where d is the distance from λ to V(a).
- (4) If $A = \mathcal{L}(\mathcal{H})$, then V(a) is the closure of W(a), for every $a \in \mathcal{L}(\mathcal{H})$.

Properties (1),(2), and (4) are proved in [1]; (3) is proved in [21].

The following result was proved in [15] for the case $\mathcal{A} = \mathcal{L}(\mathcal{H})$.

Theorem 1.2 Let A be a Banach algebra, and let $a \in A$ be such that

$$V(a)$$
 does not contain any negative real numbers. (1.1)

Let $\mathcal{A}(a)$ be the closed unital subalgebra of \mathcal{A} generated by a and e. Then for every ω , $0 < \omega < 1$, there exists $b_{\omega} \in \mathcal{A}(a)$ such that

$$b_{\omega_1} b_{\omega_2} = \begin{cases} b_{\omega_1 + \omega_2} & \text{if } \omega_1 + \omega_2 < 1\\ a & \text{if } \omega_1 + \omega_2 = 1\\ a b_{\omega_1 + \omega_2 - 1} & \text{if } \omega_1 + \omega_2 > 1 \end{cases}$$
 (1.2)

and

$$\sigma(b_{\omega}) \subseteq \{re^{i\theta} \in \mathbb{C} \colon r \ge 0, \ |\theta| < \omega\pi\}.$$

If in addition a is invertible and $\omega = \frac{1}{m}$ is the reciprocal of an integer, then b_{ω} with the above properties in unique.

Proof. We may assume, using compactness and convexity of V(a) and the hypothesis (1.1), that there exist α , $0 < \alpha < \pi$, and R > 0, and δ , $0 < \delta < \min\{\alpha, R\}$, such that V(a) is contained in the set

$$\{z = re^{i\theta} \in \mathbb{C} : 0 < r < R - \delta, -\alpha + \delta < \theta < \alpha - \delta\}.$$

(If it happens that the real line is tangential to V(a) at zero, we replace a with $e^{i\tau}a$ for some τ sufficiently close to zero; then b_p is replaced with $e^{i\tau\omega}a$.) Let Γ be the positively oriented contour composed of a part of the circle of radius R centered at zero, and of two symmetric line segments that connect zero with the circle, as follows:

$$\Gamma = \{ z = Re^{i\theta} \in \mathbb{C} \colon -\alpha \le \theta \le \alpha \}$$

$$\cup \{z = re^{i\alpha} \in \mathbb{C} \colon 0 \le r \le R\} \cup \{z = re^{-i\alpha} \in \mathbb{C} \colon 0 \le r \le R\}.$$

If μ, ν are positive real numbers smaller then R, we let $\Gamma_{\mu,\nu}$ be the curve obtained from Γ by cutting out segments with endpoint zero of lengths μ and ν from the two symmetric line segments:

$$\Gamma_{\mu,\nu} = \{ z = Re^{i\theta} \in \mathbb{C} : -\alpha \le \theta \le \alpha \}$$

$$\cup \{ z = re^{i\alpha} \in \mathbb{C} : \mu < r < R \} \cup \{ z = re^{-i\alpha} \in \mathbb{C} : \nu < r < R \}.$$

Let $\varepsilon_0 > 0$ be so small that the spectral radius of $a + \varepsilon e$ is smaller than R, for every $\varepsilon \in [0, \varepsilon_0]$. Consider the following curve integrals:

$$I(\mu,\nu,\varepsilon) := \frac{1}{2\pi i} \int_{\Gamma_{\mu,\nu}} (\lambda)^{\omega} (\lambda e - (a + \varepsilon e))^{-1} d\lambda \in \mathcal{A},$$

where $0 \le \varepsilon \le \varepsilon_0$, and where $(\lambda)^{\omega}$ is the analytic branch of the ω -th power function defined by the property that $(\lambda)^{\omega} > 0$ for $\lambda > 0$. Define

$$a_{\varepsilon,\omega} := \lim_{\mu,\nu\to 0} I(\mu,\nu,\varepsilon) \in \mathcal{A}.$$

For $0 < \varepsilon \le \varepsilon_0$ the limits $a_{\varepsilon,\omega}$ exist, and by functional calculus we have

$$a_{\varepsilon,\omega_1} a_{\varepsilon,\omega_2} = \begin{cases} a_{\varepsilon,\omega_1 + \omega_2} & \text{if } \omega_1 + \omega_2 < 1\\ a + \varepsilon e & \text{if } \omega_1 + \omega_2 = 1\\ (a + \varepsilon e) a_{\varepsilon,\omega_1 + \omega_2 - 1} & \text{if } \omega_1 + \omega_2 > 1 \end{cases}$$

$$(1.3)$$

and

$$\sigma(a_{\varepsilon,\omega}) \subseteq \{z = re^{i\theta} \in \mathbb{C} : r > 0, -\omega\pi < \theta < \omega\pi\}.$$
(1.4)

