Schur product of matrices and numerical radius (range) preserving maps

Chi-Kwong Li ${ }^{1}$ and Edward Poon ${ }^{2}$
Dedicated to Professor Roger Horn on the occasion of his sixty fifth birthday.

Abstract

Let $F(A)$ be the numerical range or the numerical radius of a square matrix A. Denote by $A \circ B$ the Schur product of two matrices A and B. Characterizations are given for mappings on square matrices satisfying $F(A \circ B)=F(\phi(A) \circ \phi(B))$ for all matrices A and B. Analogous results are obtained for mappings on Hermitian matrices.

2000 Mathematics Subject Classification. 15A04, 15A18, 15A60
Key words and phrases. Numerical range, numerical radius, Schur product.

1 Introduction

Let M_{n} be the algebra of $n \times n$ complex matrices. Denote the numerical range and numerical radius of $A \in M_{n}$ by

$$
W(A)=\left\{x^{*} A x: x \in \mathbb{C}^{n}, x^{*} x=1\right\} \quad \text { and } \quad r(A)=\max \{|\mu|: \mu \in W(A)\} .
$$

There has been considerable interest in studying the structure of maps preserving the numerical range or radius. Suppose $U \in M_{n}$ is a unitary matrix. Define the map ϕ on M_{n} by

$$
\begin{equation*}
A \mapsto U^{*} A U \quad \text { or } \quad A \mapsto U^{*} A^{t} U . \tag{1.1}
\end{equation*}
$$

Then ϕ is a C^{*}-isomorphism on the C^{*}-algebra M_{n}, and a Jordan isomorphism on the Jordan algebra H_{n} of Hermitian $n \times n$ matrices. Evidently, ϕ is bijective linear and preserves the numerical range, i.e., $W(\phi(A))=W(A)$ for all A. Pellegrini [14] (see also [11]) obtained an interesting result on numerical range preserving maps on a general C^{*}-algebra, which implies that a linear map $\phi: M_{n} \rightarrow M_{n}$ preserving the numerical range must be of this form. One easily deduces that the conclusion is also valid for linear maps ϕ defined on H_{n}. In [4], it was shown that a multiplicative map $\phi: M_{n} \rightarrow M_{n}$ satisfies $W(\phi(A))=W(A)$ for all A if and only if ϕ has the form $A \mapsto U^{*} A U$ for some $U \in M_{n}$. In [7], the authors replaced the condition that " ϕ is multiplicative and preserves the numerical range" on the surjective map $\phi: M_{n} \rightarrow M_{n}$ by the condition that " $W(A B)=W(\phi(A) \phi(B))$ for all A, B^{\prime}, and showed that such a map has the form $A \mapsto \pm U^{*} A U$ for some unitary operator $U \in M_{n}$. They also showed that a surjective map $\phi: M_{n} \rightarrow M_{n}$ satisfies $W(A B A)=W(\phi(A) \phi(B) \phi(A))$ for all $A, B \in M_{n}$ if and only if ϕ has the form $A \mapsto \mu U^{*} A U$ or $A \mapsto \mu U^{*} A^{t} U$ for some unitary operator $U \in M_{n}$ and $\mu \in \mathbb{C}$ with $\mu^{3}=1$. Similar results for

[^0]mappings on H_{n} were also obtained. It is interesting to note that all the results mentioned above show that under rather mild assumptions, a numerical range preserving map ϕ on $\mathbf{V}=M_{n}$ or H_{n} must be a multiple of the standard map (1.1).

There is also interest in studying numerical radius preserving maps on matrices or operators. In [9] (see also [2]), it is shown that linear preservers of the numerical radius on $\mathbf{V}=M_{n}$ or H_{n} have the form

$$
A \mapsto \mu U^{*} A U \quad \text { or } \quad A \mapsto \mu U^{*} A^{t} U
$$

for some unitary U and scalar μ with $|\mu|=1$. By the result in [4], if $\phi: \mathbf{V} \rightarrow \mathbf{V}$ is a multiplicative preserver of the numerical radius, then ϕ has the form

$$
A \mapsto \mu U^{*} A U \quad \text { or } \quad A \mapsto \mu U^{*} \bar{A} U
$$

for some unitary $U \in M_{n}$ and unit scalar μ. By the result in [1], if $\phi: \mathbf{V} \rightarrow \mathbf{V}$ satisfies

$$
r(\phi(A)-\phi(B))=r(A-B) \quad \text { for all } A, B \in \mathbf{V}
$$

then ϕ has the form

$$
A \mapsto \mu U^{*} A^{\tau} U+R
$$

for some unit scalar $\mu, R \in \mathbf{V}$, and unitary $U \in M_{n}$, where A^{τ} denotes A, A^{t}, \bar{A}, or A^{*}.
In this paper, we consider the Schur product (also known as the Hadamard product) of matrices defined by $\left(a_{i j}\right) \circ\left(b_{i j}\right)=\left(a_{i j} b_{i j}\right)$, which is quite different from the other types of binary products on \mathbf{V}. One easily sees that mappings ϕ in the form (1.1) will not always satisfy

$$
\begin{equation*}
W(A \circ B)=W(\phi(A) \circ \phi(B)) \quad \text { for all } A, B \in \mathbf{V} \tag{1.2}
\end{equation*}
$$

unless the matrix in (1.1) is carefully chosen, say, U is a permutation matrix. On the other hand, if a permutation matrix P is given, and a diagonal unitary matrix D_{A} is assigned to each $A \in \mathbf{V}$, then a mapping ϕ of the form

$$
A \mapsto D_{A}^{*} P^{t} A P D_{A} \quad \text { or } \quad A \mapsto D_{A}^{*} P^{t} A^{t} P D_{A}
$$

will satisfy (1.2). A more obscure operation is to choose a matrix $R \in \mathbf{V}$ so that $R \circ R=\left(\bar{x}_{i} x_{j}\right)$ with $\left|x_{1}\right|=\cdots=\left|x_{n}\right|=1$ and define the map ϕ by $A \mapsto R \circ A$. Then

$$
\phi(A) \circ \phi(B)=R \circ R \circ(A \circ B)=D_{x}^{*}(A \circ B) D_{x},
$$

where D_{x} is the diagonal matrix with diagonal entries x_{1}, \ldots, x_{n}, and hence ϕ satisfies (1.2). It turns out that the composition of the maps described above will be the totality of maps satisfying (1.2); see Theorem 1.2.

Of course, a mapping ϕ satisfying (1.2) will also satisfy

$$
\begin{equation*}
r(A \circ B)=r(\phi(A) \circ \phi(B)) \quad \text { for all } A, B \in \mathbf{V} \tag{1.3}
\end{equation*}
$$

But there may be more admissible maps. For example, the mappings $A \mapsto \bar{A}$ and $A \mapsto A^{*}$ also satisfy (1.3). Also, if a unit scalar μ_{A} is assigned to each $A \in \mathbf{V}$, then the mapping $A \mapsto \mu_{A} A$ also satisfies (1.3). More generally, whenever A is permutationally similar to a direct sum of square
matrices of smaller sizes, say, $A_{1} \oplus \cdots \oplus A_{k}$, one can take a pair of diagonal unitary matrices D_{A}, E_{A} so that $D_{A} E_{A} \in \mathbf{V}$ and $D_{A} E_{A} A=A D_{A} E_{A}$ (equivalently, $D_{A} A E_{A}$ is permutationally similar to $\mu_{1} A_{1} \oplus \cdots \oplus \mu_{k} A_{k}$ for some unit scalars $\left.\mu_{1}, \ldots, \mu_{k}\right)$ and define $\phi(A)=D_{A} A E_{A}$. Since $A \circ B$ will be permutationally similar to a matrix of the form

$$
\left(A_{1} \circ B_{11}\right) \oplus \cdots \oplus\left(A_{k} \circ B_{k k}\right),
$$

and

$$
r\left(X_{1} \oplus \cdots \oplus X_{k}\right)=\max \left\{r\left(X_{1}\right), \ldots, r\left(X_{k}\right)\right\}
$$

we see that mappings constructed as above also satisfy (1.3). We will show that these are the only additional maps needed to generate (by compositions) all of the maps satisfying (1.3). Specifically, we have the following theorems (where $n \geq 2$ to avoid trivialities).

Theorem 1.1. Let $\mathbf{V}=M_{n}$ or H_{n}, and let $\phi: \mathbf{V} \rightarrow \mathbf{V}$. Then $r(A \circ B)=r(\phi(A) \circ \phi(B))$ for all $A, B \in \mathbf{V}$ if and only if there is a fixed permutation matrix P, a matrix $R \in \mathbf{V}$ such that $R \circ R=\left(\bar{x}_{i} x_{j}\right)$ with $\left|x_{1}\right|=\cdots=\left|x_{n}\right|=1$, and a mapping $A \mapsto\left(D_{A}, E_{A}\right)$ assigning each $A \in \mathbf{V}$ to a pair of diagonal unitary matrices D_{A}, E_{A} satisfying $D_{A} E_{A} \in \mathbf{V}$ and $D_{A} E_{A} A=A D_{A} E_{A}$ such that ϕ has the form

$$
X \mapsto R \circ\left(P^{t} D_{X} X^{\tau} E_{X} P\right) \quad \text { for all } X \in \mathbf{V}
$$

where X^{τ} denotes X, \bar{X}, X^{t}, or X^{*}. (Of course, $X=X^{*}$ and $\bar{X}=X^{t}$ if $\mathbf{V}=H_{n}$.)
We note again that the condition on D_{A} and E_{A} simply means that if Q is a permutation matrix such that $Q^{t} A Q=A_{1} \oplus \cdots \oplus A_{m}$, then D_{A} and E_{A} are chosen such that $Q^{t} D_{A} E_{A} Q=\lambda_{1} I \oplus \cdots \oplus \lambda_{m} I$ accordingly.

