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Abstract

Let S be a certain set of nonnegative symmetric matrices, such as the set of symmetric
doubly stochastic matrices or the set of symmetric permutation matrices. It is proven that
a linear transformation mapping S onto & must be of the form X ~— P'XP for some
permutation matrix P except for several low dimensional cases.

Keywords: Linear maps, symmetric doubly stochastic matrices, permutation matrices, ex-
treme points.
AMS Subject Classifications: 15A04, 15A51.

1 Introduction

There has been considerable interest in studying linear transformations on matrix spaces
leaving a certain subset invariant, i.e., mapping the subset onto itself; see [4]. For example,
if S is the set of n x n doubly (sub-)stochastic matrices or the set of n X n (sub-)permutation
matrices, and V = span S is the linear span of §, then a linear transformation ¢ : ¥V — V
satisfying ¢(S) = S must be of the form

X—PXQ o X PX'Q (1)

for some n x n permutation matrices P and Q. In [1], the authors of this paper solved
the open problem in [4] concerning linear transformations on span S satisfying ¢(S) = S,
where S is the set of n X n even permutation matrices, i.e., permutation matrices with
determinant one. It was shown that for n > 5, the transformation has the form (1) for some
permutation matrices P, @ such that det(PQ) = 1. When n < 4, there may be other types
of transformations and they are also characterized.

In [5], the authors studied linear transformations ¢ satisfying ¢(S) = S, where S is the
set, of symmetric doubly stochastic matrices or the set of symmetric doubly sub-stochastic
matrices. It was shown that such transformations have the form

X = PIXP (2)

for some permutation matrix P. The analysis in [5] depends on some intricate graph theory.
In this paper, we give a short, direct proof for this result, and we study linear maps leaving
invariant other matrix sets S or their convex hulls, where S is

SP,,: the set of n X n symmetric permutation matrices; or
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T,,: the set of n xn permutation matrices corresponding to the identity or transpositions,
i.e., 2-cycles.

The following notations will also be used in our discussion:

M,,: the set of n X n real matrices;

SDS,,: the set of n X n symmetric doubly stochastic matrices;

P,,: the set of n X n permutation matrices;

E,: the set of extreme points of SDS,,;

V,,: the set of symmetric matrices in M,, with equal row sums and column sums;
I,: the identity matrix in M,;

J,: the matrix in M,, with all entries equal to one;

T;;: the matrix obtained from I, by interchanging the ith and jth rows;

I = Jp — 1.

Evidently we have
T, ={L}U{T;;: 1 <i<j<n}

Moreover, we have the following description of E,, (see [2, 3]).

Proposition 1.1 The set E, consists of matrices in M,, that are permutationally similar
to the direct sums of matrices of the following forms:

(a) The 1 x 1 matriz (1);
. (0 1
(b) The 2 x 2 matriz (1 0);

(¢) The k x k symmetric matriz with 1/2 at its (r,s) position with {r,s} = {1,k} or
{r,s} = {i,i+ 1} for i = 1,...,k — 1, and with zero elsewhere, where k is an odd
integer > 3.

Clearly, for a compact convex set I, a linear map ¢ leaves K invariant if and only if ¢
leaves invariant the set of extreme points of . Since S is the set of extreme points of conv S
for § = T,,SP, and E,, we see that a linear operator ¢ satisfies ¢(S) = S if and only if
¢(convS) = conv S.

We will present some preliminary results and characterize those linear maps that leave
invariant T,, or convT,, in Section 2. We then characterize those linear maps that leave
invariant SP,, or conv SP,, in Section 3 and treat the problem for E, or SDS,, in Section 4.

We thank Professor Bit-Shun Tam for some helpful comments on an earlier draft of our
paper and for showing us the preprint [5].

2 Preliminary Results

Proposition 2.1 The set T, is a basis for V,,. Consequently, there is a one-one correspon-
dence between bijections from T, to T, and linear maps ¢ : V, — V,, satisfying ¢(S) = S
for § =T, or conv'T,,.



Proof. Recall that Tj; is the matrix obtained from I,, by interchanging the ¢th and jth
rows, i.e., Tj; corresponding to the transposition permutation that interchanges ¢ and j. If
A= (aij) € Vn, then

A= > aTy+pl
1<i<j<n
for some suitable p € IR so that the row sums and column sums on both sides match. Thus,
A € spanT,. Also, if 3=, ; b;;T;; + bol = 0, then all b;; = 0 and so must by. Hence, T, is a
linearly independent generating set of V,,, i.e., T, is a basis for V,,.
The last assertion is clear. [ ]

Corollary 2.2 Let S be any of the sets: E,, SP,,, T,, conv E,, convSP,,, convT,. Then
spanS = V,,.

Proof. Clearly, the linear span of a set is the same as the linear span of the convex hull
of the set. We focus on § = E,,,SP,,, or T,,. Evidently, we have T,, C SP,, C E, C V,,,
and hence
span T,, C span SP,, C spanE,, C V,,.

By Proposition 2.1, we have span T,, = V,,. The result follows. [ ]

We need the following well-known result in our discussion. We give a short proof for
completeness.

Lemma 2.3 If X € M,, satisfies PPXP = X for all P € P, then X = rl, + sJ,, for some
real numbers r and s.