To include also the case when $\varepsilon = 0$, we argue as follows. Fix $\mu, \nu, \mu', \nu' \in (0, R)$, and suppose for simplicity of notation that $\mu' \leq \mu, \nu' \leq \nu$. Then

$$2\pi \|I(\mu,\nu,\varepsilon) - I(\mu',\nu',\varepsilon)\| \le \int |(\lambda)^{\omega}| \|(\lambda e - (a+\varepsilon e))^{-1}\| |d\lambda|, \tag{1.5}$$

where the integral is taken over two line segments

$$\{z = re^{i\alpha} \in \mathbb{C} \colon \mu' \le r \le \mu\} \cup \{z = re^{-i\alpha} \in \mathbb{C} \colon \nu' \le r \le \nu\}.$$
 (1.6)

By Proposition 1.1(3), for $\lambda = re^{\pm i\alpha}$, r > 0 we have

$$\|(\lambda e - (a + \varepsilon e))^{-1}\| \le \frac{1}{r \sin \delta},$$

and therefore the right hand side of (1.5) does not exceed

$$\int_{\mu' < r < \mu} r^{\omega} \frac{1}{r \sin \delta} dr + \int_{\nu' < r < \nu} r^{\omega} \frac{1}{r \sin \delta} dr = \frac{1}{\omega \sin \delta} \left((\mu')^{\omega} - (\mu)^{\omega} + (\nu')^{\omega} - (\nu)^{\omega} \right),$$

which tends to zero as μ' , μ , ν' , $\nu \to 0$. Thus, $a_{\varepsilon,\omega}$, and in particular $a_{0,\omega}$, converges in \mathcal{A} . Moreover, the convergence

$$\lim_{\mu,\nu\to 0} I(\mu,\nu,\varepsilon)$$

is uniform in $\varepsilon \in [0, \varepsilon_0]$. Also, for every fixed μ, ν (0 < μ, ν < R), the convergence

$$\lim_{\varepsilon \to 0} \left[(\lambda)^{\omega} (\lambda e - (a + \varepsilon e))^{-1} \right] = (\lambda)^{\omega} (\lambda e - a)^{-1}$$

is uniform on $\Gamma_{\mu,\nu}$, because the spectra $\sigma(a+\varepsilon e)$, $0 \le \varepsilon \le \varepsilon_0$, are uniformly separated from $\Gamma_{\mu,\nu}$. By a well known theorem on integrals depending on a parameter (see [6], for example), we have

$$\lim_{\varepsilon \to 0} a_{\varepsilon,\omega} = \lim_{\varepsilon \to 0} \lim_{\mu,\nu \to 0} I(\mu,\nu,\varepsilon)$$

$$= \frac{1}{2\pi} \lim_{\mu,\nu \to 0} \int_{\Gamma_{\mu,\nu}} \left[\lim_{\varepsilon \to 0} (\lambda)^{\omega} (\lambda e - (a + \varepsilon e))^{-1} \right] d\lambda$$

$$= \frac{1}{2\pi} \lim_{\mu,\nu \to 0} \int_{\Gamma_{\mu,\nu}} (\lambda)^{\omega} (\lambda e - a)^{-1} d\lambda$$

$$= a_{0,\omega}.$$

Passing to the limit when $\varepsilon \to 0$ in (1.3), we obtain equalities (1.2), with $b_{\omega} = a_{0,\omega}$.

The proof above shows that $a_{\varepsilon,\omega} \in \mathcal{A}(a)$ for $0 \le \varepsilon \le \varepsilon_0$. Since the set $\{z \in \mathbb{C}: z = re^{i\alpha}, r > 0, |\alpha| < \omega\pi\}$ is convex, in view of (1.4), also

$$\sigma_0(a_{\varepsilon,\omega}) \subset \{ z \in \mathbb{C} \colon z = re^{i\alpha}, \ r > 0, \ |\alpha| < \omega \pi \},$$
 (1.7)

where $\sigma_0(x)$ is the spectrum of $x \in \mathcal{A}(a)$ with respect to the algebra $\mathcal{A}(a)$. Let X be the compact Hausdorff space of maximal ideals of $\mathcal{A}(a)$, and let $\hat{x} \in C(X)$, the Banach space of continuous complex functions on X with the maximum modulus norm, be the Gelfand transform of $x \in \mathcal{A}(a)$. Since the Gelfand transform is continuous (for this and other properties of Gelfand transform used here, see, e.g., [4], or [17, Theorem 3.1.5]), we have

$$\lim_{\varepsilon \to 0} \widehat{a_{\varepsilon,\omega}} = \widehat{a_{0,\omega}}. \tag{1.8}$$