Theorem 1.2. Let $\mathbf{V}=M_{n}$ or H_{n}, and let $\phi: M_{n} \rightarrow M_{n}$. Then $W(A \circ B)=W(\phi(A) \circ \phi(B))$ for all $A, B \in \mathbf{V}$ if and only if there is a fixed permutation matrix P, a matrix $R \in \mathbf{V}$ such that $R \circ R=\left(\bar{x}_{i} x_{j}\right)$ with $\left|x_{1}\right|=\cdots=\left|x_{n}\right|=1$, and a mapping $A \mapsto D_{A}$ from \mathbf{V} to the group of diagonal unitary matrices such that ϕ has the form

$$
X \mapsto R \circ\left(P^{t} D_{X}^{*} X D_{X} P\right) \quad \text { or } \quad X \mapsto R \circ\left(P^{t} D_{X}^{*} X^{t} D_{X} P\right)
$$

The sufficiencies of the theorems are clear by our discussion before the statements. We will prove the necessities in the next two sections.

In our discussion, $|v|$ denotes the vector obtained from $v \in \mathbb{C}^{n}$ by replacing each entry by its absolute value; $|A|$ has a similar meaning for $A \in M_{n}$. A vector or a matrix is said to be unimodular if all entries have moduli one. The matrix in M_{n} whose every entry is one is denoted by J. We say that a vector or a matrix has support at certain entries if all other entries of the vector or matrix equal zero. A matrix A is decomposable if it is permutationally similar to a direct sum of square matrices of smaller sizes; otherwise, A is indecomposable. The Schur-inverse of A is denoted by $A^{(-1)}$, and is defined by $\left(A^{(-1)}\right)_{i j}=A_{i j}^{-1}$ if $A_{i j} \neq 0$, and $\left(A^{(-1)}\right)_{i j}=0$ if $A_{i j}=0$. Denote by $\left\{E_{11}, E_{12}, \ldots, E_{n n}\right\}$ the standard basis for M_{n}.

2 Proofs for complex matrices

2.1 Auxiliary results

Lemma 2.1. Suppose $\mathcal{S} \subseteq M_{n}$ has n^{2} nonzero elements such that $X \circ Y=0$ for any $X \neq Y \in \mathcal{S}$. Then there are nonzero scalars $\mu_{i j} \in \mathbb{C}$ such that

$$
\mathcal{S}=\left\{\mu_{i j} E_{i j}: 1 \leq i, j \leq n\right\} .
$$

Lemma 2.2. Let A be a nonnegative matrix such that $A+A^{t}$ is irreducible. Let U be a unimodular matrix (i.e., $\left|U_{i j}\right|=1$ for all i, j). If $r(A)=r(A \circ U)$ then there exist some unit scalar μ and unimodular vector w such that $A \circ U=A \circ\left(\mu w w^{*}\right)$.

Proof. Let $x \in \mathbb{R}^{n}$ be the unique positive unit eigenvector of $\left(A+A^{t}\right) / 2$, so $r(A)=x^{t} A x$. Write $\tilde{A}=A \circ U$. Let $v \in \mathbb{C}^{n}$ be a unit vector such that $r(\tilde{A})=\left|v^{*} \tilde{A} v\right|$. Let D be a diagonal unitary such that $D|v|=v$. Then

$$
r(\tilde{A})=\left\|v | ^ { t } D ^ { * } \tilde { A } D \left|v \left\|\leq|v|^{t}\left|D^{*} \tilde{A} D \| v\right| \leq x^{t} A x=r(A),\right.\right.\right.
$$

so all the inequalities are in fact equalities. For the second inequality to be equality implies that $|v|=x$ has strictly positive entries. For the first inequality to be equality implies that there exists $\mu \in \mathbb{C}$ with $|\mu|=1$ such that $D^{*} \tilde{A} D=\mu A$. If $D=\operatorname{diag}(w)$, then $\tilde{A}=A \circ\left(\mu w w^{*}\right)$ as desired.

Lemma 2.3. Let w, z be complex numbers of modulus one. Then

$$
r\left(\left[\begin{array}{cc}
1 & 1 \\
0 & w
\end{array}\right]\right)=r\left(\left[\begin{array}{cc}
1 & 1 \\
0 & z
\end{array}\right]\right) \Longleftrightarrow w=z \text { or } w=\bar{z}
$$

Proof. Let $v=\left[\begin{array}{ll}x & y\end{array}\right]^{t}$ and $f(\theta)=r\left(\left[\begin{array}{cc}1 & 1 \\ 0 & e^{i \theta}\end{array}\right]\right)=r\left(\left[\begin{array}{cc}e^{-i \theta / 2} & 1 \\ 0 & e^{i \theta / 2}\end{array}\right]\right)$. Then

$$
\begin{aligned}
f(\theta) & =\max \left\{\left|v^{*}\left[\begin{array}{cc}
e^{-i \theta / 2} & 1 \\
0 & e^{i \theta / 2}
\end{array}\right] v\right|:\|v\|=1\right\} \\
& =\max \left\{\left|\cos (\theta / 2)+\bar{x} y+i\left(|y|^{2}-|x|^{2}\right) \sin (\theta / 2)\right|:|x|^{2}+|y|^{2}=1\right\} \\
& =\max \left\{\left|\cos (\theta / 2)+i\left(y^{2}-x^{2}\right) \sin (\theta / 2)\right|+x y: x^{2}+y^{2}=1 ; x, y \geq 0\right\} .
\end{aligned}
$$

Let $y=\cos (\alpha / 2), x=\sin (\alpha / 2), 0 \leq \alpha \leq \pi$. We get

$$
f(\theta)=\max \{|\cos (\theta / 2)+i(\cos \alpha) \sin (\theta / 2)|+(1 / 2) \sin \alpha: \alpha \in[0, \pi]\}
$$

Let $t=\sin \alpha$. We get

$$
f(\theta)=\max \left\{\sqrt{1-\sin ^{2}(\theta / 2) t^{2}}+t / 2: 0 \leq t \leq 1\right\} .
$$

Since $\left[\begin{array}{cc}1 & 1 \\ 0 & e^{i \theta}\end{array}\right]$ is not normal, its numerical range contains the eigenvalue 1 in its interior, so $f(\theta)>1$. Thus the maximum is attained at some $t>0$, and hence f is strictly increasing on $[-\pi, 0]$. Since $f(-\theta)=f(\theta)$, the result follows.

Lemma 2.4. Let w, z be complex numbers of modulus one. Then

$$
r\left(\left[\begin{array}{ll}
1 & 1 \\
w & 0
\end{array}\right]\right)=r\left(\left[\begin{array}{ll}
1 & 1 \\
z & 0
\end{array}\right]\right) \Longleftrightarrow w=z \text { or } w=\bar{z}
$$

Proof. Let $f(\theta)=r\left(\left[\begin{array}{cc}1 & 1 \\ e^{i \theta} & 0\end{array}\right]\right)=r\left(\left[\begin{array}{cc}1 & e^{i \theta / 2} \\ e^{i \theta / 2} & 0\end{array}\right]\right)$ and $v=\left[\begin{array}{ll}x & y\end{array}\right]^{t}$. Then for $\theta \in(-\pi, 0)$,

$$
\begin{aligned}
f(\theta) & =\max \left\{\left|v^{*}\left[\begin{array}{cc}
1 & e^{i \theta / 2} \\
e^{i \theta / 2} & 0
\end{array}\right] v\right|:\|v\|=1\right\} \\
& =\max \left\{\left.| | x\right|^{2}+2 \operatorname{Re}(\bar{x} y) e^{i \theta / 2} \mid:\|v\|=1\right\} \\
& =\max \left\{\left|x^{2}+2 x y e^{i \theta / 2}\right|: x^{2}+y^{2}=1 ; x, y \geq 0\right\} .
\end{aligned}
$$

Since $\left[\begin{array}{cc}1 & 1 \\ e^{i \theta} & 0\end{array}\right]$ has unimodular determinant, one eigenvalue has modulus at least one. As this matrix is not normal (except when $e^{i \theta}$ is real, which we've excluded), this eigenvalue lies in the interior of the numerical range, so $f(\theta)>1$. Thus the maximum does not occur when $x=0$ or $y=0$, and hence f is strictly increasing on $[-\pi, 0]$. Since $f(-\theta)=f(\theta)$, the result follows.

