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Abstract
Let F (A) be the numerical range or the numerical radius of a square matrix A. Denote by A◦B

the Schur product of two matrices A and B. Characterizations are given for mappings on square
matrices satisfying F (A ◦ B) = F (φ(A) ◦ φ(B)) for all matrices A and B. Analogous results are
obtained for mappings on Hermitian matrices.

2000 Mathematics Subject Classification. 15A04, 15A18, 15A60
Key words and phrases. Numerical range, numerical radius, Schur product.

1 Introduction

Let Mn be the algebra of n×n complex matrices. Denote the numerical range and numerical radius
of A ∈Mn by

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1} and r(A) = max{|µ| : µ ∈W (A)}.

There has been considerable interest in studying the structure of maps preserving the numerical
range or radius. Suppose U ∈Mn is a unitary matrix. Define the map φ on Mn by

A 7→ U∗AU or A 7→ U∗AtU. (1.1)

Then φ is a C∗-isomorphism on the C∗-algebra Mn, and a Jordan isomorphism on the Jordan
algebra Hn of Hermitian n×n matrices. Evidently, φ is bijective linear and preserves the numerical
range, i.e., W (φ(A)) = W (A) for all A. Pellegrini [14] (see also [11]) obtained an interesting
result on numerical range preserving maps on a general C∗-algebra, which implies that a linear
map φ : Mn → Mn preserving the numerical range must be of this form. One easily deduces
that the conclusion is also valid for linear maps φ defined on Hn. In [4], it was shown that a
multiplicative map φ : Mn →Mn satisfies W (φ(A)) = W (A) for all A if and only if φ has the form
A 7→ U∗AU for some U ∈ Mn. In [7], the authors replaced the condition that “φ is multiplicative
and preserves the numerical range” on the surjective map φ : Mn → Mn by the condition that
“W (AB) = W (φ(A)φ(B)) for all A,B”, and showed that such a map has the form A 7→ ±U∗AU
for some unitary operator U ∈Mn. They also showed that a surjective map φ : Mn →Mn satisfies
W (ABA) = W (φ(A)φ(B)φ(A)) for all A,B ∈ Mn if and only if φ has the form A 7→ µU∗AU or
A 7→ µU∗AtU for some unitary operator U ∈ Mn and µ ∈ C with µ3 = 1. Similar results for
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mappings on Hn were also obtained. It is interesting to note that all the results mentioned above
show that under rather mild assumptions, a numerical range preserving map φ on V = Mn or Hn

must be a multiple of the standard map (1.1).
There is also interest in studying numerical radius preserving maps on matrices or operators.

In [9] (see also [2]), it is shown that linear preservers of the numerical radius on V = Mn or Hn

have the form
A 7→ µU∗AU or A 7→ µU∗AtU

for some unitary U and scalar µ with |µ| = 1. By the result in [4], if φ : V → V is a multiplicative
preserver of the numerical radius, then φ has the form

A 7→ µU∗AU or A 7→ µU∗AU

for some unitary U ∈Mn and unit scalar µ. By the result in [1], if φ : V → V satisfies

r(φ(A)− φ(B)) = r(A−B) for all A,B ∈ V,

then φ has the form
A 7→ µU∗AτU +R

for some unit scalar µ, R ∈ V, and unitary U ∈Mn, where Aτ denotes A, At, A, or A∗.
In this paper, we consider the Schur product (also known as the Hadamard product) of matrices

defined by (aij) ◦ (bij) = (aijbij), which is quite different from the other types of binary products
on V. One easily sees that mappings φ in the form (1.1) will not always satisfy

W (A ◦B) = W (φ(A) ◦ φ(B)) for all A,B ∈ V (1.2)

unless the matrix in (1.1) is carefully chosen, say, U is a permutation matrix. On the other hand,
if a permutation matrix P is given, and a diagonal unitary matrix DA is assigned to each A ∈ V,
then a mapping φ of the form

A 7→ D∗
AP

tAPDA or A 7→ D∗
AP

tAtPDA

will satisfy (1.2). A more obscure operation is to choose a matrix R ∈ V so that R ◦ R = (x̄ixj)
with |x1| = · · · = |xn| = 1 and define the map φ by A 7→ R ◦A. Then

φ(A) ◦ φ(B) = R ◦R ◦ (A ◦B) = D∗
x(A ◦B)Dx,

where Dx is the diagonal matrix with diagonal entries x1, . . . , xn, and hence φ satisfies (1.2). It
turns out that the composition of the maps described above will be the totality of maps satisfying
(1.2); see Theorem 1.2.

Of course, a mapping φ satisfying (1.2) will also satisfy

r(A ◦B) = r(φ(A) ◦ φ(B)) for all A,B ∈ V. (1.3)

But there may be more admissible maps. For example, the mappings A 7→ A and A 7→ A∗ also
satisfy (1.3). Also, if a unit scalar µA is assigned to each A ∈ V, then the mapping A 7→ µAA

also satisfies (1.3). More generally, whenever A is permutationally similar to a direct sum of square
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matrices of smaller sizes, say, A1⊕· · ·⊕Ak, one can take a pair of diagonal unitary matrices DA, EA
so that DAEA ∈ V and DAEAA = ADAEA (equivalently, DAAEA is permutationally similar to
µ1A1 ⊕ · · · ⊕ µkAk for some unit scalars µ1, . . . , µk) and define φ(A) = DAAEA. Since A ◦ B will
be permutationally similar to a matrix of the form

(A1 ◦B11)⊕ · · · ⊕ (Ak ◦Bkk),

and
r(X1 ⊕ · · · ⊕Xk) = max{r(X1), . . . , r(Xk)},

we see that mappings constructed as above also satisfy (1.3). We will show that these are the only
additional maps needed to generate (by compositions) all of the maps satisfying (1.3). Specifically,
we have the following theorems (where n ≥ 2 to avoid trivialities).

Theorem 1.1. Let V = Mn or Hn, and let φ : V → V. Then r(A ◦ B) = r(φ(A) ◦ φ(B)) for
all A,B ∈ V if and only if there is a fixed permutation matrix P , a matrix R ∈ V such that
R ◦ R = (x̄ixj) with |x1| = · · · = |xn| = 1, and a mapping A 7→ (DA, EA) assigning each A ∈ V
to a pair of diagonal unitary matrices DA, EA satisfying DAEA ∈ V and DAEAA = ADAEA such
that φ has the form

X 7→ R ◦ (P tDXX
τEXP ) for all X ∈ V,

where Xτ denotes X,X,Xt, or X∗. (Of course, X = X∗ and X = Xt if V = Hn.)