Since $\sigma_0(x) = \sigma(\hat{x})$ for every $x \in \mathcal{A}(a)$, and since the spectrum of an element of C(X) coincides with its range (as a function on X), it follows from (1.7) and (1.8) that

$$\sigma(a_{0,\omega}) \subseteq \sigma_0(a_{0,\omega}) = \sigma(\widehat{a_{0,\omega}}) \subset \{z \in \mathbb{C} \colon z = re^{i\alpha}, \ r \ge 0, \ |\alpha| \le \omega\pi\}.$$

Observe that $\sigma(a_{0,\omega})$ cannot contain points on the open rays $\{z \in \mathbb{C}: z = re^{\pm i\omega\pi}, r > 0\}$, because this would contradict the hypothesis (1.1), in view of the spectral mapping theorem.

The uniqueness statement follows from the functional calculus: If $\omega = \frac{1}{m}$, where m is a positive integer, and if $c_{\omega} \in \mathcal{A}$ is also a ω -th power of a with the property

$$\sigma(c_{\omega}) \subseteq \{z \in \mathbb{C} : z = re^{i\alpha}, \ r > 0, \ |\alpha| < \omega\pi\},$$

then

$$c_{\omega} = h(c_{\omega}^{m}) = h(a) = b_{\omega}, \qquad h(z) = z^{\omega},$$

where in the first equality we have used the property that the functional calculus respects composition of functions (see, e.g., Section VII.3 in [5]).

In general, b_{ω} in Theorem 1.2 is not unique: the $n \times n$ zero matrix $(n \ge 2)$ has a continuum of p-th roots, for $p = 2, 3, \ldots$

Corollary 1.3 Denote by $Q(\alpha)$, $0 < \alpha < \pi$, the set of all elements $a \in \mathcal{A}$ such that the set V(a) is contained in the wedge

$$\{z = re^{i\theta} \in \mathbb{C} : r \ge 0, -\alpha \le \theta \le \alpha\}.$$

Then for every fixed ω , $0 < \omega < 1$, there exists a constant K > 0 such that

$$||b_{\omega}(a') - b_{\omega}(a'')|| \le K||a' - a''||^{\omega}$$

for every $a', a'' \in Q(\alpha)$.

The proof may be obtained as a by-product of the proof of Theorem 1.2. Note that [15] gives (in a slightly different set-up) a numerical value of the constant K.

2 Hermitian Banach *-algebras setting

Theorem 1.2 does not provide information about the numerical range of b_{ω} . The right setting for such results is in the Hermitian Banach *-algebras, with the numerical range changed to the *-numerical range. We recall the basic definitions; [17], [18] are compehensive reference works on this subject. A Banach algebra \mathcal{A} is called Banach *-algebra if a conjugate linear involution * : $\mathcal{A} \to \mathcal{A}$ is introduced in \mathcal{A} such that $(xy)^* = y^*x^*$ for all $x, y \in \mathcal{A}$. Then $e^* = e$. If \mathcal{A} is a Banach *-algebra, an element $x \in \mathcal{A}$ is called Hermitian if $x = x^*$. A Banach *-algebra is called Hermitian Banach *-algebra if every Hermitian element has real spectrum. In the rest of this section, \mathcal{A} will stand for a fixed Hermitian Banach *-algebra.

The standard functional calculus leads to the following well-known statement.

Lemma 2.1 A Hermitian element with positive spectrum admits a Hermitian square root.

Denote by S_* the set of bounded linear functionals f on \mathcal{A} such that f(e) = ||f|| = 1 and $f(xx^*) \geq 0$ for every $x \in \mathcal{A}$.

The *-numerical range of $a \in \mathcal{A}$ is defined as follows:

$$V_*(a) = \{ f(a) : f \in S_* \} \subseteq \mathbb{C}.$$

Clearly, $V_*(a) \subseteq V(a)$. If \mathcal{A} is a C^* -algebra, then in fact $V_*(a) = V(a)$. For any Banach *-algebra, the set $V_*(a)$ is compact and convex. It is easy to verify that $f(x^*) = \overline{f(x)}$ for every $f \in S_*$ and every $x \in \mathcal{A}$. Therefore, for any Hermitian $b \in \mathcal{A}$, $V_*(b) \subset \mathbb{R}$. For the converse statement to hold, that is, for all elements $x \in \mathcal{A}$ with real *-numerical range to be Hermitian, it is necessary and sufficient that

$$V_*(x) = \{0\}, \ x = x^* \implies x = 0.$$

The latter property holds if and only if the involution * is essential (see [7]), and is of course valid for C^* -algebras, as well as in many other instances. However, it is not required for our considerations.