Lemma 2.5. Let w, z be complex numbers of modulus one. Then

$$
r\left(\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & w \\
0 & 0 & 0
\end{array}\right]\right)=r\left(\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right]\right) \Longleftrightarrow w=z \text { or } w=\bar{z}
$$

Proof. Let $A_{\psi}=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 0 & e^{i \psi} \\ 0 & 0 & 0\end{array}\right], f(\psi)=r\left(A_{\psi}\right)$, and

$$
\mathcal{S}=\left\{v=\left[\begin{array}{lll}
a & b e^{i \theta} & c
\end{array}\right]^{t}: a, b \geq 0, \theta \in[-\pi, \pi],|a|^{2}+|b|^{2}+|c|^{2}=1\right\} .
$$

Then

$$
\begin{aligned}
f(\psi) & =\max _{v \in \mathcal{S}}\left|v^{*} A_{\psi} v\right|=\max _{v \in \mathcal{S}}\left|a^{2}+a b e^{i \theta}+c\left(a+b e^{i(\psi-\theta)}\right)\right| \\
& =\max _{v \in \mathcal{S}}\left|a^{2}+a b e^{i \theta}\right|+|c|\left|a+b e^{i(\psi-\theta)}\right| .
\end{aligned}
$$

For $\psi \in(-\pi, 0)$, the maximum is attained at some $\theta_{0} \in[-\pi, 0]$ and for some $a_{0}, b_{0}, c_{0} \neq 0$. (If $b_{0}=0$ or $c_{0}=0$, then $f(\psi)=\max \left\{a^{2}+a b: a^{2}+b^{2}=1\right\}=(1+\sqrt{2}) / 2$. But $\lambda_{\max }\left(\left(A_{\psi}^{*}+A_{\psi}\right) / 2\right)$ is the largest root of $p(\lambda)=\lambda^{3}-\lambda^{2}-3 \lambda / 4+(1-\cos \psi) / 4$; since $p((1+\sqrt{2}) / 2)<0$ and $p(2)>0$, $f(\psi) \geq \lambda_{\max }>(1+\sqrt{2}) / 2$, giving a contradiction.) Thus for ϵ sufficiently small,

$$
\begin{aligned}
f(\psi) & =\left|a_{0}^{2}+a_{0} b_{0} e^{i \theta_{0}}\right|+\left|c_{0}\right|\left|a_{0}+b_{0} e^{i\left(\psi-\theta_{0}\right)}\right| \\
& <\left|a_{0}^{2}+a_{0} b_{0} e^{i\left(\theta_{0}+\epsilon\right)}\right|+\left|c_{0}\right|\left|a_{0}+b_{0} e^{i\left((\psi+\epsilon)-\left(\theta_{0}+\epsilon\right)\right)}\right| \leq f(\psi+\epsilon)
\end{aligned}
$$

if $\theta_{0}<0$ and

$$
\begin{aligned}
f(\psi) & =a_{0}^{2}+a_{0} b_{0}+\left|c_{0}\right|\left|a_{0}+b_{0} e^{i \psi}\right| \\
& <a_{0}^{2}+a_{0} b_{0}+\left|c_{0}\right|\left|a_{0}+b_{0} e^{i(\psi+\epsilon)}\right| \leq f(\psi+\epsilon)
\end{aligned}
$$

if $\theta_{0}=0$. Thus, f is strictly increasing on $[-\pi, 0]$. Since $f(-\psi)=f(\psi)$, the result follows.

2.2 Proof of Theorem 1.1

Assume that $r(A \circ B)=r(\phi(A) \circ \phi(B))$ for all $A, B \in M_{n}$. By Lemma 2.1, there are nonzero $\mu_{i j} \in \mathbb{C}$ such that

$$
\left\{\phi\left(E_{i j}\right): 1 \leq i, j \leq n\right\}=\left\{\mu_{i j} E_{i j}: 1 \leq i, j \leq n\right\} .
$$

Step 1. There exists a permutation matrix P such that the mapping $X \mapsto P^{t} \phi(X) P$ will map $E_{j j}$ to $\mu_{j j} E_{j j}$ with $\left|\mu_{j j}\right|=1$ for all $j=1, \ldots, n$.

Suppose, by way of contradiction, $\phi\left(E_{11}\right)=\mu_{1} E_{r s}$ for some $r \neq s$. Then, since $1=r\left(E_{11} \circ E_{11}\right)=$ $r\left(\mu_{1} E_{r s} \circ \mu_{1} E_{r s}\right),\left|\mu_{1}\right|=\sqrt{2}$. Similarly, if $\phi\left(E_{12}\right)=\mu_{2} E_{p q}$ then $\left|\mu_{2}\right|=1$ if $p \neq q$ and $\left|\mu_{2}\right|=1 / \sqrt{2}$ if $p=q$. Let $X=E_{11}+E_{12}$. Since $r\left(X \circ E_{i j}\right)=r\left(\phi(X) \circ \phi\left(E_{i j}\right)\right)$ for all i, j, we see that $\phi(X)=\xi_{1} E_{r s}+\xi_{2} E_{p q}$, where $\left|\xi_{1}\right|=\sqrt{2}$ and

$$
\left|\xi_{2}\right|= \begin{cases}1 / \sqrt{2} & \text { if } p=q \\ 1 & \text { if } p \neq q\end{cases}
$$

But then we obtain the contradiction

$$
\frac{1+\sqrt{2}}{2}=r(X \circ X)=r\left(\xi_{1}^{2} E_{r s}+\xi_{2}^{2} E_{p q}\right)=\left\{\begin{array}{l}
\frac{1+\sqrt{17}}{4} \text { or } 1 \text { if } p=q \\
1, \sqrt{2}, \text { or } \frac{\sqrt{5}}{2} \text { if } p \neq q
\end{array}\right.
$$

So, $\phi\left(E_{11}\right)=\mu_{j j} E_{j j}$ for some j. Since $1=r\left(E_{11} \circ E_{11}\right)=r\left(\mu_{j j}^{2} E_{j j}\right)$, we see that $\left|\mu_{j j}\right|=1$. A similar conclusion holds for $\phi\left(E_{k k}\right)$ for all k, and our assertion follows.

Step 2. Without loss of generality, replace ϕ by the mapping $X \mapsto P^{t} \phi(X) P$, so $\phi\left(E_{j j}\right)=\mu_{j j} E_{j j}$ for all j. Moreover, for $p \neq q, \phi\left(E_{p q}\right)=\mu_{p q} E_{r s}$ for some $r \neq s$ and, since $1=r\left(E_{p q} \circ E_{p q}\right)=$ $r\left(\mu_{p q}^{2} E_{r s}\right)$, we have $\left|\mu_{p q}\right|=1$. We show that $E_{r s}=E_{p q}$ or $E_{q p}$.

Let $X=E_{p p}+E_{p q}$. Since $r\left(X \circ E_{i j}\right)=r\left(\phi(X) \circ \phi\left(E_{i j}\right)\right.$ for all i, j, we have $\phi(X)=\xi_{1} E_{p p}+\xi_{2} E_{r s}$ where $\left|\xi_{1}\right|=\left|\xi_{2}\right|=1$. Since

$$
\frac{1+\sqrt{2}}{2}=r(X \circ X)=r\left(\xi_{1}^{2} E_{p p}+\xi_{2}^{2} E_{r s}\right),
$$

$E_{r s}$ must lie in the p th row or p th column. Similar consideration of $Y=E_{q q}+E_{p q}$ implies $E_{r s}$ lies in the q th row or q th column, so $\phi\left(E_{p q}\right)=\mu_{p q} E_{p q}$ or $\mu_{p q} E_{q p}$ with $\left|\mu_{p q}\right|=1$ as desired.
Step 3. We show that $\phi(J)=J \circ R$ where $R \circ R=\mu\left(\bar{x}_{i} x_{j}\right)$ with $|\mu|=\left|x_{1}\right|=\cdots=\left|x_{n}\right|=1$.
Since $\left\{\phi\left(E_{i j}\right): 1 \leq i, j \leq n\right\}=\left\{\mu_{i j} E_{i j}: 1 \leq i, j \leq n\right\}$ for some complex units $\mu_{i j}$, and $r\left(E_{i j}\right)=r\left(J \circ E_{i j}\right)=r\left(\phi(J) \circ \phi\left(E_{i j}\right)\right)$, we see that $\phi(J)=J \circ R$ for some unimodular R. Now,
$n=r(J \circ J)=r(\phi(J) \circ \phi(J))=r(J \circ R \circ R)$. Applying Lemma 2.2 with $A=J$ and $U=R \circ R$, we get the desired conclusion.
Step 4. Interlude of four items.
Replace ϕ by the mapping $X \mapsto R^{(-1)} \circ \phi(X)$, where $R^{(-1)}$ is the Schur inverse of R having the (i, j) th entry equal to $r_{i j}^{-1}$. We may then assume that $\phi(J)=J$, and $r(\phi(A))=r(\phi(A) \circ J)=$ $r(A \circ J)=r(A)$ for all $A \in M_{n}$.

By using $\left|a_{i j}\right|=r\left(A \circ E_{i j}\right)=r\left(\phi(A) \circ \phi\left(E_{i j}\right)\right)$, we have $\phi(A)=A^{\sigma} \circ U$ for some unimodular U. Here A^{σ} is the matrix obtained by performing some (perhaps none) local transpositions (swapping the $a_{p q}$ and $a_{q p}$ entries for some $p \neq q$).

Define an equivalence relation $A \sim B$ if $B=e^{i \theta} D^{*} A D$ for some diagonal unitary D and real number θ. Note that $A \sim B$ if and only if $B=A \circ\left(e^{i \theta} w w^{*}\right)$ for some real θ and unimodular vector w. Some simple properties of this relation are:

1. If $A \sim B$, then $\bar{A} \sim \bar{B}$ and $W(A)=W(B)$.
2. If $A_{1} \sim B_{1}$ and $A_{2} \sim B_{2}$, then $A_{1} \circ A_{2} \sim B_{1} \circ B_{2}$.