We note again that the condition on DA and EA simply means that if Q is a permutation matrix
such that QtAQ = A1⊕· · ·⊕Am, thenDA and EA are chosen such that QtDAEAQ = λ1I⊕· · ·⊕λmI
accordingly.

Theorem 1.2. Let V = Mn or Hn, and let φ : Mn → Mn. Then W (A ◦ B) = W (φ(A) ◦ φ(B))
for all A,B ∈ V if and only if there is a fixed permutation matrix P , a matrix R ∈ V such that
R ◦R = (x̄ixj) with |x1| = · · · = |xn| = 1, and a mapping A 7→ DA from V to the group of diagonal
unitary matrices such that φ has the form

X 7→ R ◦ (P tD∗
XXDXP ) or X 7→ R ◦ (P tD∗

XX
tDXP ).

The sufficiencies of the theorems are clear by our discussion before the statements. We will
prove the necessities in the next two sections.

In our discussion, |v| denotes the vector obtained from v ∈ Cn by replacing each entry by its
absolute value; |A| has a similar meaning for A ∈Mn. A vector or a matrix is said to be unimodular
if all entries have moduli one. The matrix in Mn whose every entry is one is denoted by J . We say
that a vector or a matrix has support at certain entries if all other entries of the vector or matrix
equal zero. A matrix A is decomposable if it is permutationally similar to a direct sum of square
matrices of smaller sizes; otherwise, A is indecomposable. The Schur-inverse of A is denoted by
A(−1), and is defined by (A(−1))ij = A−1

ij if Aij 6= 0, and (A(−1))ij = 0 if Aij = 0. Denote by
{E11, E12, . . . , Enn} the standard basis for Mn.
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2 Proofs for complex matrices

2.1 Auxiliary results

Lemma 2.1. Suppose S ⊆Mn has n2 nonzero elements such that X ◦ Y = 0 for any X 6= Y ∈ S.
Then there are nonzero scalars µij ∈ C such that

S = {µijEij : 1 ≤ i, j ≤ n}.

Lemma 2.2. Let A be a nonnegative matrix such that A+At is irreducible. Let U be a unimodular
matrix (i.e., |Uij | = 1 for all i, j). If r(A) = r(A ◦ U) then there exist some unit scalar µ and
unimodular vector w such that A ◦ U = A ◦ (µww∗).

Proof. Let x ∈ Rn be the unique positive unit eigenvector of (A + At)/2, so r(A) = xtAx. Write
Ã = A ◦ U . Let v ∈ Cn be a unit vector such that r(Ã) = |v∗Ãv|. Let D be a diagonal unitary
such that D|v| = v. Then

r(Ã) = ||v|tD∗ÃD|v|| ≤ |v|t|D∗ÃD||v| ≤ xtAx = r(A),

so all the inequalities are in fact equalities. For the second inequality to be equality implies that
|v| = x has strictly positive entries. For the first inequality to be equality implies that there exists
µ ∈ C with |µ| = 1 such that D∗ÃD = µA. If D = diag (w), then Ã = A ◦ (µww∗) as desired.

Lemma 2.3. Let w, z be complex numbers of modulus one. Then

r

([
1 1
0 w

])
= r

([
1 1
0 z

])
⇐⇒ w = z or w = z.

Proof. Let v =
[
x y

]t
and f(θ) = r

([
1 1
0 eiθ

])
= r

([
e−iθ/2 1

0 eiθ/2

])
. Then

f(θ) = max

{∣∣∣∣∣v∗
[
e−iθ/2 1

0 eiθ/2

]
v

∣∣∣∣∣ : ‖v‖ = 1

}
= max{| cos(θ/2) + xy + i(|y|2 − |x|2) sin(θ/2)| : |x|2 + |y|2 = 1}
= max{| cos(θ/2) + i(y2 − x2) sin(θ/2)|+ xy : x2 + y2 = 1;x, y ≥ 0}.

Let y = cos(α/2), x = sin(α/2), 0 ≤ α ≤ π. We get

f(θ) = max{| cos(θ/2) + i(cosα) sin(θ/2)|+ (1/2) sinα : α ∈ [0, π]}.

Let t = sinα. We get

f(θ) = max
{√

1− sin2(θ/2)t2 + t/2 : 0 ≤ t ≤ 1
}
.

Since

[
1 1
0 eiθ

]
is not normal, its numerical range contains the eigenvalue 1 in its interior, so

f(θ) > 1. Thus the maximum is attained at some t > 0, and hence f is strictly increasing on
[−π, 0]. Since f(−θ) = f(θ), the result follows.
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Lemma 2.4. Let w, z be complex numbers of modulus one. Then

r

([
1 1
w 0

])
= r

([
1 1
z 0

])
⇐⇒ w = z or w = z.

Proof. Let f(θ) = r

([
1 1
eiθ 0

])
= r

([
1 eiθ/2

eiθ/2 0

])
and v =

[
x y

]t
. Then for θ ∈ (−π, 0),

f(θ) = max{|v∗
[

1 eiθ/2

eiθ/2 0

]
v| : ‖v‖ = 1}

= max{||x|2 + 2Re(xy)eiθ/2| : ‖v‖ = 1}

= max{|x2 + 2xyeiθ/2| : x2 + y2 = 1;x, y ≥ 0}.

Since

[
1 1
eiθ 0

]
has unimodular determinant, one eigenvalue has modulus at least one. As this

matrix is not normal (except when eiθ is real, which we’ve excluded), this eigenvalue lies in the
interior of the numerical range, so f(θ) > 1. Thus the maximum does not occur when x = 0 or
y = 0, and hence f is strictly increasing on [−π, 0]. Since f(−θ) = f(θ), the result follows.

Lemma 2.5. Let w, z be complex numbers of modulus one. Then

r


1 1 1

0 0 w

0 0 0


 = r


1 1 1

0 0 z

0 0 0


 ⇐⇒ w = z or w = z.