An element $x \in \mathcal{A}$ is called *uniformly positive* if there exists $\varepsilon > 0$ such that $z \geq \varepsilon$ for every $z \in V_*(x)$. The set of uniformly positive elements is a convex cone.

Proposition 2.2 If $b \in A$ is invertible, then b^*b is uniformly positive.

Proof. Choose a positive $\delta < \|(bb^*)^{-1}\|$. Then the element $e - \delta(bb^*)^{-1}$ is Hermitian. Its spectrum lies in the 1-neighborhood of 1 and, being real, is therefore positive. Due to Lemma 2.1, there exists a Hermitian square root x of $e - \delta(bb^*)^{-1}$. Consequently,

$$b^*b - \delta e = b^*(e - \delta(bb^*)^{-1})b = b^*x^2b = (xb)^*(xb).$$

From the definition of S_* , then

$$0 \le f(b^*b - \delta e) = f(b^*b) - \delta$$
 for any $f \in S_*$.

In other words, $V_*(b^*b) \subset [\delta, +\infty)$.

Elements of the form b^*b with invertible b are, of course, invertible. The following example shows that, in general, uniformly positive elements do not have to be invertible.

Example 2.3 Let \mathcal{A} be the algebra of 2×2 matrices with the conjugate transpose as the involution *, and with the norm

$$||a|| = \max\{\ell_1(ax) : \ell_1(x) \le 1\}.$$

Identify $f \in \mathcal{A}^*$ with elements in \mathcal{A} such that

$$f(a) = (a, f) := \operatorname{tr}(af^*),$$

where tr a stands for the trace of a matrix a. It is well known that the dual norm of ℓ_1 is the ℓ_{∞} norm, and (see [1, Chapter 3]) the set S of states is the convex hull of the set of extreme vector states, i.e.,

$$S = \operatorname{conv} \{ yx^* : y \in \mathcal{E}_{\infty}, x \in \mathcal{E}_1, y^*x = 1 \},$$

$$(2.1)$$

where "conv" denotes "the convex hull of", and

$$\mathcal{E}_{\infty} = \{(y_1, y_2)^t \in \mathbb{C}^2 : |y_1| = |y_2| = 1\}$$
 and $\mathcal{E}_1 = \{(x_1, x_2)^t \in \mathbb{C}^2 : |x_1| + |x_2| = 1\}.$

Thus

$$V(a) = \operatorname{conv} \{ y^* a x : y \in \mathcal{E}_{\infty}, x \in \mathcal{E}_1, y^* x = 1 \}.$$

Since $f \in S$ is an element of S_* if and only if

$$f(a^*a) = (a^*a, f) \ge 0$$
 for all $a \in \mathcal{A}$,

we see that S_* consists of all the positive semidefinite matrices in S, and

$$V_*(a) = \{(a, f) : f \in S_*\}$$

consists of all the numbers of the form (a, f), where f is a positive semidefinite matrix in S. Suppose

$$a = \left[\begin{array}{cc} 4 & 2 \\ 2 & 1 \end{array} \right].$$

Then 5 is an eigenvalue of a and (a, p) = 5 for a positive semidefinite p if and only if p = a/5. Clearly, $a/5 \notin S$. Furthermore, since S has the form (2.1), if $f = (f_{ij}) \in S$ then $|f_{12}| \leq |f_{22}|$. So, $a/5 \notin S_*$. As a result, $(a, a/5) = 5 \notin V_*(a)$.

One can apply a similar argument to show that the other eigenvalue of a, namely, 0, is not in $V_*(a)$; alternatively, one may consider 5e - a. So, $V_*(a)$ is a closed interval in (0, 5). Thus, a delivers an example of a non-invertible uniformly positive element. Observe also that yet another familiar property fails on the element a, namely, the uniform positivity of the products u^*au , where a is uniformly positive and u is invertible. To this end, choose $\varepsilon > 0$ such that $V_*(a - \varepsilon e) \subseteq (0, 5)$. Let u be unitary such that

$$\tilde{a} = u^*(a - \varepsilon e)u = \begin{bmatrix} 5 - \varepsilon & 0 \\ 0 & -\varepsilon \end{bmatrix}.$$

Then $f = e_2 e_2^* \in S_*$ and thus, $(\tilde{a}, f) = -\varepsilon \in V_*(\tilde{a})$. Hence, $V_*(a - \varepsilon e) \subseteq (0, \infty)$ but $V_*(u^*(a - \varepsilon e)u) \not\subseteq [0, \infty)$.