Suppose B has positive entries in a principal 2×2 submatrix, and zero entries everywhere else. Then $r\left(B^{t}\right)=r(B)=r(\phi(B))=r(B \circ U)$ or $r\left(B^{t} \circ U\right)$ for some unimodular U. By Lemma 2.2, $\phi(B) \sim B$ or B^{t}, depending on what ϕ does to the off-diagonal element. We shall repeatedly use this fact.
Step 5. We characterize the action of ϕ on all A supported on a particular 2×2 principal submatrix. To simplify notation, we let $n=2$. If $\phi\left(E_{12}\right)=\mu E_{21}$, replace ϕ with $X \mapsto \phi(X)^{t}$ for this step. If A has two or more zero entries, then $\phi(A) \sim A \sim \bar{A}$, so suppose A has at most one zero entry. We consider three cases.

Case i: $\quad A=\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$ for some $a, b, d \neq 0$. We can write $A \sim\left[\begin{array}{cc}|a| & |b| \\ 0 & |d| e^{i \delta}\end{array}\right]$ and $\phi(A) \sim$ $\left[\begin{array}{cc}|a| & |b| \\ 0 & |d| e^{i \theta}\end{array}\right]$ where $\delta, \theta \in[-\pi, \pi]$. Let $B=\left[\begin{array}{cc}1 /|a| & 1 /|b| \\ 1 & 1 /|d|\end{array}\right]$, so $\phi(B) \sim B$. Then

$$
r\left(\left[\begin{array}{cc}
1 & 1 \\
0 & e^{i \delta}
\end{array}\right]\right)=r(A \circ B)=r(\phi(A) \circ \phi(B))=r\left(\left[\begin{array}{cc}
1 & 1 \\
0 & e^{i \theta}
\end{array}\right]\right)
$$

By Lemma 2.3, $\theta= \pm \delta$, whence $\phi(A) \sim A$ or \bar{A}.
To show that either $\phi(A) \sim A$ for all $A=\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$ or $\phi(A) \sim \bar{A}$ for all $A=\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$, let $C=\left[\begin{array}{ll}1 & 1 \\ 0 & i\end{array}\right]$. By replacing ϕ with $\bar{\phi}$ if necessary, we may assume $\phi(C) \sim C$. Suppose $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ where $a, b, c, d>0$. Either $\phi(B \circ C) \sim B \circ C$ or $\overline{B \circ C}$. In the latter case,

$$
\begin{aligned}
r\left(\left[\begin{array}{cc}
a & b \\
0 & -d
\end{array}\right]\right) & =r(C \circ(C \circ B))=r(\phi(C) \circ \phi(C \circ B)) \\
& =r(C \circ \bar{C} \circ \bar{B})=r\left(\left[\begin{array}{cc}
a & b \\
0 & d
\end{array}\right]\right),
\end{aligned}
$$

contradicting Lemma 2.2. Hence $\phi(B \circ C) \sim B \circ C$ for any positive matrix B.
Define A, B as at the outset of this Case (i), and suppose $\phi(A) \sim \bar{A}$. Then

$$
\begin{aligned}
r\left(\left[\begin{array}{cc}
1 & 1 \\
0 & i e^{i \delta}
\end{array}\right]\right) & =r(A \circ C \circ B)=r(\phi(A) \circ \phi(C \circ B)) \\
& =r(\bar{A} \circ C \circ B)=r\left(\left[\begin{array}{cc}
1 & 1 \\
0 & i e^{-i \delta}
\end{array}\right]\right),
\end{aligned}
$$

whence, by Lemma 2.3, $\delta=0$. Thus $\bar{A} \sim A$, so in fact $\phi(A) \sim A$ for all A of the form $\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$, as desired.

Case ii: $A=\left[\begin{array}{ll}a & b \\ c & 0\end{array}\right]$ for some $a, b, c \neq 0$. We can write $A \sim\left[\begin{array}{cc}|a| & |b| \\ |c| e^{i \gamma} & 0\end{array}\right]$ and $\phi(A) \sim$ $\left[\begin{array}{cc}|a| & |b| \\ |c| e^{i \theta} & 0\end{array}\right]$ where $\gamma, \theta \in[-\pi, \pi]$. Let $B=\left[\begin{array}{cc}1 /|a| & 1 /|b| \\ 1 /|c| & 1\end{array}\right]$, so $\phi(B) \sim B$. Then

$$
r\left(\left[\begin{array}{cc}
1 & 1 \\
e^{i \gamma} & 0
\end{array}\right]\right)=r(A \circ B)=r(\phi(A) \circ \phi(B))=r\left(\left[\begin{array}{cc}
1 & 1 \\
e^{i \theta} & 0
\end{array}\right]\right)
$$

By Lemma 2.4, $\theta= \pm \gamma$, whence $\phi(A) \sim A$ or \bar{A}. Using an argument similar to that in Case i , we may conclude that either $\phi(A) \sim A$ for all $A=\left[\begin{array}{ll}a & b \\ c & 0\end{array}\right]$, or $\phi(A) \sim \bar{A}$ for all such A.

We now show that, assuming $\phi(A) \sim A$ for all A in Case i, $\phi(A) \sim A$ for all A in Case ii. By way of contradiction, suppose $\phi(A) \sim \bar{A}$ for all A in Case ii. Let $X=\left[\begin{array}{ll}1 & 1 \\ i & i\end{array}\right], Y=\left[\begin{array}{ll}1 & 1 \\ 0 & i\end{array}\right]$, $Z=\left[\begin{array}{ll}1 & 1 \\ i & 0\end{array}\right]$. We write $\phi(X) \sim\left[\begin{array}{cc}1 & 1 \\ i e^{i \gamma} & i e^{i \delta}\end{array}\right]$ for some $\gamma, \delta \in(-\pi, \pi]$. Then

$$
r\left(\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]\right)=r(X \circ Y)=r(\phi(X) \circ \phi(Y))=r(\phi(X) \circ Y)=r\left(\left[\begin{array}{cc}
1 & 1 \\
0 & -e^{i \delta}
\end{array}\right]\right)
$$

whence $\delta=0$ by Lemma 2.3. Since $\phi(Z) \sim \bar{Z}$,

$$
r\left(\left[\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right]\right)=r(X \circ Z)=r(\phi(X) \circ \phi(Z))=r(\phi(X) \circ \bar{Z})=r\left(\left[\begin{array}{cc}
1 & 1 \\
e^{i \gamma} & 0
\end{array}\right]\right)
$$

whence $\gamma=\pi$ by Lemma 2.4. But then

$$
\sqrt{2}<r\left(\left[\begin{array}{ll}
1 & 1 \\
i & i
\end{array}\right]\right)=r(X)=r(\phi(X))=r\left(\left[\begin{array}{cc}
1 & 1 \\
-i & i
\end{array}\right]\right)=\sqrt{2}
$$

gives the desired contradiction. (Note $1+i$ is an eigenvalue of X and X is not normal, so $1+i$ lies in the interior of $W(X)$ and $r(X)>\sqrt{2}$. Meanwhile $\phi(X)$ is equivalent to $\sqrt{2}$ times a unitary matrix.) It follows that $\phi(A) \sim A$ for all $A=\left[\begin{array}{ll}a & b \\ c & 0\end{array}\right]$, as desired.

Case iii: We still suppose $\phi(A) \sim A$ for all A in Case i. If A has a zero in the first row, we may use arguments similar to those in the first two cases to conclude that $\phi(A) \sim A$. Now suppose A has no zero entries. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, $Y=\left[\begin{array}{cc}1 / a & 1 / b \\ 0 & 1 / d\end{array}\right]$, and $Z=\left[\begin{array}{cc}1 / a & 1 / b \\ 1 / c & 0\end{array}\right]$. We write $\phi(A) \sim\left[\begin{array}{cc}a & b \\ c e^{i \gamma} & d e^{i \delta}\end{array}\right]$ where $\gamma, \delta \in[-\pi, \pi]$. Then, since $\phi(Y) \sim Y$,

$$
r\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right)=r(A \circ Y)=r(\phi(A) \circ \phi(Y))=r\left(\left[\begin{array}{cc}
1 & 1 \\
0 & e^{i \delta}
\end{array}\right]\right)
$$

whence $\delta=0$. Similar consideration of $r(A \circ Z)$ reveals $\gamma=0$, and thus $\phi(A) \sim A$.
Step 6. We have shown that for all A supported on a given 2×2 principal submatrix, we have $\phi(A) \sim A^{\tau}$ where A^{τ} is one of: A, \bar{A}, A^{t}, or A^{*}. We shall show that ϕ has the same type of behavior on all 2×2 principal submatrices.

Case a: Conjugation.
Suppose now that $\phi(A) \sim A$ for A supported on the (p, q)-submatrix, and $\phi(A) \sim \bar{A}$ for A supported on the (r, s)-submatrix with $r=p$ or q. We show that this gives a contradiction. Without loss of generality, we take $p=1, q=r=2, s=3$, and write all matrices as 3×3.