Proof. Let Aψ =

1 1 1
0 0 eiψ

0 0 0

, f(ψ) = r(Aψ), and

S = {v =
[
a beiθ c

]t
: a, b ≥ 0, θ ∈ [−π, π], |a|2 + |b|2 + |c|2 = 1}.

Then

f(ψ) = max
v∈S

|v∗Aψv| = max
v∈S

|a2 + abeiθ + c(a+ bei(ψ−θ))|

= max
v∈S

|a2 + abeiθ|+ |c||a+ bei(ψ−θ)|.

For ψ ∈ (−π, 0), the maximum is attained at some θ0 ∈ [−π, 0] and for some a0, b0, c0 6= 0. (If
b0 = 0 or c0 = 0, then f(ψ) = max{a2 + ab : a2 + b2 = 1} = (1 +

√
2)/2. But λmax((A∗ψ + Aψ)/2)

is the largest root of p(λ) = λ3 − λ2 − 3λ/4 + (1− cosψ)/4; since p((1 +
√

2)/2) < 0 and p(2) > 0,
f(ψ) ≥ λmax > (1 +

√
2)/2, giving a contradiction.) Thus for ε sufficiently small,

f(ψ) = |a2
0 + a0b0e

iθ0 |+ |c0||a0 + b0e
i(ψ−θ0)|

< |a2
0 + a0b0e

i(θ0+ε)|+ |c0||a0 + b0e
i((ψ+ε)−(θ0+ε))| ≤ f(ψ + ε)

5



if θ0 < 0 and

f(ψ) = a2
0 + a0b0 + |c0||a0 + b0e

iψ|

< a2
0 + a0b0 + |c0||a0 + b0e

i(ψ+ε)| ≤ f(ψ + ε)

if θ0 = 0. Thus, f is strictly increasing on [−π, 0]. Since f(−ψ) = f(ψ), the result follows.

2.2 Proof of Theorem 1.1

Assume that r(A ◦ B) = r(φ(A) ◦ φ(B)) for all A,B ∈ Mn. By Lemma 2.1, there are nonzero
µij ∈ C such that

{φ(Eij) : 1 ≤ i, j ≤ n} = {µijEij : 1 ≤ i, j ≤ n}.

Step 1. There exists a permutation matrix P such that the mapping X 7→ P tφ(X)P will map Ejj
to µjjEjj with |µjj | = 1 for all j = 1, . . . , n.

Suppose, by way of contradiction, φ(E11) = µ1Ers for some r 6= s. Then, since 1 = r(E11◦E11) =
r(µ1Ers ◦ µ1Ers), |µ1| =

√
2. Similarly, if φ(E12) = µ2Epq then |µ2| = 1 if p 6= q and |µ2| = 1/

√
2

if p = q. Let X = E11 + E12. Since r(X ◦ Eij) = r(φ(X) ◦ φ(Eij)) for all i, j, we see that
φ(X) = ξ1Ers + ξ2Epq, where |ξ1| =

√
2 and

|ξ2| =

{
1/
√

2 if p = q,

1 if p 6= q.

But then we obtain the contradiction

1 +
√

2
2

= r(X ◦X) = r(ξ21Ers + ξ22Epq) =

{
1+
√

17
4 or 1 if p = q

1,
√

2, or
√

5
2 if p 6= q.

So, φ(E11) = µjjEjj for some j. Since 1 = r(E11 ◦ E11) = r(µ2
jjEjj), we see that |µjj | = 1. A

similar conclusion holds for φ(Ekk) for all k, and our assertion follows.

Step 2. Without loss of generality, replace φ by the mapping X 7→ P tφ(X)P , so φ(Ejj) = µjjEjj
for all j. Moreover, for p 6= q, φ(Epq) = µpqErs for some r 6= s and, since 1 = r(Epq ◦ Epq) =
r(µ2

pqErs), we have |µpq| = 1. We show that Ers = Epq or Eqp.

Let X = Epp+Epq. Since r(X ◦Eij) = r(φ(X)◦φ(Eij) for all i, j, we have φ(X) = ξ1Epp+ξ2Ers
where |ξ1| = |ξ2| = 1. Since

1 +
√

2
2

= r(X ◦X) = r(ξ21Epp + ξ22Ers),

Ers must lie in the pth row or pth column. Similar consideration of Y = Eqq +Epq implies Ers lies
in the qth row or qth column, so φ(Epq) = µpqEpq or µpqEqp with |µpq| = 1 as desired.

Step 3. We show that φ(J) = J ◦R where R ◦R = µ(x̄ixj) with |µ| = |x1| = · · · = |xn| = 1.

Since {φ(Eij) : 1 ≤ i, j ≤ n} = {µijEij : 1 ≤ i, j ≤ n} for some complex units µij , and
r(Eij) = r(J ◦ Eij) = r(φ(J) ◦ φ(Eij)), we see that φ(J) = J ◦ R for some unimodular R. Now,
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n = r(J ◦ J) = r(φ(J) ◦ φ(J)) = r(J ◦ R ◦ R). Applying Lemma 2.2 with A = J and U = R ◦ R,
we get the desired conclusion.

Step 4. Interlude of four items.

Replace φ by the mapping X 7→ R(−1) ◦ φ(X), where R(−1) is the Schur inverse of R having
the (i, j)th entry equal to r−1

ij . We may then assume that φ(J) = J , and r(φ(A)) = r(φ(A) ◦ J) =
r(A ◦ J) = r(A) for all A ∈Mn.

By using |aij | = r(A ◦Eij) = r(φ(A) ◦ φ(Eij)), we have φ(A) = Aσ ◦U for some unimodular U .
Here Aσ is the matrix obtained by performing some (perhaps none) local transpositions (swapping
the apq and aqp entries for some p 6= q).

Define an equivalence relation A ∼ B if B = eiθD∗AD for some diagonal unitary D and real
number θ. Note that A ∼ B if and only if B = A ◦ (eiθww∗) for some real θ and unimodular vector
w. Some simple properties of this relation are:

1. If A ∼ B, then A ∼ B and W (A) = W (B).

2. If A1 ∼ B1 and A2 ∼ B2, then A1 ◦A2 ∼ B1 ◦B2.

Suppose B has positive entries in a principal 2× 2 submatrix, and zero entries everywhere else.
Then r(Bt) = r(B) = r(φ(B)) = r(B ◦ U) or r(Bt ◦ U) for some unimodular U . By Lemma 2.2,
φ(B) ∼ B or Bt, depending on what φ does to the off-diagonal element. We shall repeatedly use
this fact.