This example is a manifestation of a general phenomenon described in Theorem 2.4 below. To formulate it, we need to fix some notation. Let ν be a norm on \mathbb{C}^n . Its dual norm ν^D on \mathbb{C}^n is defined by

$$\nu^{D}(y) = \max\{|x^*y| : x \in \mathbb{C}^n, \ \nu(x) = 1\},$$

and the norm $\|\cdot\|_{\nu}$ on M_n , the algebra of $n \times n$ complex matrices with the conjugate transpose as the * operation, induced by ν is defined by

$$||a||_{\nu} = \max\{\nu(ax) \colon x \in \mathbb{C}^n, \ \nu(x) \le 1\}.$$

Identify every $f \in M_n$ with the linear functional $a \mapsto \operatorname{tr}(af^*)$ on M_n . Then the set S of states of $(M_n, \|\cdot\|_{\nu})$ is the convex hull of the set of vector states

$$\mathcal{R} := \{ yx^* \in M_n \colon 1 = \nu(x) = \nu^D(y) = x^*y \}$$

(see [14, Corollary 2.2], for example). The set S_* consists of matrices in S that are positive semi-definite.

Theorem 2.4 Let ν be a norm on \mathbb{C}^n not equal to a multiple of the ℓ_2 norm, and let $\|\cdot\|_{\nu}$ be the corresponding induced norm on M_n . Suppose a^* denotes the conjugate transpose of $a \in M_n$. Then there exists a vector $x \in \mathbb{C}^n$ such that $x^*x = \operatorname{tr}(xx^*) = 1$ and $xx^* \notin S_*$. Consequently, $b = e - xx^* \in M_n$ is singular, and $V_*(b) \subseteq (0, \infty)$ does not contain the spectrum of b. Moreover, if there exists a singular matrix in S_* , then there exists a unitary u such that $0 \in V_*(ubu^*)$.

Observe that there are many norms ν on \mathbb{C}^n such that S_* contains singular matrices. For example, if ν is a symmetric norm on \mathbb{C}^n , then S_* always contains E_{11} .

Proof. First, note that $\operatorname{tr}(xy^*) \leq \nu(y)\nu^D(x)$ for every $x, y \in \mathbb{C}^n$. Suppose S_* contains xx^* for any vector $x \in \mathbb{C}^n$ with $\operatorname{tr}(xx^*) = 1$. Then for any $x \in \mathbb{C}^n$ with $\operatorname{tr}(xx^*) = 1$, xx^* can be written as a convex combination of matrices in \mathbb{R} . Thus, there exist positive numbers t_1, \ldots, t_k summing up to one such that either $xx^* = x(\sum_{j=1}^k t_j v_j)^*$ with $\nu(v_j)\nu^D(x) = 1$, or $xx^* = (\sum_{j=1}^k t_j u_j)x^*$ with $\nu^D(u_j)\nu(x) = 1$. In the former case, we have $x = \sum_{j=1}^k t_j v_j$, and hence

$$1 = \operatorname{tr}(xx^*) \le \sum_{j=1}^k t_j \operatorname{tr}(xv_j^*) \le \sum_{j=1}^k t_j \nu^D(x) \nu(v_j) = 1,$$

and

$$\operatorname{tr}(xx^*) = \sum_{j=1}^k t_j \nu^D(x) \nu(v_j) \ge \nu^D(x) \nu(x).$$

It follows that $\nu^D(x)\nu(x) = 1$ (in the latter case, analogous arguments can be used to prove this equality) for any $x \in \mathbb{C}^n$ with $\operatorname{tr}(xx^*) = 1$. In other words, there is a support plane of the unit norm ball of ν in \mathbb{C}^n at $x/\nu(x)$ with normal vector in the direction of x. This can only happen if ν is a multiple of the ℓ_2 norm (this fact is a particular case of a much more general result [13, Theorem 3]), which is a contradiction.

Now, suppose $x \in \mathbb{C}^n$ satisfies $\operatorname{tr}(xx^*) = 1$ and $xx^* \notin S_*$, and suppose $b = e - xx^*$. Then for any $f \in S_*$, which is a positive semidefinite matrix with trace one, we have $\operatorname{tr}(bf) = 1 - \operatorname{tr}(xx^*f) > 0$. Thus, $V_*(b) \subseteq (0, \infty)$.

Furthermore, if $f \in S_*$ is singular, and $y \in \mathbb{C}^n$ satisfies $y^*y = 1$ and fy = 0, then there exists a unitary u such that ux = y, so that $ubu^* = e - yy^*$. Clearly, $\operatorname{tr}(ubu^*f) = 1 - y^*fy = 0 \in V_*(ubu^*)$.

For many Hermitian Banach *-algebras, however, the situation of Theorem 2.4 does not occur, that is, all uniformly positive elements there automatically are invertible. This is true, for instance, for all C^* -algebras. The Wiener algebra W of all continuous on the unit circle functions with absolutely convergent Fourier series and the norm $\|\sum c_j e^{ikx}\| = \sum |c_j|$ also has this property (due to Wiener's theorem, see [7]), though it is not a C^* -algebra. Its continuous analogue – the algebra APW of all almost periodic Bohr functions with absolutely convergent Bohr-Fourier series, – delivers yet another example of this kind, see [3]. From now on, we impose the invertibility of uniformly positive Hermitian elements as an additional requirement on the algebra \mathcal{A} under consideration.