Let $w=\exp (i \pi / 4), A=\left[\begin{array}{ccc}w & 1 & 0 \\ 1 & w & 1 \\ 0 & 1 & w\end{array}\right]$ and write $\phi(A) \sim\left[\begin{array}{ccc}w & 1 & 0 \\ a & w b & 1 \\ 0 & c & w d\end{array}\right]$ where a, b, c, d are complex numbers of modulus one. Using Lemmas 2.3, 2.4, and

$$
r(A \circ B)=r(\phi(A) \circ \phi(B))=r(\phi(A) \circ B)
$$

for $B=\left[\begin{array}{ccc}\bar{w} & 1 & 0 \\ 0 & \bar{w} & 0 \\ 0 & 0 & 0\end{array}\right]$ or $\left[\begin{array}{ccc}\bar{w} & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, we have $a=b=1$. Using Lemmas 2.3, 2.4, and

$$
r(A \circ B)=r(\phi(A) \circ \phi(B))=r(\phi(A) \circ \bar{B})
$$

for $B=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & \bar{w} & 1 \\ 0 & 0 & \bar{w}\end{array}\right]$ or $\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & \bar{w} & 1 \\ 0 & 1 & 0\end{array}\right]$, we have $d=1$ and $c=w^{4}=-1$.
Since A is a normal matrix with eigenvalues w and $w \pm \sqrt{2}$, we have $r(A)=|w+\sqrt{2}|=\sqrt{5}$. On the other hand, $\phi(A)-w I=U N U^{*}$ where

$$
U=\left[\begin{array}{ccc}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
0 & 1 & 0 \\
-1 / \sqrt{2} & 0 & 1 / \sqrt{2}
\end{array}\right] \text { and } N=\left[\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
0 & 0 & \sqrt{2} \\
0 & 0 & 0
\end{array}\right]
$$

Since $W(N)$ is the unit disk, $r(\phi(A))=2 \neq r(A)$, giving the desired contradiction.
The same argument shows that we cannot have $\phi(A) \sim A^{t}$ for A supported on the (p, q) submatrix, and $\phi(A) \sim A^{*}$ for A supported on the (r, s)-submatrix with $r=p$ or q.

Case b: Transposition.
Let $p<q<r$. We show that either $\left|\phi\left(E_{i j}\right)\right|=E_{i j}$ for all $i<j$ in $\{p, q, r\}$, or $\left|\phi\left(E_{i j}\right)\right|=E_{j i}$ for all $i<j$ in $\{p, q, r\}$. Suppose, by way of contradiction, this is not true. Without loss of generality, we take $p=1, q=2, r=3$; write all matrices as 3×3; and assume that $\left|\phi\left(E_{12}\right)\right|=E_{12}$, $\left|\phi\left(E_{13}\right)\right|=E_{13}$, and $\left|\phi\left(E_{23}\right)\right|=E_{32}$. By Case a, and by replacing ϕ with $\bar{\phi}$ if needed, we have $\phi(A) \sim A$ for all A supported on the (1,2)- or (1,3)-submatrix. Meanwhile $\phi(A) \sim A^{t}$ or A^{*} for all A supported on the (2,3)-submatrix.

Let $w=e^{2 \pi i / 3}, A=\left[\begin{array}{ccc}1 & 1 & 1 \\ w & \bar{w} & 1 \\ 1 & \bar{w} & w\end{array}\right]$ and write $\phi(A) \sim\left[\begin{array}{ccc}1 & 1 & 1 \\ a w & b \bar{w} & c \bar{w} \\ d & e & f w\end{array}\right]$ for some unit scalars a, b, c, d, e, f. By using Lemmas 2.3, 2.4, and

$$
r(A \circ B)=r(\phi(A) \circ \phi(B))=r(\phi(A) \circ B)
$$

for $B=\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & w & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}1 & 1 & 0 \\ \bar{w} & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & \bar{w}\end{array}\right],\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$, or $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right]$, we have $a=b=d=f=$ 1 , and $c=\bar{e}$ or $\bar{e} w$.

Let $A_{\psi}=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 0 & e^{i \psi} \\ 0 & 0 & 0\end{array}\right]$ and $B_{\psi}=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & e^{i \psi} & 0\end{array}\right]$. A direct computation shows that $r\left(A_{\psi}\right)=$ $r\left(B_{\psi}\right)$. If we write $\phi\left(A_{0}\right) \sim B_{\theta}$, Lemma 2.5 and $r\left(\phi\left(A_{0}\right)\right)=r\left(A_{0}\right)$ imply $\phi\left(A_{0}\right) \sim B_{0}$. Then Lemma 2.5 and $r\left(A \circ A_{0}\right)=r\left(\phi(A) \circ B_{0}\right)$ imply $e=1$, so $c=1$ or w. Hence

$$
\phi(A) \sim\left[\begin{array}{ccc}
1 & 1 & 1 \\
w & \bar{w} & \bar{w} \\
1 & 1 & w
\end{array}\right] \text { or }\left[\begin{array}{ccc}
1 & 1 & 1 \\
w & \bar{w} & 1 \\
1 & 1 & w
\end{array}\right] .
$$

But in the first case, $r(\phi(A)) \approx 1.65<\sqrt{3}$ and in the second, $r(\phi(A)) \approx 1.87>\sqrt{3}$. Since $r(A)=\sqrt{3}$, we have the desired contradiction.

Case c: Combining previous cases. By replacing ϕ with ϕ^{t} if necessary, we may assume $\left|\phi\left(E_{12}\right)\right|=E_{12}$. Applying Case b with $p=1$ and $q=2$, we have $\left|\phi\left(E_{1 r}\right)\right|=E_{1 r}$ for all r. Applying Case b with $p=1$, we have $\left|\phi\left(E_{q r}\right)\right|=E_{q r}$ for all $q<r$. It follows that given any 2×2 principal submatrix, either $\phi(A) \sim A$ or $\phi(A) \sim \bar{A}$ for all A supported on said submatrix.

By replacing ϕ with $\bar{\phi}$ if necessary, we may assume $\phi(A) \sim A$ for A supported on the (1,2)submatrix. By Case a, it follows that $\phi(A) \sim A$ for A supported on the $(1, p)$-submatrix for any p, and hence on the (p, q)-submatrix for any q as well. We conclude that $\phi(A) \sim A$ for any A supported on any 2×2 principal submatrix. (More generally, $\phi(A)=A \circ U$ for some unimodular U.)

Step 7. We show $\phi(A) \sim A$ for a special class of matrices (see Lemma 2.5) supported on a 3×3 principal submatrix.

We simplify notation by taking $n=3$. Consider $A_{\psi}=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 0 & e^{i \psi} \\ 0 & 0 & 0\end{array}\right]$, and write $\phi\left(A_{\psi}\right) \sim$ $\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 0 & e^{i \theta} \\ 0 & 0 & 0\end{array}\right]$ where $\psi, \theta \in[-\pi, \pi]$. By Lemma $2.5, \theta= \pm \psi$, so $\phi\left(A_{\psi}\right) \sim A_{\psi}$ or $\overline{A_{\psi}}$.

To rule out $\phi\left(A_{\psi}\right) \sim \bar{A}_{\psi}$, we suppose, by way of contradiction, that $\phi\left(A_{\pi / 4}\right) \sim \bar{A}_{\pi / 4}$. Let $A=\left[\begin{array}{ccc}w & 1 & 1 \\ 1 & w & 1 \\ 1 & 1 & w\end{array}\right]$ and write $\phi(A) \sim\left[\begin{array}{ccc}w & 1 & 1 \\ a & b w & c \\ d & e & f w\end{array}\right]$. Here $w=\exp (i \pi / 4)$ and a, b, c, d, e, f are unit scalars. By using Lemmas 2.3, 2.4, and

$$
r(A \circ B)=r(\phi(A) \circ \phi(B))=r(\phi(A) \circ B)
$$

for $B=\left[\begin{array}{ccc}\bar{w} & 1 & 0 \\ 0 & \bar{w} & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}\bar{w} & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}\bar{w} & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & \bar{w}\end{array}\right],\left[\begin{array}{ccc}\bar{w} & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$, or $\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & \bar{w} & 1 \\ 0 & 1 & 0\end{array}\right]$, we have $a=b=d=$ $f=1$ and $e=\bar{c}$. By using Lemma 2.5,

$$
r\left(A \circ A_{\pi / 4}\right)=r\left(\phi(A) \circ \phi\left(A_{\pi / 4}\right)\right)=r\left(\phi(A) \circ \bar{A}_{\pi / 4}\right),
$$

and noting $\phi(A) \sim\left[\begin{array}{ccc}1 & 1 & 1 \\ * & * & c / w \\ * & * & *\end{array}\right]$, we have $c=w^{2}$.
Since A is a normal matrix with eigenvalues $w+2$, $w-1$, we have $r(A)=|2+\exp (i \pi / 4)|$. On the other hand, $\phi(A)$ is equivalent to a normal matrix with eigenvalues $w, w \pm \sqrt{3}$, so $r(\phi(A))=$ $|\sqrt{3}+\exp (i \pi / 4)|<r(A)$, giving a contradiction. Thus $\phi\left(A_{\pi / 4}\right) \sim A_{\pi / 4}$.