Step 5. We characterize the action of φ on all A supported on a particular 2×2 principal submatrix.
To simplify notation, we let n = 2. If φ(E12) = µE21, replace φ with X 7→ φ(X)t for this step. If
A has two or more zero entries, then φ(A) ∼ A ∼ A, so suppose A has at most one zero entry. We
consider three cases.

Case i: A =

[
a b

0 d

]
for some a, b, d 6= 0. We can write A ∼

[
|a| |b|
0 |d|eiδ

]
and φ(A) ∼[

|a| |b|
0 |d|eiθ

]
where δ, θ ∈ [−π, π]. Let B =

[
1/|a| 1/|b|

1 1/|d|

]
, so φ(B) ∼ B. Then

r

([
1 1
0 eiδ

])
= r(A ◦B) = r(φ(A) ◦ φ(B)) = r

([
1 1
0 eiθ

])
.

By Lemma 2.3, θ = ±δ, whence φ(A) ∼ A or A.

To show that either φ(A) ∼ A for all A =

[
a b

0 d

]
or φ(A) ∼ A for all A =

[
a b

0 d

]
, let

C =

[
1 1
0 i

]
. By replacing φ with φ if necessary, we may assume φ(C) ∼ C. Suppose B =

[
a b

c d

]
where a, b, c, d > 0. Either φ(B ◦ C) ∼ B ◦ C or B ◦ C. In the latter case,

r

([
a b

0 −d

])
= r(C ◦ (C ◦B)) = r(φ(C) ◦ φ(C ◦B))

= r(C ◦ C ◦B) = r

([
a b

0 d

])
,
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contradicting Lemma 2.2. Hence φ(B ◦ C) ∼ B ◦ C for any positive matrix B.

Define A, B as at the outset of this Case (i), and suppose φ(A) ∼ A. Then

r

([
1 1
0 ieiδ

])
= r(A ◦ C ◦B) = r(φ(A) ◦ φ(C ◦B))

= r(A ◦ C ◦B) = r

([
1 1
0 ie−iδ

])
,

whence, by Lemma 2.3, δ = 0. Thus A ∼ A, so in fact φ(A) ∼ A for all A of the form

[
a b

0 d

]
, as

desired.

Case ii: A =

[
a b

c 0

]
for some a, b, c 6= 0. We can write A ∼

[
|a| |b|
|c|eiγ 0

]
and φ(A) ∼[

|a| |b|
|c|eiθ 0

]
where γ, θ ∈ [−π, π]. Let B =

[
1/|a| 1/|b|
1/|c| 1

]
, so φ(B) ∼ B. Then

r

([
1 1
eiγ 0

])
= r(A ◦B) = r(φ(A) ◦ φ(B)) = r

([
1 1
eiθ 0

])
.

By Lemma 2.4, θ = ±γ, whence φ(A) ∼ A or A. Using an argument similar to that in Case i, we

may conclude that either φ(A) ∼ A for all A =

[
a b

c 0

]
, or φ(A) ∼ A for all such A.

We now show that, assuming φ(A) ∼ A for all A in Case i, φ(A) ∼ A for all A in Case ii.

By way of contradiction, suppose φ(A) ∼ A for all A in Case ii. Let X =

[
1 1
i i

]
, Y =

[
1 1
0 i

]
,

Z =

[
1 1
i 0

]
. We write φ(X) ∼

[
1 1
ieiγ ieiδ

]
for some γ, δ ∈ (−π, π]. Then

r

([
1 1
0 −1

])
= r(X ◦ Y ) = r(φ(X) ◦ φ(Y )) = r(φ(X) ◦ Y ) = r

([
1 1
0 −eiδ

])

whence δ = 0 by Lemma 2.3. Since φ(Z) ∼ Z,

r

([
1 1
−1 0

])
= r(X ◦ Z) = r(φ(X) ◦ φ(Z)) = r(φ(X) ◦ Z) = r

([
1 1
eiγ 0

])
whence γ = π by Lemma 2.4. But then

√
2 < r

([
1 1
i i

])
= r(X) = r(φ(X)) = r

([
1 1
−i i

])
=
√

2

gives the desired contradiction. (Note 1 + i is an eigenvalue of X and X is not normal, so 1 + i

lies in the interior of W (X) and r(X) >
√

2. Meanwhile φ(X) is equivalent to
√

2 times a unitary

matrix.) It follows that φ(A) ∼ A for all A =

[
a b

c 0

]
, as desired.
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Case iii: We still suppose φ(A) ∼ A for all A in Case i. If A has a zero in the first row,
we may use arguments similar to those in the first two cases to conclude that φ(A) ∼ A. Now

suppose A has no zero entries. Let A =

[
a b

c d

]
, Y =

[
1/a 1/b
0 1/d

]
, and Z =

[
1/a 1/b
1/c 0

]
. We write

φ(A) ∼

[
a b

ceiγ deiδ

]
where γ, δ ∈ [−π, π]. Then, since φ(Y ) ∼ Y ,

r

([
1 1
0 1

])
= r(A ◦ Y ) = r(φ(A) ◦ φ(Y )) = r

([
1 1
0 eiδ

])

whence δ = 0. Similar consideration of r(A ◦ Z) reveals γ = 0, and thus φ(A) ∼ A.

Step 6. We have shown that for all A supported on a given 2 × 2 principal submatrix, we have
φ(A) ∼ Aτ where Aτ is one of: A, A, At, or A∗. We shall show that φ has the same type of behavior
on all 2× 2 principal submatrices.

Case a: Conjugation.

Suppose now that φ(A) ∼ A for A supported on the (p, q)-submatrix, and φ(A) ∼ A for A
supported on the (r, s)-submatrix with r = p or q. We show that this gives a contradiction.
Without loss of generality, we take p = 1, q = r = 2, s = 3, and write all matrices as 3× 3.