Hypothesis 2.5 If $a = a^*$ and $V_*(a) \subset (0, +\infty)$, then a is invertible.

One can think of Hypothesis 2.5 as a weaker version of the spectral inclusion property. As the following proposition shows, it in fact implies the spectral inclusion property for V_* in its full strength.

Proposition 2.6 Assume the Hypothesis 2.5 is satisfied. Then, for any $a \in \mathcal{A}$, $\sigma(a) \subset V_*(a)$.

Proof. Let us show first that a uniformly positive Hermitian element a has a positive spectrum. The spectrum $\sigma(a)$ is a priori real, and does not contain zero due to Hypothesis 2.5. For any $\lambda < 0$, $V_*(a - \lambda e) = V_*(a) - \lambda \subset (0, +\infty)$. Thus, $a - \lambda e$ is uniformly positive together with a itself, and is therefore invertible.

We now turn to the general case. It suffices to show that all elements $a \in \mathcal{A}$ with $0 \notin V_*(a)$ are invertible. Multiplying a by an appropriate non-zero scalar and using convexity of $V_*(a)$, we may without loss of generality suppose that $V_*(a)$ is contained in the open right half plane \mathbb{C}_+ . But then a = b + ic where b is uniformly positive, and both b and c are Hermitian. As was shown earlier, the spectrum of b is positive. According to Lemma 2.1, b admits a Hermitian square root x. Then

$$a = x^{2} + ic = x(e + ix^{-1}cx^{-1})x = ix(x^{-1}cx^{-1} - ie)x.$$

Since the element $x^{-1}cx^{-1}$ is Hermitian together with x and c, its spectrum is real. Thus, $x^{-1}cx^{-1} - ie$ is invertible, and so is a.

Proposition 2.7 Assume Hypothesis 2.5 is satisfied. Let $a \in \mathcal{A}$ be invertible and such that $V_*(a)$ is contained in the closed right halfplane. Then $V_*(a^{-1})$ is also contained in the closed right halfplane.

Proof. Write a = b + ic, where b and c are Hermitian. Since $f(b) = \Re f(a)$ for all $f \in S_*$, the *-numerical range of b is non-negative. Thus, $b + \varepsilon e$ is uniformly positive, for every $\varepsilon > 0$. Now

$$(a + \varepsilon e)(a + \varepsilon e)^{-1}(a + \varepsilon e)^* = (a + \varepsilon e)^* = (b + \varepsilon e) - ic,$$

and (for $\varepsilon > 0$ sufficiently close to zero)

$$(a+\varepsilon e)^{-1} = (a+\varepsilon e)^{-1}(b+\varepsilon e)\left((a+\varepsilon e)^{-1}\right)^* - i(a+\varepsilon e)^{-1}c\left((a+\varepsilon e)^{-1}\right)^*.$$

Due to Proposition 2.6, the spectrum of the uniformly positive element $b + \varepsilon e$ is positive. Let x be its Hermitian square root which exists due to Lemma 2.1. Then

$$(a+\varepsilon e)^{-1}(b+\varepsilon e)((a+\varepsilon e)^{-1})^*=zz^*$$
, where $z=(a+\varepsilon e)^{-1}x$,

so that its *-numerical range is non-negative. Hence, $V_*((a+\varepsilon e)^{-1})$ is contained in the closed right halfplane. Passing to the limit when $\varepsilon \to 0$, we obtain the required property.

We are now ready to establish the *-numerical range behavior of the fractional powers considered in Section 1.

Theorem 2.8 Let \mathcal{A} be a Banach *-algebra satisfying Hypothesis 2.5, and let $a \in \mathcal{A}$ be such that (1.1) holds. Then for every $\omega \in (0,1)$ there exists b_{ω} – the ω th power of a – such that $V_*(b_{\omega})$ lies in the sector

$$S_{\omega} = \{ re^{i\theta} \colon r \ge 0, \ |\theta| \le \omega \pi \}.$$

In fact, $V_*(b_\omega)$ even lies inside a certain sector with the opening $\omega \pi$. For ω being a reciprocal of an integer the element b_ω satisfying the containment condition $V_*(b_\omega) \subset S_\omega$ is unique.