If $\phi\left(A_{\psi}\right) \sim \bar{A}_{\psi}$, then, using the notation in the proof of Lemma 2.5,

$$
f(\pi / 4+\psi)=r\left(A_{\pi / 4} \circ A_{\psi}\right)=r\left(\phi\left(A_{\pi / 4}\right) \circ \phi\left(A_{\psi}\right)\right)=f(\pi / 4-\psi) .
$$

By Lemma $2.5, \psi=-\psi \bmod 2 \pi$, whence $A_{\psi} \sim \bar{A}_{\psi}$. Thus $\phi\left(A_{\psi}\right) \sim A_{\psi}$ for all ψ, as desired.
Step 8. We show that $\phi(A) \sim A$ for any A whose support is a 3×3 principal submatrix.
First let $B=\left[\begin{array}{ccc}a & b & c \\ * & * & d \\ * & * & *\end{array}\right]$ have positive entries. Write $\phi\left(A_{\psi} \circ B\right) \sim\left[\begin{array}{ccc}a & b & c \\ 0 & 0 & d e^{i \psi} e^{i \beta} \\ 0 & 0 & 0\end{array}\right]$. Then

$$
r\left(\left[\begin{array}{ccc}
a & b & c \\
0 & 0 & d \\
0 & 0 & 0
\end{array}\right]\right)=r\left(A_{-\psi} \circ A_{\psi} \circ B\right)
$$

$$
=r\left(\phi\left(A_{-\psi}\right) \circ \phi\left(A_{\psi} \circ B\right)\right)=r\left(\left[\begin{array}{ccc}
a & b & c \\
0 & 0 & d e^{i \beta} \\
0 & 0 & 0
\end{array}\right]\right)
$$

so $\beta=0$ by Lemma 2.2, and $\phi\left(A_{\psi} \circ B\right) \sim A_{\psi} \circ B$.

Now suppose $A=\left[a_{i j}\right]$ has no zero entries. We write

$$
A \sim\left[\begin{array}{ccc}
\left|a_{11}\right| & \left|a_{12}\right| & \left|a_{13}\right| \\
\left|a_{21}\right| e^{i \alpha_{21}} & \left|a_{22}\right| e^{i \alpha_{22}} & \left|a_{23}\right| e^{i \alpha_{23}} \\
\left|a_{31}\right| e^{i \alpha_{31}} & \left|a_{32}\right| e^{i \alpha_{32}} & \left|a_{33}\right| e^{i \alpha_{33}}
\end{array}\right]
$$

and

$$
\phi(A) \sim\left[\begin{array}{ccc}
\left|a_{11}\right| & \left|a_{12}\right| & \left|a_{13}\right| \\
\left|a_{21}\right| e^{i \alpha_{21}} e^{i \theta_{21}} & \left|a_{22}\right| e^{i \alpha_{22}} e^{i \theta_{22}} & \left|a_{23}\right| e^{i \alpha_{23}} e^{i \theta_{23}} \\
\left|a_{31}\right| e^{i \alpha_{31}} e^{i \theta_{31}} & \left|a_{32}\right| e^{i \alpha_{32}} e^{i \theta_{32}} & \left|a_{33}\right| e^{i \alpha_{33}} e^{i \theta_{33}}
\end{array}\right]
$$

where $\alpha_{i j}, \theta_{i j} \in[-\pi, \pi]$. By using Lemmas 2.3, 2.4, and $r(A \circ B)=r(\phi(A) \circ B)$ where B is a matrix of the form in case (i) or (ii) of Step 5, and whose nonzero entries are reciprocals of those of A, we have $\theta_{i j}=0$ for all $(i, j) \neq(2,3)$ or $(3,2)$, and $\theta_{23}=-\theta_{32}$. Now let $B=|A|^{(-1)}$ (absolute value and inverse operations are entry-wise). Using the notation in the proof of Lemma 2.5,

$$
\begin{aligned}
f(0) & =r\left(A \circ B \circ A_{-\alpha_{23}}\right)=r\left(\phi(A) \circ \phi\left(B \circ A_{-\alpha_{23}}\right)\right) \\
& =r\left(\phi(A) \circ B \circ A_{-\alpha_{23}}\right)=f\left(\theta_{23}\right),
\end{aligned}
$$

so $\theta_{23}=0$. Our assertion follows.
Step 9. We consider $n \times n$ matrices.
First consider an $n \times n$ matrix A such that $A_{i j} \neq 0 \Longleftrightarrow i, j \in I=\left\{i_{1}, \ldots, i_{k}\right\}$ where $1 \leq i_{1}<\cdots<i_{k} \leq n$ and $k \geq 3$. Let $A=\left[a_{i j}\right]$ and write $\phi(A) \sim\left[a_{i j} e^{i \theta_{i j}}\right]$ where $\theta_{i j} \in[-\pi, \pi]$ for all i, j and $\theta_{i_{1} j}=0$ for all $j \in I$. Let $i_{1}<p<q$ with $p, q \in I$. Let B be supported on the 3×3 principal submatrix on $\left(i_{1}, p, q\right)$ with nonzero entries $1 / a_{i j}$. Since $r(A \circ B)=r(\phi(A) \circ B)$, Lemma 2.2 implies

$$
\theta_{p q}=\theta_{q p}=\theta_{p p}=\theta_{q q}=\theta_{p i_{1}}=\theta_{q i_{1}}=0 .
$$

Thus $\phi(A) \sim A$ if A 's support is a principal submatrix. In particular, $\phi(A) \sim A$ if A has no zero entries.

Let A be an $n \times n$ matrix such that $|A|+|A|^{t}$ is irreducible. Write $\phi(A)=A \circ R$ where R is a unimodular matrix. Define $B_{i j}=\left|A_{i j}\right| / A_{i j}$ if $A_{i j} \neq 0$ and $B_{i j}=1$ otherwise. Then

$$
r(|A|)=r(A \circ B)=r(\phi(A) \circ \phi(B))=r(\phi(A) \circ B)=r(|A| \circ R)
$$

so it follows by Lemma 2.2 that $\phi(A) \sim A$.
Finally, in the most general case, let Q be a permutation such that $Q^{t} A Q=A_{1} \oplus \cdots \oplus A_{k}$, where each A_{j} is indecomposable and so $\left|A_{j}\right|+\left|A_{j}\right|^{t}$ is irreducible. Without loss of generality, we take $Q=I$ to simplify notation. Write $\phi(A)=A \circ R$ where R is a unimodular matrix, and let R_{j} be the submatrix of R corresponding to A_{j}. Define B_{j} to be the $n \times n$ matrix whose support is the principal submatrix underlying A_{j}, and whose nonzero entries are either $\left|\left(A_{j}\right)_{p q}\right| /\left(A_{j}\right)_{p q}$, if $\left(A_{j}\right)_{p q} \neq 0$, or 1 . Then for each j

$$
r\left(\left|A_{j}\right|\right)=r\left(A \circ B_{j}\right)=r\left(\phi(A) \circ \phi\left(B_{j}\right)\right)=r\left(A \circ B_{j} \circ R\right)=r\left(\left|A_{j}\right| \circ R_{j}\right),
$$

so, by Lemma 2.2, we may (by redefining those entries of R_{j} corresponding to zero entries for A_{j} if needed) assume $R_{j}=\lambda_{j} w_{j} w_{j}^{*}$ for some unit scalar λ_{j} and unimodular vector w_{j}. Let $D_{j}=$ $\operatorname{diag}\left(w_{j}\right)$. Then

$$
\phi(A)=A \circ R=\oplus_{j=1}^{k} A_{j} \circ R_{j}=\oplus_{j=1}^{k} \lambda_{j} D_{j} A_{j} D_{j}^{*}=D A E
$$

where $D=\oplus_{i=1}^{k} D_{j}$ and $E=\oplus_{i=1}^{k} \lambda_{j} D_{j}^{*}$.

2.3 Proof of Theorem 1.2

Assume $W(A \circ B)=W(\phi(A) \circ \phi(B))$ for all $A, B \in M_{n}$. Thus $r(A \circ B)=r(\phi(A) \circ \phi(B))$ and so ϕ has one of the forms in Theorem 1.1. By replacing ϕ with $X \mapsto R^{(-1)} \circ \phi\left(P X P^{t}\right)$ or $X \mapsto R^{(-1)} \circ \phi\left(P X^{t} P^{t}\right)$, we may assume that $\phi(X)=D_{X} X E_{X}$ or $D_{X} \bar{X} E_{X}$ where D_{X}, E_{X} are diagonal unitaries such that $D_{X} E_{X}$ commutes with X. Note that if X is indecomposable, then $D_{X} E_{X}=\lambda I$ and so $\phi(X)=\lambda D_{X} X D_{X}^{*}$ or $\phi(X)=\lambda D_{X} \bar{X} D_{X}^{*}$ for some unit scalar λ.
Step 1. Fixing J.
We have $\phi(J)=\lambda D_{J} J D_{J}^{*}$. Replacing ϕ with $X \mapsto D_{J}^{*} \phi(X) D_{J}$, we may assume $\phi(J)=\lambda J$. Since $[0, n]=W(J \circ J)=W(\phi(J) \circ \phi(J))=\lambda^{2} W(J)$, we have $\lambda= \pm 1$. Replacing ϕ with $X \mapsto \lambda J \circ \phi(X)$, we may assume $\phi(J)=J$, and $W(\phi(A))=W(\phi(A) \circ J)=W(A \circ J)=W(A)$ for all A. Note that ϕ still has one of the forms $\phi(X)=D_{X} X E_{X}$ or $D_{X} \bar{X} E_{X}$ for all X.

Step 2. Conjugation.
Let $X=\left(i\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]+2\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\right) \oplus 0_{n-2}$, so X is an indecomposable normal matrix such that $W(X)$ is either the line segment joining i and 2 (if $n=2$) or the triangle with vertices at $0, i, 2$. Since $W\left(\lambda D_{X} \bar{X} D_{X}^{*}\right)=\lambda W(\bar{X}) \neq W(X)$ for any complex unit λ, we must have $\phi(X)=D_{X} X E_{X}$ for all X.