Let w = exp(iπ/4), A =

w 1 0
1 w 1
0 1 w

 and write φ(A) ∼

w 1 0
a wb 1
0 c wd

 where a, b, c, d are

complex numbers of modulus one. Using Lemmas 2.3, 2.4, and

r(A ◦B) = r(φ(A) ◦ φ(B)) = r(φ(A) ◦B)

for B =

w 1 0
0 w 0
0 0 0

 or

w 1 0
1 0 0
0 0 0

, we have a = b = 1. Using Lemmas 2.3, 2.4, and

r(A ◦B) = r(φ(A) ◦ φ(B)) = r(φ(A) ◦B)

for B =

0 0 0
0 w 1
0 0 w

 or

0 0 0
0 w 1
0 1 0

, we have d = 1 and c = w4 = −1.

Since A is a normal matrix with eigenvalues w and w ±
√

2, we have r(A) = |w +
√

2| =
√

5.
On the other hand, φ(A)− wI = UNU∗ where

U =

 1/
√

2 0 1/
√

2
0 1 0

−1/
√

2 0 1/
√

2

 and N =

0
√

2 0
0 0

√
2

0 0 0

 .
Since W (N) is the unit disk, r(φ(A)) = 2 6= r(A), giving the desired contradiction.

The same argument shows that we cannot have φ(A) ∼ At for A supported on the (p, q)-
submatrix, and φ(A) ∼ A∗ for A supported on the (r, s)-submatrix with r = p or q.
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Case b: Transposition.

Let p < q < r. We show that either |φ(Eij)| = Eij for all i < j in {p, q, r}, or |φ(Eij)| = Eji
for all i < j in {p, q, r}. Suppose, by way of contradiction, this is not true. Without loss of
generality, we take p = 1, q = 2, r = 3; write all matrices as 3× 3; and assume that |φ(E12)| = E12,
|φ(E13)| = E13, and |φ(E23)| = E32. By Case a, and by replacing φ with φ if needed, we have
φ(A) ∼ A for all A supported on the (1, 2)- or (1, 3)-submatrix. Meanwhile φ(A) ∼ At or A∗ for
all A supported on the (2, 3)-submatrix.

Let w = e2πi/3, A =

1 1 1
w w 1
1 w w

 and write φ(A) ∼

 1 1 1
aw bw cw

d e fw

 for some unit scalars

a, b, c, d, e, f . By using Lemmas 2.3, 2.4, and

r(A ◦B) = r(φ(A) ◦ φ(B)) = r(φ(A) ◦B)

for B =

1 1 0
0 w 0
0 0 0

,

1 1 0
w 0 0
0 0 0

,

1 0 1
0 0 0
0 0 w

,

1 0 1
0 0 0
1 0 0

, or

0 0 0
0 1 1
0 1 0

, we have a = b = d = f =

1, and c = e or ew.

Let Aψ =

1 1 1
0 0 eiψ

0 0 0

 and Bψ =

1 1 1
0 0 0
0 eiψ 0

. A direct computation shows that r(Aψ) =

r(Bψ). If we write φ(A0) ∼ Bθ, Lemma 2.5 and r(φ(A0)) = r(A0) imply φ(A0) ∼ B0. Then
Lemma 2.5 and r(A ◦A0) = r(φ(A) ◦B0) imply e = 1, so c = 1 or w. Hence

φ(A) ∼

1 1 1
w w w

1 1 w

 or

1 1 1
w w 1
1 1 w

 .
But in the first case, r(φ(A)) ≈ 1.65 <

√
3 and in the second, r(φ(A)) ≈ 1.87 >

√
3. Since

r(A) =
√

3, we have the desired contradiction.

Case c: Combining previous cases. By replacing φ with φt if necessary, we may assume

|φ(E12)| = E12. Applying Case b with p = 1 and q = 2, we have |φ(E1r)| = E1r for all r. Applying
Case b with p = 1, we have |φ(Eqr)| = Eqr for all q < r. It follows that given any 2 × 2 principal
submatrix, either φ(A) ∼ A or φ(A) ∼ A for all A supported on said submatrix.

By replacing φ with φ if necessary, we may assume φ(A) ∼ A for A supported on the (1, 2)-
submatrix. By Case a, it follows that φ(A) ∼ A for A supported on the (1, p)-submatrix for any
p, and hence on the (p, q)-submatrix for any q as well. We conclude that φ(A) ∼ A for any A

supported on any 2× 2 principal submatrix. (More generally, φ(A) = A ◦ U for some unimodular
U .)

Step 7. We show φ(A) ∼ A for a special class of matrices (see Lemma 2.5) supported on a 3× 3
principal submatrix.
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We simplify notation by taking n = 3. Consider Aψ =

1 1 1
0 0 eiψ

0 0 0

, and write φ(Aψ) ∼

1 1 1
0 0 eiθ

0 0 0

 where ψ, θ ∈ [−π, π]. By Lemma 2.5, θ = ±ψ, so φ(Aψ) ∼ Aψ or Aψ.

To rule out φ(Aψ) ∼ Aψ, we suppose, by way of contradiction, that φ(Aπ/4) ∼ Aπ/4. Let

A =

w 1 1
1 w 1
1 1 w

 and write φ(A) ∼

w 1 1
a bw c

d e fw

. Here w = exp(iπ/4) and a, b, c, d, e, f are unit

scalars. By using Lemmas 2.3, 2.4, and

r(A ◦B) = r(φ(A) ◦ φ(B)) = r(φ(A) ◦B)

for B =

w 1 0
0 w 0
0 0 0

,

w 1 0
1 0 0
0 0 0

,

w 0 1
0 0 0
0 0 w

,

w 0 1
0 0 0
1 0 0

, or

0 0 0
0 w 1
0 1 0

, we have a = b = d =

f = 1 and e = c. By using Lemma 2.5,

r(A ◦Aπ/4) = r(φ(A) ◦ φ(Aπ/4)) = r(φ(A) ◦Aπ/4),

and noting φ(A) ∼

1 1 1
∗ ∗ c/w

∗ ∗ ∗

, we have c = w2.

