A simple proof of the Craig-Sakamoto Theorem

(To appear in Linear Algebra and Its Applications)

Chi-Kwong Li ${ }^{1}$

Department of Mathematics, College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187-8795. E-mail: ckli@math.wm.edu

Abstract

We give a simple proof of the Craig-Sakamoto Theorem, which asserts that two real symmetric matrices A and B satisfy $\operatorname{det}(I-a A-b B)=\operatorname{det}(I-a A) \operatorname{det}(I-b B)$ for all real numbers a and b if and only if $A B=0$.

The Craig-Sakamoto Theorem on the independence of two quadratic forms can be stated as follows.

Theorem 1 Two $n \times n$ real symmetric matrices A and B satisfy

$$
\begin{equation*}
\operatorname{det}(I-a A-b B)=\operatorname{det}(I-a A) \operatorname{det}(I-b B) \quad \forall a, b \in \mathbf{R} \tag{1}
\end{equation*}
$$

if and only if $A B=0$.
One may see $[1,3]$ for the history and the importance of this result, and see $[2,4,5,6]$ for several proofs of it. The purpose of this note is to give a simple proof of Theorem 1. Our proof depends only on the following well known fact.

Lemma 2 Suppose $C=\left(c_{i j}\right)$ is an $n \times n$ real symmetric matrix with the largest eigenvalue equal to λ_{1}. Then $c_{i i} \leq \lambda_{1}$ for all $i=1, \ldots, n$. If $c_{i i}=\lambda_{1}$, then $c_{i j}=0=c_{j i}$ for all $j \neq i$.

For the sake of completeness, we give a short
Proof of Lemma 2 Suppose C satisfies the hypothesis of the lemma and the largest eigenvalue of C has multiplicity m with $1 \leq m \leq n$. Then there is an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ for \mathbf{R}^{n} such that $C v_{j}=\lambda_{j} v_{j}$ with $\lambda_{1}=\cdots=\lambda_{m}>\lambda_{m+1} \geq \cdots \geq \lambda_{n}$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis for \mathbf{R}^{n}. For any i with $1 \leq i \leq n$, there exist $t_{1}, \ldots, t_{n} \in \mathbf{R}$ with $\sum_{j=1}^{n} t_{j}^{2}=1$ such that $e_{i}=\sum_{j=1}^{n} t_{j} v_{j}$ and $c_{i i}=e_{i}^{t} C e_{i}=\sum_{j=1}^{n} t_{j}^{2} \lambda_{j} \leq \lambda_{1}$. The equality holds if and only if $t_{m+1}=\cdots=t_{n}=0$, i.e., e_{i} is an eigenvector of C corresponding to the largest eigenvalue. Thus, $C e_{i}=\lambda_{1} e_{i}$, and hence $c_{i i}=\lambda_{1}$ is the only nonzero entry in the i th column. Since C is symmetric, $c_{i i}$ is also the only nonzero entry in the i th row.

We are now ready to present our
Proof of Theorem 1 The (\Leftarrow) part is clear. We prove the converse by induction on n. The result is clear if $n=1$. Suppose $n>1$ and the result is true for symmetric matrices of sizes smaller than n. Let A and B be nonzero $n \times n$ real symmetric matrices satisfying (1). Denote by $\rho(C)$ the spectral radius of a square matrix C. Replacing A by $\pm A / \rho(A)$ and B by $B / \rho(B)$, we may assume that $1=\rho(A)=\rho(B)$ is the largest eigenvalue of A. Let Q be an orthogonal matrix such that $Q A Q^{t}=I_{m} \oplus \operatorname{diag}\left(a_{m+1}, \ldots, a_{n}\right)$ with $1>a_{m+1} \geq \cdots \geq a_{n}$. We shall show that $\left(Q A Q^{t}\right)\left(Q B Q^{t}\right)=0$ and hence $A B=0$.

[^0]For simplicity, we assume that $Q=I$. Let $b= \pm 1$. If $r>1$, then both A / r and $b B / r$ have eigenvalues in the open interval $(-1,1)$. Thus, $I-A / r$ and $I-b B / r$ are invertible, and

$$
\operatorname{det}(I-A / r-b B / r)=\operatorname{det}(I-A / r) \operatorname{det}(I-b B / r) \neq 0
$$

Moreover, since

$$
\operatorname{det}(I-A-b B)=\operatorname{det}(I-A) \operatorname{det}(I-b B)=0
$$

we see that 1 is the largest eigenvalue of the matrix $A+b B$ for $b= \pm 1$.
Next, we show that B is of the form $0_{m} \oplus B_{2}$. Note that all the first m diagonal entries of A are equal to the largest eigenvalue of $A \pm B$. If the first m diagonal entries of B are not all 0 , then the matrix $A+B$ or $A-B$ will have a diagonal entry larger than 1 , contradicting Lemma 2. So, all the first m diagonal entries of the matrix $A+B$ equal the largest eigenvalue. By Lemma 2 again, $A+B$ must be of the form $I_{m} \oplus C_{2}$. Hence, B is of the form $0_{m} \oplus B_{2}$ as asserted.

Now, let $A=I_{m} \oplus A_{2}$. Then for any real numbers a and b with $a \neq 1$, we have

$$
\begin{aligned}
& \operatorname{det}\left(I_{n-m}-a A_{2}-b B_{2}\right) \\
= & \operatorname{det}\left(I_{n}-a A-b B\right) / \operatorname{det}\left(I_{m}-a I_{m}\right) \\
= & \operatorname{det}\left(I_{n}-a A\right) \operatorname{det}\left(I_{n}-b B\right) / \operatorname{det}\left(I_{m}-a I_{m}\right) \\
= & \operatorname{det}\left(I_{n-m}-a A_{2}\right) \operatorname{det}\left(I_{n-m}-b B_{2}\right)
\end{aligned}
$$

By continuity, we can remove the restriction that $a \neq 1$. Using the induction assumption, we see that $A_{2} B_{2}=0$. Hence, we have $A B=0$ as desired.

References

[1] M.F. Driscoll and W.R. Gundberg Jr., A history of the development of Craig's theorem, Amer. Statist. 40:65-70 (1986).
[2] M.F. Driscoll and B. Krasnicka, An accessible proof of Craig's theorem in the general case, Amer. Statist. 49:59-62 (1995).
[3] J. Ogawa, A history of the development of Craig-Sakamoto's theorem from Japanese standpoint, Proc. Ann. Inst. Statist. Math. 41:47-59 (1993).
[4] I. Olkin, A determinantal proof of Craig-Sakamoto theorem, Linear Algebra Appl. 264:217-223 (1997).
[5] J.G. Reid and M.F. Driscoll, An accessible proof of Craig's theorem in the noncentral case, Amer. Statist. 42:139-142 (1988).
[6] O. Taussky, On a matrix theorem of A.T. Craig and H. Hotelling, Indagationes Mathematicae 20 (1958), 139-141.

[^0]: ${ }^{1}$ Research partially supported by an NSF grant.