For the next 3 steps, we assume A is an indecomposable matrix, so $\phi(A)=\lambda D_{A} A D_{A}^{*}$ and $W(A)=W(\phi(A))=\lambda W(A)$ for some complex unit λ. We shall show that we can take $\lambda=1$ in each case (i.e., $\phi(A) \approx A$, where we define an equivalence relation $A \approx B$ if $A=D B D^{*}$ for some diagonal unitary D.)

Step 3. Nonnegative indecomposable matrices.
If A is a nonnegative indecomposable matrix, then $H=\left(A+A^{t}\right) / 2$ is irreducible and has a unique positive unit eigenvector x such that $x^{t} A x=r(A)$. Since $W(A)=\lambda W(A)$, there is a unit vector v such that $v^{*} A v=\lambda x^{t} A x$. Let D be a diagonal unitary such that $D|v|=v$. Following the proof of Lemma $2.2\left(\right.$ set $\tilde{A}=A$), we have $|v|=x$ and $D^{*} A D=\mu A$ for some complex unit μ. Then $\lambda x^{t} A x=v^{*} A v=x^{t} D^{*} A D x=\mu x^{t} A x$, so $\mu=\lambda$. Thus $\phi(A) \approx \lambda A \approx A$ as desired.
Step 4. Full matrices.
Suppose all of A 's entries are nonzero. Define a positive matrix B by $B_{11}=n\left|A_{11}\right|^{-1}$ and $B_{i j}=\left(\left(n^{2}-1\right)\left|A_{i j}\right|\right)^{-1}$ for all other (i, j)-entries. We have

$$
\begin{align*}
W(A \circ B) & =W(\phi(A) \circ \phi(B))=W\left(\lambda D_{A} A D_{A}^{*} \circ D_{B} B D_{B}^{*}\right) \\
& =\lambda W\left(\left(D_{A} D_{B}\right)(A \circ B)\left(D_{A} D_{B}\right)^{*}\right)=\lambda W(A \circ B) . \tag{2.1}
\end{align*}
$$

Let $C=A \circ B$, and write $C_{i j}=\left|C_{i j}\right| e^{i \theta_{i j}}$. Let x be a unit vector. Then

$$
\left|x^{*} C x-e_{1}^{t} C e_{1}\right| \leq\left.\left|n e^{i \theta_{11}}\right| x_{1}\right|^{2}-n e^{i \theta_{11}}\left|+\left|\sum_{(i, j) \neq(1,1)} \frac{1}{n^{2}-1} \bar{x}_{i} x_{j} e^{i \theta_{i j}}\right| \leq n+1\right.
$$

Thus $W(C)$ lies inside a circle of radius $n+1$ about C_{11}. But if $\lambda \neq 1$, then $W(C)=\lambda W(C)$ implies that $\lambda^{k} C_{11} \in W(C)$ for all k. Choose k such that $2 \pi / 3 \leq \arg \lambda^{k} \leq 4 \pi / 3$. Then

$$
n+1 \geq\left|\lambda^{k} C_{11}-C_{11}\right| \geq\left|e^{2 \pi i / 3} C_{11}-C_{11}\right|=\sqrt{3} n
$$

contradicts $n \geq 2$, so $\lambda=1$.
Step 5. Arbitrary indecomposable matrices.
Let A be an arbitrary indecomposable matrix. Define a full matrix B by $B_{i j}=\left|A_{i j}\right| / A_{i j}$ if $A_{i j} \neq 0$, and $B_{i j}=1$ otherwise. Using (2.1) we have $W(|A|)=\lambda W(|A|)$. By step $3,|A|=\lambda D|A| D^{*}$ for some diagonal unitary D. Write $|A|=A \circ R$ for some unimodular R. Then $A \circ R=\lambda D(A \circ$ $R) D^{*}=\lambda\left(D A D^{*}\right) \circ R$, so $A=\lambda D A D^{*}$. Then $\phi(A) \approx \lambda A \approx A$ as desired.

Step 6. General matrices.
Let Q be a permutation such that $Q^{t} A Q=A_{1} \oplus \cdots \oplus A_{k}$ where each A_{j} is indecomposable. Without loss of generality, we take $Q=I$ to simplify notation. We have $\phi(A)=\lambda_{1} D_{1} A_{1} D_{1}^{*} \oplus$ $\cdots \oplus \lambda_{k} D_{k} A_{k} D_{k}^{*}$ for some complex units λ_{j} and diagonal unitaries D_{j}. The arguments in Lemma 2.2 and the preceding three steps readily apply to matrices of the form $A=A_{1} \oplus 0$ with A_{1} indecomposable, in which case it follows $\phi\left(A_{1} \oplus 0\right)=D_{1} A_{1} D_{1}^{*} \oplus 0$ for some diagonal unitary D_{1}. Let $B=B_{1} \oplus 0 \oplus \cdots \oplus 0$, where B_{1} is a matrix of the same size as A_{1} such that $A_{1} \circ B_{1}=\left|A_{1}\right|$. Since $\phi(B)=D B D^{*}$ for some diagonal unitary, we have

$$
W\left(\left|A_{1}\right| \oplus 0\right)=W(A \circ B)=W(\phi(A) \circ \phi(B))=\lambda_{1} W\left(\left|A_{1}\right| \oplus 0\right) .
$$

The arguments in steps 3 and 5 imply $\left|A_{1}\right| \oplus 0 \approx \lambda_{1}\left(\left|A_{1}\right| \oplus 0\right)$, so $\left|A_{1}\right| \approx \lambda_{1}\left|A_{1}\right|$ and thus $A_{1} \approx \lambda_{1} A_{1}$. Similarly $A_{j} \approx \lambda_{j} A_{j}$ for all j, and so $\phi(A) \approx A$ as desired.

3 Proofs for Hermitian matrices

3.1 Auxiliary results

Lemma 3.1. Suppose $\mathcal{S} \subseteq H_{n}$ has $n(n+1) / 2$ nonzero elements such that $X \circ Y=0$ for any $X \neq Y \in \mathcal{S}$. Then there are nonzero scalars $\mu_{i j} \in \mathbb{C}$ such that

$$
\mathcal{S}=\left\{\mu_{i j} E_{i j}+\bar{\mu}_{i j} E_{j i}: 1 \leq i \leq j \leq n\right\} .
$$

Lemma 3.2. Let $f(t)=r\left(A_{t}\right)$ where

$$
A_{t}=\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 0 & e^{i t} \\
1 & e^{-i t} & 0
\end{array}\right] .
$$

Then $f(s)=f(t)$ for $s, t \in[-\pi, \pi]$ if and only if $s= \pm t$.

Proof. Since $\operatorname{det}\left(A_{t}\right)=2 \cos t-2<0$ for $t \in(0, \pi]$, we see that A_{t} has eigenvalues $\lambda_{1}(t) \geq$ $\lambda_{2}(t)>0>\lambda_{3}(t)$. Since $\operatorname{det}\left(A_{t}-z I\right)=-z^{3}+2 z^{2}+3 z+2 \cos t-2, \lambda_{1}(t)$ (respectively, $\left.\left|\lambda_{3}(t)\right|\right)$ clearly decreases (respectively, increases) as t increases from 0 to π. Since $\lambda_{1}(\pi)=(1+\sqrt{17}) / 2>$ $|(1-\sqrt{17}) / 2|=\left|\lambda_{3}(\pi)\right|$, it follows that $f(t)=\lambda_{1}(t)$ and hence strictly decreases on $[0, \pi]$. Since f is even, the result follows.

3.2 Proof of Theorem 1.1

Assume that $r(\phi(A) \circ \phi(B))=r(A \circ B)$ for all $A, B \in H_{n}$. Define $A \sim B$ if $A= \pm D^{*} A D$ for some diagonal unitary D.

Step 1. There is a permutation P and complex units $\mu_{i j}$ with $\mu_{11}, \ldots, \mu_{n n} \in\{1,-1\}$ such that

$$
\phi\left(E_{i j}+E_{j i}\right)=P^{t}\left(\mu_{i j} E_{i j}+\bar{\mu}_{i j} E_{j i}\right) P
$$

for all $1 \leq i \leq j \leq n$.
Consider

$$
\mathcal{S}=\left\{E_{11}, \ldots, E_{n n}\right\} \cup\left\{E_{i j}+E_{j i}: 1 \leq i<j \leq n\right\} .
$$

Since $0=r(X \circ Y)=r(\phi(X) \circ \phi(Y))$ for all $X \neq Y \in \mathcal{S}$ and $1=r(X \circ X)=r(\phi(X) \circ \phi(X))$ for all $X \in \mathcal{S}$, Lemma 3.1 implies that the image of \mathcal{S} under ϕ is

$$
\left\{\mu_{11} E_{1}, \ldots, \mu_{n n} E_{n n}\right\} \cup\left\{\mu_{i j} E_{i j}+\bar{\mu}_{i j} E_{j i}: 1 \leq i<j \leq n\right\}
$$

where $\left|\mu_{i j}\right|=1$ and $\mu_{i i}= \pm 1$.
Suppose, by way of contradiction, that $\phi\left(E_{12}+E_{21}\right)= \pm E_{i i}$ for some i. If $n=2$, then $r(X \circ I)=r(\phi(X) \circ \phi(I))$ for all $X \in \mathcal{S}$ shows that $\phi(I)$ has unit entries except for one zero diagonal entry. Then $1=r(I \circ I)=r(\phi(I) \circ \phi(I))=(1+\sqrt{5}) / 2$, a contradiction.