Since A is a normal matrix with eigenvalues w + 2, w − 1, we have r(A) = |2 + exp(iπ/4)|. On
the other hand, φ(A) is equivalent to a normal matrix with eigenvalues w,w ±

√
3, so r(φ(A)) =

|
√

3 + exp(iπ/4)| < r(A), giving a contradiction. Thus φ(Aπ/4) ∼ Aπ/4.
If φ(Aψ) ∼ Aψ, then, using the notation in the proof of Lemma 2.5,

f(π/4 + ψ) = r(Aπ/4 ◦Aψ) = r(φ(Aπ/4) ◦ φ(Aψ)) = f(π/4− ψ).

By Lemma 2.5, ψ = −ψ mod 2π, whence Aψ ∼ Aψ. Thus φ(Aψ) ∼ Aψ for all ψ, as desired.

Step 8. We show that φ(A) ∼ A for any A whose support is a 3× 3 principal submatrix.

First let B =

a b c

∗ ∗ d

∗ ∗ ∗

 have positive entries. Write φ(Aψ ◦B) ∼

a b c

0 0 deiψeiβ

0 0 0

. Then

r


a b c

0 0 d

0 0 0


 = r(A−ψ ◦Aψ ◦B)

= r(φ(A−ψ) ◦ φ(Aψ ◦B)) = r


a b c

0 0 deiβ

0 0 0




so β = 0 by Lemma 2.2, and φ(Aψ ◦B) ∼ Aψ ◦B.
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Now suppose A = [aij ] has no zero entries. We write

A ∼

 |a11| |a12| |a13|
|a21|eiα21 |a22|eiα22 |a23|eiα23

|a31|eiα31 |a32|eiα32 |a33|eiα33


and

φ(A) ∼

 |a11| |a12| |a13|
|a21|eiα21eiθ21 |a22|eiα22eiθ22 |a23|eiα23eiθ23

|a31|eiα31eiθ31 |a32|eiα32eiθ32 |a33|eiα33eiθ33


where αij , θij ∈ [−π, π]. By using Lemmas 2.3, 2.4, and r(A◦B) = r(φ(A)◦B) where B is a matrix
of the form in case (i) or (ii) of Step 5, and whose nonzero entries are reciprocals of those of A, we
have θij = 0 for all (i, j) 6= (2, 3) or (3, 2), and θ23 = −θ32. Now let B = |A|(−1) (absolute value
and inverse operations are entry-wise). Using the notation in the proof of Lemma 2.5,

f(0) = r(A ◦B ◦A−α23) = r(φ(A) ◦ φ(B ◦A−α23))

= r(φ(A) ◦B ◦A−α23) = f(θ23),

so θ23 = 0. Our assertion follows.

Step 9. We consider n× n matrices.

First consider an n × n matrix A such that Aij 6= 0 ⇐⇒ i, j ∈ I = {i1, . . . , ik} where
1 ≤ i1 < · · · < ik ≤ n and k ≥ 3. Let A = [aij ] and write φ(A) ∼ [aijeiθij ] where θij ∈ [−π, π] for
all i, j and θi1j = 0 for all j ∈ I. Let i1 < p < q with p, q ∈ I. Let B be supported on the 3 × 3
principal submatrix on (i1, p, q) with nonzero entries 1/aij . Since r(A ◦B) = r(φ(A) ◦B), Lemma
2.2 implies

θpq = θqp = θpp = θqq = θpi1 = θqi1 = 0.

Thus φ(A) ∼ A if A’s support is a principal submatrix. In particular, φ(A) ∼ A if A has no zero
entries.

Let A be an n× n matrix such that |A|+ |A|t is irreducible. Write φ(A) = A ◦R where R is a
unimodular matrix. Define Bij = |Aij |/Aij if Aij 6= 0 and Bij = 1 otherwise. Then

r(|A|) = r(A ◦B) = r(φ(A) ◦ φ(B)) = r(φ(A) ◦B) = r(|A| ◦R)

so it follows by Lemma 2.2 that φ(A) ∼ A.

Finally, in the most general case, let Q be a permutation such that QtAQ = A1 ⊕ · · · ⊕ Ak,
where each Aj is indecomposable and so |Aj |+ |Aj |t is irreducible. Without loss of generality, we
take Q = I to simplify notation. Write φ(A) = A ◦ R where R is a unimodular matrix, and let
Rj be the submatrix of R corresponding to Aj . Define Bj to be the n × n matrix whose support
is the principal submatrix underlying Aj , and whose nonzero entries are either |(Aj)pq|/(Aj)pq, if
(Aj)pq 6= 0, or 1. Then for each j

r(|Aj |) = r(A ◦Bj) = r(φ(A) ◦ φ(Bj)) = r(A ◦Bj ◦R) = r(|Aj | ◦Rj),
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so, by Lemma 2.2, we may (by redefining those entries of Rj corresponding to zero entries for Aj
if needed) assume Rj = λjwjw

∗
j for some unit scalar λj and unimodular vector wj . Let Dj =

diag (wj). Then
φ(A) = A ◦R = ⊕kj=1Aj ◦Rj = ⊕kj=1λjDjAjD

∗
j = DAE

where D = ⊕ki=1Dj and E = ⊕ki=1λjD
∗
j .

2.3 Proof of Theorem 1.2

Assume W (A ◦ B) = W (φ(A) ◦ φ(B)) for all A,B ∈ Mn. Thus r(A ◦ B) = r(φ(A) ◦ φ(B))
and so φ has one of the forms in Theorem 1.1. By replacing φ with X 7→ R(−1) ◦ φ(PXP t) or
X 7→ R(−1) ◦ φ(PXtP t), we may assume that φ(X) = DXXEX or DXXEX where DX , EX are
diagonal unitaries such that DXEX commutes with X. Note that if X is indecomposable, then
DXEX = λI and so φ(X) = λDXXD

∗
X or φ(X) = λDXXD

∗
X for some unit scalar λ.

Step 1. Fixing J .

We have φ(J) = λDJJD
∗
J . Replacing φ with X 7→ D∗

Jφ(X)DJ , we may assume φ(J) = λJ .
Since [0, n] = W (J ◦ J) = W (φ(J) ◦ φ(J)) = λ2W (J), we have λ = ±1. Replacing φ with
X 7→ λJ ◦ φ(X), we may assume φ(J) = J , and W (φ(A)) = W (φ(A) ◦ J) = W (A ◦ J) = W (A) for
all A. Note that φ still has one of the forms φ(X) = DXXEX or DXXEX for all X.