Proof. Existence. It suffices to show that for elements $a \in \mathcal{A}$ with

$$V(a) \subset \{z \colon \text{Im} z \ge 0\} \tag{2.2}$$

there exists the ω th power of a, say b_{ω} , such that

$$V_*(b_\omega) \subset \{re^{i\theta} \colon r \ge 0, \ 0 \le \theta \le \omega\pi\}. \tag{2.3}$$

Indeed, for any a satisfying (1.1) it would then be possible to use the representation $a = a_0 e^{i\alpha}$ with $V(a_0)$ lying in the upper half plane and $-\pi \le \alpha \le 0$, and then choose the ω th power of a as the product of the ω th power of a_0 by $e^{i\alpha\omega}$.

So, without loss of generality we may suppose (2.2). Temporarily, let us impose a stronger condition that V(a) lies in the *open* upper half plane; this restriction will be removed later. Under this condition a is of course invertible, and the standard ω th power of a, obtained with the use of functional calculus, can be represented as

$$b_{\omega} = -\frac{1}{2\pi i} \int_{\Gamma_{R,\pi}} \lambda^{\omega} \left((a - \lambda e)^{-1} + \lambda^{-1} e \right) d\lambda. \tag{2.4}$$

Here $\Gamma_{R,r}$ is the counterclockwise oriented contour consisting of the half circles $Re^{i\theta}$, $re^{i\theta}$ $(0 \le \theta \le \pi)$ and line segments [r, R], [-R, -r] with such a choice of (0 <)r < R that $\sigma(a)$ lies inside $\Gamma_{R,r}$. (Of course, the summand $\lambda^{-1}e$ does not change the value of the integral (2.4) but it is used to improve the convergence when later we let $R \to \infty$.)

Observe that the mirror image $-\Gamma_{R,r}$ of the curve $\Gamma_{R,r}$ does not contain any singularities of $(a - \lambda e)^{-1} + \lambda^{-1}e$ in its interior. Thus,

$$0 = -\frac{1}{2\pi i} \int_{-\Gamma_{R,r}} \lambda^{\omega} \left((a - \lambda e)^{-1} + \lambda^{-1} e \right) d\lambda. \tag{2.5}$$

Multiplying (2.4) and (2.5) by $e^{i\xi}$ and $e^{-i\xi}$, respectively (at the moment, ξ is arbitrary; certain conditions on its choice will be imposed shortly), adding, and taking the limit in the right hand side when $r \to 0$, $R \to \infty$ (note that the integrals along the half circles then tend to zero):

$$e^{i\xi}b_{\omega} = \frac{1}{2\pi i}(e^{-i\xi} - e^{i\xi}) \int_{0}^{\infty} x^{\omega} \left((a - xe)^{-1} + x^{-1}e \right) dx$$

$$+ \frac{1}{2\pi i} \left(e^{-i(\xi + \omega \pi)} - e^{i(\xi + \omega \pi)} \right) \int_{-\infty}^{0} |x|^{\omega} \left((a - xe)^{-1} + x^{-1}e \right) dx =$$

$$- \frac{\sin \xi}{\pi} \int_{0}^{\infty} x^{\omega} \left((a - xe)^{-1} + x^{-1}e \right) dx - \frac{\sin(\xi + \omega \pi)}{\pi} \int_{-\infty}^{0} |x|^{\omega} \left((a - xe)^{-1} + x^{-1}e \right) dx.$$

Therefore, for any $f \in S_*$:

$$\operatorname{Im} f(e^{i\xi}b_{\omega}) = -\frac{\sin\xi}{\pi} \int_{0}^{\infty} x^{\omega} \operatorname{Im} f\left((a-xe)^{-1}\right) dx$$
$$-\frac{\sin(\xi+\omega\pi)}{\pi} \int_{-\infty}^{0} |x|^{\omega} \operatorname{Im} f\left((a-xe)^{-1}\right) dx. \quad (2.6)$$

Due to (2.2), $V_*(a-xe)$ (= $V_*(a)-x$) lies in the upper half plane for any $x \in \mathbb{R}$. Applying Proposition 2.7 to -i(a-xe), we conclude that $V_*((a-xe)^{-1})$ lies in the *lower* half plane. Thus, for all $\xi \in [0, (1-\omega)\pi]$ formula (2.6) implies that $\operatorname{Im} f(e^{i\xi}b_{\omega}) \geq 0$. In other words, (2.3) holds.

Consider now an arbitrary element $a \in \mathcal{A}$ satisfying (2.2). Think of it as a limit of the elements $a_{\varepsilon} = a + i\varepsilon e$ when $\varepsilon \downarrow 0$. As we just found out, for each of a_{ε} the ω -th power constructed as in Theorem 1.2 has *-numerical range satisfying (2.3). Using the continuity of the ω -th power of x as a function of x (Corollary 1.3 applied to -ia) and the continuity of $V_*(z)$ as a function of z, we see that the same inclusion (2.3) holds after taking the limit.