If $n>2$, let $Y=E_{12}+E_{21}+E_{23}+E_{32}$. Then, no matter what $\phi\left(E_{23}+E_{32}\right)$ is, $\sqrt{2} \neq r(\phi(Y) \circ$ $\phi(Y))=r(Y \circ Y)=\sqrt{2}$, a contradiction. Thus, after applying a permutation similarity, we may assume that $\phi\left(E_{j j}\right)= \pm E_{j j}$. Now, let $Y=E_{i i}+E_{j j}+E_{i j}+E_{j i}$. Since $2=r(Y \circ Y)=r(\phi(Y) \circ \phi(Y))$, we must have $\phi\left(E_{i j}+E_{j i}\right)=\mu_{i j} E_{i j}+\bar{\mu}_{i j} E_{j i}$ for some unit $\mu_{i j}$, as desired.

Step 2. The conclusion of the theorem holds for irreducible nonnegative matrices and matrices with nonzero support on a 2×2 principal submatrix.

By Lemma 2.2 and $r(J)=r(J \circ J)=r(\phi(J) \circ \phi(J))$, we have $\phi(J)=J \circ R$ where R is a unimodular hermitian and $R \circ R=\left(\bar{x}_{i} x_{j}\right)$ with $\left|x_{1}\right|=\cdots=\left|x_{n}\right|=1$. By replacing ϕ with $A \mapsto \phi(J)^{(-1)} \circ \phi(A)$, we may assume $\phi(J)=J$ and consequently, $r(A)=r(\phi(A))$ for all A. By Lemma 2.2, $\phi(A) \sim A$ for all irreducible nonnegative A.

Suppose A has nonzero support on a 2×2 principal submatrix. We can write $A \sim\left[\begin{array}{ll}a & b \\ b & d\end{array}\right]$ where $a, b>0$, and $\phi(A) \sim\left[\begin{array}{cc}a & b \\ b & \mu d\end{array}\right]$ where $\mu= \pm 1$. Since $r(\phi(A))=r(A)$, we must have $\mu=1$ and $\phi(A) \sim A$ (apply Lemma 2.2).

Step 3. The conclusion of the theorem holds for matrices with nonzero support in a 3×3 principal submatrix.

Suppose A has nonzero support on a given 3×3 principal submatrix. We can write

$$
A \sim\left[\begin{array}{ccc}
a & b & c \\
b & d & r e^{i t} \\
c & r e^{-i t} & f
\end{array}\right] \quad \text { and } \phi(A) \sim\left[\begin{array}{ccc}
a & b & c \\
b & \alpha d & \mu r \\
c & \bar{\mu} r & \beta f
\end{array}\right]
$$

where $a, b, c, r>0, t \in \mathbb{R}, \alpha, \beta \in\{1,-1\}$, and $|\mu|=1$. Setting $X=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right]$, or $\left[\begin{array}{ccc}2 / a & 1 / b & 1 / c \\ 1 / b & 0 & 1 / r \\ 1 / c & 1 / r & 0\end{array}\right]$, and using $r(X \circ A)=r(\phi(X) \circ \phi(A))=r(X \circ \phi(A))$, Lemma 2.2, and Lemma 3.2 gives $\alpha=\beta=1$ and $\mu=e^{i t}$ or $e^{-i t}$. Hence $\phi(A) \sim A$ or \bar{A}.

Let $C=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & i \\ 1 & -i & 0\end{array}\right]$. By replacing ϕ with $\bar{\phi}$ if needed, we may assume $\phi(C) \sim C$. Let B be any matrix with positive entries. If $\phi(B \circ C) \sim \overline{B \circ C}$, then

$$
r(C \circ B \circ C)=r(\phi(C) \circ \phi(B \circ C))=r(C \circ \bar{B} \circ \bar{C})=r(|C| \circ B)
$$

contradicts Lemma 2.2. Thus $\phi(B \circ C) \sim B \circ C$ for any positive matrix B.
Now if $\phi(A) \sim \bar{A}$ then, writing $B=|A|^{(-1)}$ and using the notation in Lemma 3.2,

$$
f(t+\pi / 2)=r(A \circ B \circ C)=r(\phi(A) \circ \phi(B \circ C))=r(\bar{A} \circ B \circ C)=f(-t+\pi / 2),
$$

whence $e^{i t} \in \mathbb{R}$ and $\phi(A) \sim A \sim \bar{A}$.
Step 4. We have shown that for all A supported on a given 3×3 principal submatrix, either $\phi(A) \sim A$ or $\phi(A) \sim \bar{A}$. Suppose, by way of contradiction, that $\phi(A) \sim A$ for A supported on one 3×3 submatrix and $\phi(A) \sim \bar{A}$ for A supported on a different 3×3 submatrix. Without loss of generality, we may suppose $\phi(A) \sim A$ for all A supported on the (1,2,3)- or (1,3,4)-submatrix and $\phi(A) \sim \bar{A}$ for all A supported on the (2,3,4)-submatrix. We write

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 1 & i & 1 \\
1 & -i & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right], \quad \phi(A) \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & \alpha & \mu & 1 \\
1 & \bar{\mu} & \beta & \nu \\
0 & 1 & \bar{\nu} & \gamma
\end{array}\right]
$$

where $\alpha, \beta, \gamma \in\{ \pm 1\}$ and $|\mu|=|\nu|=1$. Using $r(A \circ X)=r(\phi(A) \circ \phi(X))=r(\phi(A) \circ X)$ and Lemma 2.2 when X is a $(0,1)$-matrix with nonzero support on a 2×2 principal submatrix implies $\alpha=\beta=\gamma=1$. When X is the Schur inverse of the leading 3×3 principal submatrix of A, we get $\mu=i$. When X is the Schur inverse of the (1,3,4)-submatrix of A, we get $\nu=1$. When X is the Schur inverse of the (2,3,4)-submatrix of A, we have $r(A \circ X)=r(\phi(A) \circ \phi(X))=r(\phi(A) \circ \bar{X})$, contradicting Lemma 2.2.

Thus, by replacing ϕ with $\bar{\phi}$ if needed, we may assume that $\phi(A) \sim A$ for all A with support in the leading 3×3 principal submatrix, and hence $\phi(A) \sim A$ for all A supported on any 3×3 principal submatrix.

The rest of the proof is exactly the same as step 9 for complex matrices, and we conclude $\phi(A) \sim A$ for all $A \in H_{n}$.

The proof of Theorem 1.2 follows the analogous proof in the complex case.

References

[1] Z. Bai and J. Hou, Numerical radius distance preserving maps on $B(H)$, Proc. Amer. Math. Soc. 132 (2004), 1453-1461.
[2] J.T.Chan, Numerical radius preserving operators on $B(H)$, Proc. Amer. Math. Soc. 123 (1995), 1437-1439.
[3] J.T. Chan, C.K. Li and N.S. Sze, Mappings on matrices: Invariance of functional values of matrix products, J. Australian Math. Soc., to appear.
[4] W.S. Cheung, S. Fallat, and C.K. Li, Multiplicative Preservers on Semigroups of Matrices, Linear Algebra Appl. 355 (2002), 173-186.
[5] J. Cui and J. Hou, Non-linear numerical radius isometries on atomic nest algebras and diagonal algebras, J. Func. Anal. 206 (2004), 414-448.
[6] G. Dolinar and P. Šemrl, Determinant preserving maps on matrix algebras, Linear Algebra Appl. 348 (2002), 189-192.
[7] J. Hou and Q. Di, Maps preserving numerical range of operator products, Proc. Amer. Math. Soc. to appear.
[8] G. Lešnjak, Additive preservers of numerical range, Linear Algebra Appl. 345 (2002), 235-253.
[9] C.K. Li, Linear operators preserving the numerical radius of matrices, Proc. Amer. math. Soc. 99 (1987), 601-608.
[10] C.K. Li and S. Pierce, Linear preserver problems, Amer. Math. Monthly 108 (2001), 591-605.
[11] C.K. Li, L. Rodman and P. Šemrl, Linear maps on selfadjoint operators preserving invertibility, positive definiteness, numerical range, Canad. Math. Bull., 46 (2003), 216-228.
[12] C.K. Li, P. Šemrl and G. Soares, Linear operators preserving the numerical range (radius) on triangular matrices, Linear and Multilinear Algebra 48 (2001), 281-292.
[13] L. Molnár, Some characterizations of the automorphisms of $B(H)$ and $C(X)$, Proc. Amer. Math. Soc. 130 (2002), 111-120.
[14] V. Pellegrini, Numerical range preserving operators on matrix algebras, Studia Math. 54 (1975), 143-147.

[^0]: ${ }^{1}$ Department of Mathematics, College of William \& Mary, Williamsburg, VA 23187. E-mail:ckli@math.wm.edu. Li is an honorary professor of the Heilongjiang University and an honorary professor of the University of Hong Kong. His research was supported by a USA NSF grant and a HK RCG grant.
 ${ }^{2}$ Department of Mathematics, Embry-Riddle Aeronautical University, Prescott, AZ 86301. E-mail:edward.poon@erau.edu.