Step 2. Conjugation.

Let X =

(
i

[
1 1
1 1

]
+ 2

[
1 −1
−1 1

])
⊕ 0n−2, so X is an indecomposable normal matrix such

that W (X) is either the line segment joining i and 2 (if n = 2) or the triangle with vertices at 0, i, 2.
Since W (λDXXD

∗
X) = λW (X) 6= W (X) for any complex unit λ, we must have φ(X) = DXXEX

for all X.

For the next 3 steps, we assume A is an indecomposable matrix, so φ(A) = λDAAD
∗
A and

W (A) = W (φ(A)) = λW (A) for some complex unit λ. We shall show that we can take λ = 1 in
each case (i.e., φ(A) ≈ A, where we define an equivalence relation A ≈ B if A = DBD∗ for some
diagonal unitary D.)

Step 3. Nonnegative indecomposable matrices.

If A is a nonnegative indecomposable matrix, then H = (A + At)/2 is irreducible and has a
unique positive unit eigenvector x such that xtAx = r(A). Since W (A) = λW (A), there is a unit
vector v such that v∗Av = λxtAx. Let D be a diagonal unitary such that D|v| = v. Following the
proof of Lemma 2.2 (set Ã = A), we have |v| = x and D∗AD = µA for some complex unit µ. Then
λxtAx = v∗Av = xtD∗ADx = µxtAx, so µ = λ. Thus φ(A) ≈ λA ≈ A as desired.

Step 4. Full matrices.

Suppose all of A’s entries are nonzero. Define a positive matrix B by B11 = n|A11|−1 and
Bij = ((n2 − 1)|Aij |)−1 for all other (i, j)-entries. We have

W (A ◦B) = W (φ(A) ◦ φ(B)) = W (λDAAD
∗
A ◦DBBD

∗
B)

= λW ((DADB)(A ◦B)(DADB)∗) = λW (A ◦B). (2.1)
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Let C = A ◦B, and write Cij = |Cij |eiθij . Let x be a unit vector. Then

|x∗Cx− et1Ce1| ≤ |neiθ11 |x1|2 − neiθ11 |+ |
∑

(i,j) 6=(1,1)

1
n2 − 1

xixje
iθij | ≤ n+ 1.

Thus W (C) lies inside a circle of radius n + 1 about C11. But if λ 6= 1, then W (C) = λW (C)
implies that λkC11 ∈W (C) for all k. Choose k such that 2π/3 ≤ arg λk ≤ 4π/3. Then

n+ 1 ≥ |λkC11 − C11| ≥ |e2πi/3C11 − C11| =
√

3n

contradicts n ≥ 2, so λ = 1.

Step 5. Arbitrary indecomposable matrices.

Let A be an arbitrary indecomposable matrix. Define a full matrix B by Bij = |Aij |/Aij if
Aij 6= 0, and Bij = 1 otherwise. Using (2.1) we have W (|A|) = λW (|A|). By step 3, |A| = λD|A|D∗

for some diagonal unitary D. Write |A| = A ◦ R for some unimodular R. Then A ◦ R = λD(A ◦
R)D∗ = λ(DAD∗) ◦R, so A = λDAD∗. Then φ(A) ≈ λA ≈ A as desired.

Step 6. General matrices.

Let Q be a permutation such that QtAQ = A1 ⊕ · · · ⊕ Ak where each Aj is indecomposable.
Without loss of generality, we take Q = I to simplify notation. We have φ(A) = λ1D1A1D

∗
1 ⊕

· · · ⊕ λkDkAkD
∗
k for some complex units λj and diagonal unitaries Dj . The arguments in Lemma

2.2 and the preceding three steps readily apply to matrices of the form A = A1 ⊕ 0 with A1

indecomposable, in which case it follows φ(A1 ⊕ 0) = D1A1D
∗
1 ⊕ 0 for some diagonal unitary D1.

Let B = B1 ⊕ 0 ⊕ · · · ⊕ 0, where B1 is a matrix of the same size as A1 such that A1 ◦ B1 = |A1|.
Since φ(B) = DBD∗ for some diagonal unitary, we have

W (|A1| ⊕ 0) = W (A ◦B) = W (φ(A) ◦ φ(B)) = λ1W (|A1| ⊕ 0).

The arguments in steps 3 and 5 imply |A1|⊕0 ≈ λ1(|A1|⊕0), so |A1| ≈ λ1|A1| and thus A1 ≈ λ1A1.
Similarly Aj ≈ λjAj for all j, and so φ(A) ≈ A as desired.

3 Proofs for Hermitian matrices

3.1 Auxiliary results

Lemma 3.1. Suppose S ⊆ Hn has n(n + 1)/2 nonzero elements such that X ◦ Y = 0 for any
X 6= Y ∈ S. Then there are nonzero scalars µij ∈ C such that

S = {µijEij + µ̄ijEji : 1 ≤ i ≤ j ≤ n}.

Lemma 3.2. Let f(t) = r(At) where

At =

2 1 1
1 0 eit

1 e−it 0

 .
Then f(s) = f(t) for s, t ∈ [−π, π] if and only if s = ±t.
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Proof. Since det(At) = 2 cos t − 2 < 0 for t ∈ (0, π], we see that At has eigenvalues λ1(t) ≥
λ2(t) > 0 > λ3(t). Since det(At − zI) = −z3 + 2z2 + 3z + 2 cos t − 2, λ1(t) (respectively, |λ3(t)|)
clearly decreases (respectively, increases) as t increases from 0 to π. Since λ1(π) = (1 +

√
17)/2 >

|(1−
√

17)/2| = |λ3(π)|, it follows that f(t) = λ1(t) and hence strictly decreases on [0, π]. Since f
is even, the result follows.

3.2 Proof of Theorem 1.1

Assume that r(φ(A) ◦ φ(B)) = r(A ◦B) for all A,B ∈ Hn. Define A ∼ B if A = ±D∗AD for some
diagonal unitary D.

Step 1. There is a permutation P and complex units µij with µ11, . . . , µnn ∈ {1,−1} such that

φ(Eij + Eji) = P t(µijEij + µ̄ijEji)P

for all 1 ≤ i ≤ j ≤ n.
Consider

S = {E11, . . . , Enn} ∪ {Eij + Eji : 1 ≤ i < j ≤ n}.