Uniqueness for $\omega = 1/m$, m positive integer. In case of invertible $a \in \mathcal{A}$, it follows from Theorem 1.2. Suppose now that for a (naturally, non-invertible) element $a \in \mathcal{A}$ satisfying (1.1) there exist $c_1, c_2 \in \mathcal{A}$ such that $V_*(c_j) \subset S_\omega$, $c_j^m = a$ (j = 1, 2). Let $b_\omega(\epsilon, j) = c_j + \epsilon e$.

Then $b_{\omega}(\epsilon, j)$ is the ω -th power of the (invertible) element $(c_j + \epsilon e)^m$ with $V_*(b_{\omega}(\epsilon, j)) \subset S_{\omega}$. If ϵ is small enough, then $(c_j + \epsilon e)^m$ satisfies (1.1) together with a, so that $b_{\omega}(\epsilon, j)$ must satisfy the inequality (Corollary 1.3):

$$||b_{\omega}(\epsilon,1) - b_{\omega}(\epsilon,2)|| \le K||(c_1 + \epsilon e)^m - (c_2 + \epsilon e)^m||^{\omega}.$$

Letting $\epsilon \downarrow 0$ we see that the right hand side of the latter inequality converges to 0 while the left hand side converges to $||c_1 - c_2||$. Thus, $c_1 = c_2$.

For the case of square roots, that is, $\omega = 1/2$, a different approach to the proof of Theorem 2.8 is possible. It is based on the Lyapunov's theorem on the uniform positivity of the (unique) solution $w \in \mathcal{A}$ of the equation

$$wa + a^*w = h$$

for $a \in \mathcal{A}$ with the spectrum in \mathbb{C}_+ , and in the matrix case was utilized in [9]. A treatment of Lyapunov's theorem in the Hermitian Banach *-algebra setting can be found in [19].

References

- [1] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, Cambridge University Press, London, 1971.
- [2] ______, Numerical ranges. II, Cambridge University Press, New York, 1973, London Mathematical Society Lecture Notes Series, No. 10.
- [3] A. Böttcher, Yu. I. Karlovich, and I. M. Spitkovsky, Convolution operators and factorization of almost periodic matrix functions, Birkhäuser Verlag, Basel and Boston, 2002.
- [4] J. B. Conway, A course in functional analysis, second ed., Springer-Verlag, New York, 1990.
- [5] N. Dunford and J. T. Schwartz, *Linear operators*. Part I, John Wiley & Sons Inc., New York, 1988, General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication.
- [6] G. M. Fikhtengol'ts. *The fundamentals of mathematical analysis*, Vol. I, II. Pergamon Press, 1965 (Translation from Russian).
- [7] I. Gelfand, D. Raikov, and G. Shilov, *Commutative normed rings*, Chelsea Publishing Co., New York, 1964.
- [8] C. R. Johnson and M. Neumann, Square roots with positive definite Hermitian part, Linear and Multilinear Algebra 8 (1979/80), no. 4, 353–355.
- [9] C. R. Johnson and K. Okubo, Uniqueness of matrix square roots under a numerical range condition, Linear Algebra Appl. **341** (2002), 195–199.

- [10] C. R. Johnson, K. Okubo, and R. Reams, *Uniqueness of matrix square roots and an application*, Linear Algebra Appl. **323** (2001), no. 1-3, 51-60.
- [11] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1995, Reprint of the 1980 edition.
- [12] H. Langer, Über die Wurzeln eines maximalen dissipativen operators, Acta Math. Acad. Sci. Hungar. 13 (1962), 415–424.
- [13] C. K. Li, E. Poon, and H. Schneider, *Induced norms, states, and numerical ranges*, submitted for publication.
- [14] C. K. Li and A. R. Sourour, Linear operators on matrix algebras that preserve the numerical range, numerical radius, or the states, Canadian J. of Math., to appear.
- [15] V. I. Macaev and Ju. A. Palant, On the powers of a bounded dissipative operator, Ukrain. Mat. Zh. 14 (1962), 329–337. (Russian).
- [16] D. W. Masser and M. Neumann, On the square roots of strictly quasi-accretive complex matrices, Linear Algebra Appl. 28 (1979), 135–140.
- [17] T. W. Palmer, Banach algebras and the general theory of *-algebras. Vol.I: Algebras and Banach algebras, Cambridge University Press, 1994.
- [18] T. W. Palmer, Banach algebras and the general theory of *-algebras. Vol.II, Cambridge University Press, 2001.
- [19] M. Sonis, Localization of left and right spectra in Banach algebras, Funct. Differential Equations Israel Sem. 2 (1994), 195–211 (1995).
- [20] R. R. Smith, On Banach algebra elements of thin numerical range, Math. Proc. Cambridge Philos. Soc. 86 (1979), 71–83.
- [21] J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J. (2) **20** (1968), 417–424.