Since 0 = r(X ◦ Y ) = r(φ(X) ◦ φ(Y )) for all X 6= Y ∈ S and 1 = r(X ◦X) = r(φ(X) ◦ φ(X)) for
all X ∈ S, Lemma 3.1 implies that the image of S under φ is

{µ11E1, . . . , µnnEnn} ∪ {µijEij + µ̄ijEji : 1 ≤ i < j ≤ n}

where |µij | = 1 and µii = ±1.
Suppose, by way of contradiction, that φ(E12 + E21) = ±Eii for some i. If n = 2, then

r(X ◦ I) = r(φ(X) ◦ φ(I)) for all X ∈ S shows that φ(I) has unit entries except for one zero
diagonal entry. Then 1 = r(I ◦ I) = r(φ(I) ◦ φ(I)) = (1 +

√
5)/2, a contradiction.

If n > 2, let Y = E12 +E21 +E23 +E32. Then, no matter what φ(E23 +E32) is,
√

2 6= r(φ(Y ) ◦
φ(Y )) = r(Y ◦ Y ) =

√
2, a contradiction. Thus, after applying a permutation similarity, we may

assume that φ(Ejj) = ±Ejj . Now, let Y = Eii+Ejj+Eij+Eji. Since 2 = r(Y ◦Y ) = r(φ(Y )◦φ(Y )),
we must have φ(Eij + Eji) = µijEij + µ̄ijEji for some unit µij , as desired.

Step 2. The conclusion of the theorem holds for irreducible nonnegative matrices and matrices
with nonzero support on a 2× 2 principal submatrix.

By Lemma 2.2 and r(J) = r(J ◦ J) = r(φ(J) ◦ φ(J)), we have φ(J) = J ◦ R where R is
a unimodular hermitian and R ◦ R = (x̄ixj) with |x1| = · · · = |xn| = 1. By replacing φ with
A 7→ φ(J)(−1) ◦ φ(A), we may assume φ(J) = J and consequently, r(A) = r(φ(A)) for all A. By
Lemma 2.2, φ(A) ∼ A for all irreducible nonnegative A.

Suppose A has nonzero support on a 2 × 2 principal submatrix. We can write A ∼

[
a b

b d

]

where a, b > 0, and φ(A) ∼

[
a b

b µd

]
where µ = ±1. Since r(φ(A)) = r(A), we must have µ = 1

and φ(A) ∼ A (apply Lemma 2.2).

Step 3. The conclusion of the theorem holds for matrices with nonzero support in a 3×3 principal
submatrix.
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Suppose A has nonzero support on a given 3× 3 principal submatrix. We can write

A ∼

a b c

b d reit

c re−it f

 and φ(A) ∼

a b c

b αd µr

c µ̄r βf



where a, b, c, r > 0, t ∈ R, α, β ∈ {1,−1}, and |µ| = 1. Setting X =

1 1 0
1 1 0
0 0 0

 ,
1 0 1

0 0 0
1 0 1

, or

2/a 1/b 1/c
1/b 0 1/r
1/c 1/r 0

, and using r(X ◦ A) = r(φ(X) ◦ φ(A)) = r(X ◦ φ(A)), Lemma 2.2, and Lemma

3.2 gives α = β = 1 and µ = eit or e−it. Hence φ(A) ∼ A or Ā.

Let C =

1 1 1
1 0 i

1 −i 0

. By replacing φ with φ̄ if needed, we may assume φ(C) ∼ C. Let B be

any matrix with positive entries. If φ(B ◦ C) ∼ B ◦ C, then

r(C ◦B ◦ C) = r(φ(C) ◦ φ(B ◦ C)) = r(C ◦ B̄ ◦ C̄) = r(|C| ◦B)

contradicts Lemma 2.2. Thus φ(B ◦ C) ∼ B ◦ C for any positive matrix B.
Now if φ(A) ∼ Ā then, writing B = |A|(−1) and using the notation in Lemma 3.2,

f(t+ π/2) = r(A ◦B ◦ C) = r(φ(A) ◦ φ(B ◦ C)) = r(Ā ◦B ◦ C) = f(−t+ π/2),

whence eit ∈ R and φ(A) ∼ A ∼ Ā.

Step 4. We have shown that for all A supported on a given 3 × 3 principal submatrix, either
φ(A) ∼ A or φ(A) ∼ Ā. Suppose, by way of contradiction, that φ(A) ∼ A for A supported on one
3 × 3 submatrix and φ(A) ∼ Ā for A supported on a different 3 × 3 submatrix. Without loss of
generality, we may suppose φ(A) ∼ A for all A supported on the (1, 2, 3)- or (1, 3, 4)-submatrix and
φ(A) ∼ Ā for all A supported on the (2, 3, 4)-submatrix. We write

A =


1 1 1 0
1 1 i 1
1 −i 1 1
0 1 1 1

 , φ(A) ∼


1 1 1 0
1 α µ 1
1 µ̄ β ν

0 1 ν̄ γ


where α, β, γ ∈ {±1} and |µ| = |ν| = 1. Using r(A ◦ X) = r(φ(A) ◦ φ(X)) = r(φ(A) ◦ X) and
Lemma 2.2 when X is a (0, 1)-matrix with nonzero support on a 2× 2 principal submatrix implies
α = β = γ = 1. When X is the Schur inverse of the leading 3× 3 principal submatrix of A, we get
µ = i. When X is the Schur inverse of the (1, 3, 4)-submatrix of A, we get ν = 1. When X is the
Schur inverse of the (2, 3, 4)-submatrix of A, we have r(A ◦X) = r(φ(A) ◦ φ(X)) = r(φ(A) ◦ X̄),
contradicting Lemma 2.2.

Thus, by replacing φ with φ̄ if needed, we may assume that φ(A) ∼ A for all A with support
in the leading 3 × 3 principal submatrix, and hence φ(A) ∼ A for all A supported on any 3 × 3
principal submatrix.
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The rest of the proof is exactly the same as step 9 for complex matrices, and we conclude
φ(A) ∼ A for all A ∈ Hn.

The proof of Theorem 1.2 follows the analogous proof in the complex case.
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