Proof. Let X = (=;;) satisfy PPXP = X for all P € P,,. All the diagonal entries of X
must be equal; otherwise, if x;; # x;; for some ¢ # j, then let P = T}; be the permutation
matrix which interchanges rows 7 and j of I,,, and it would follow that P!XP # X. Now, all
the off-diagonal entries in the same row of X must be equal; otherwise, if z;; # z; are two
off-diagonal entries in the same row, then let P = T}, and it would follow that P*XP # X.
By a similar argument, all of the off-diagonal entries in the same column of X must be equal.
Finally, for any two off-diagonal entries z;; and zj;, we have x;; = x3; = Ti. [ |

Lemma 2.4 Let S = SP,, or E,,. Then a matricr A € S is actually in T, if and only if
the matrices I,, and A are the only matrices X € S satisfying (I, + 2A — X)/2 € conv S.
Consequently, if ¢ : V,, — V,, satisfies ¢(S) =S and ¢(I,) = I,,, then ¢(T,) = T,,.

Proof. (=) Suppose A = I,,. Then clearly X = [, is the only matrix in S such that
(I,+2A—-X)/2 € convS. Suppose A = T;;, the matrix that corresponds to the transposition
interchanging ¢ and j. If X € S satisfies (I, + 2A — X)/2 € conv S, then X can only have
nonzero entries at the diagonal positions and the (i, ) and (j,¢) positions. Thus, X = I,, or
Tij.

(<) Suppose S = E,, and A € S has a k x k submatrix in rows and columns i1, . . . , i such
that £ > 3 is odd and the (7, s) entry of A is 1/2, where {r, s} = {ix, i1} or {r, s} = {4,441}
with j =1,...,k—1. Then (I,+2A—X)/2 € SDS,, for any X =T, with (r,s) = (4;,441)
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or (ig,i1). Next, suppose S = E, or SP, and A € S satisfies A € SP, \ T,,. Then
there exists T;; € T, not equal to I,, or A such that I, + A —T;; =Y € SP,. Thus,
(I, +2A-T)/2=(A+Y)/2 € convSP,, C conv S.

The last assertion is clear. [ |

3 Symmetric Permutation Matrices

In this section, we characterize linear maps leaving invariant the sets SP,, or conv SP,,.
Since SP,, = T, for n < 3, we exclude these cases in our theorem. Note that Ty, T}, € T},
correspond to disjoint transpositions if and only if p, ¢, 7, s are all distinct.

Theorem 3.1 Let S = SP,, or its conver hull. For n > 5, a linear map ¢ : V, — V,
satisfies ¢(S) = S if and only if there is P € P, such that ¢ has the form X — P'XP.
For n =4, a linear map ¢ : V4 — V4 satisfies ¢(S) = S if and only if ¢(1s) = I, and ¢
permutes the sets {112, T34}, {113, Tos}, and {T14,Tos}.

We establish several lemmas to prove Theorem 3.1. We begin with the following well-
known result. A proof is given for completeness.

Lemma 3.2 There exist Ay, ..., A, € SP,, such that A1 +---+ A,, = J,. Consequently, the
matriz J,/n € conv SP,,.

Proof. Recall that the complete graph K, is the graph with n vertices such that there
is an edge connecting any two vertices. Depict the vertices 1,...,n of K, as the points
1, e /m ... en=m/n on the complex plane and its edges as straight line segments.

Suppose n = 2k 4+ 1 is odd. We identify every matrix in SP,, as a permutation, and
express the matrix in terms of its cycle decompositions (as a permutation). Let A; =
(H)(2,n)(3,n—1)---(k+ 1,k + 2) € SP,, correspond to the loop at vertex 1 together with
the collection of the £ edges in K, that are parallel to the edge joining vertices 2 and n.
Let Ay = (2)(3,1)(4,n)(5,n —1)---(k+ 2,k + 3) € SP,, correspond to the loop at vertex 2
together with the collection of the k£ edges in K, that are parallel to the edge joining vertices
3 and 1. Similarly, for j =3,...,n—1,let A; = (j)(j+1,j—1)--- € SP, correspond to the
loop at vertex j together with the collection of the k edges in K, that are parallel to the edge
joining vertices j + 1 and j — 1. Finally, let A, = (n)(1,n—1)(2,n—2)---(k,k+1) € SP,
correspond to the loop at vertex n together with the collection of the k edges in K, that are
parallel to the edge joining vertices 1 and n — 1. One readily checks that J, = A1 +---+ A,.

We extend the above construction to the case when n + 1 = 2k 4 2 is even as follows.
We construct A; from the A; in the preceding paragraph by replacing (i) with (i,n + 1).
For example, Ay = L,n+1)(2,n)3,n—1)---(k+ 1,k +2) € SP,,;. Then J,;; =
A+ -+ A+ 1. N

Lemma 3.3 Let F, be the sum of matrices in SP,. Then F, = f,_11, + fn_gjn, where
frx = |SPg|.

(a) Wehave fi=1, fo=2, fs=4, and fr = fr 1+ (k= 1) fo 2 > 2fi 1 for k > 4.
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(b) Let g, = fn-1 — fun2. Forn >5, a matriz A € SP,, is the identity matriz if and only
if
(F — 90 A)/(fr — gn) € conv SP,,.

Proof. For any P € P,, we have P'F,P = P} scsp, A)P = Y sesp, PPAP =
> aesp, A = F,. By Lemma 2.3, F,, is a linear combination of I,, and J,,. Clearly, there are
fn—1 matrices in SP,, with 1 at the (1,1) entry, and there are f, 5 matrices in SP, with 1
at the (1,2) entry. Thus, F, = fo_1In + frn_2Jn.

(a) We have f, = f, 1+ (n — 1)f, 2 because both sides of this equation are equal to
the common row sum of F;,. Now, it is easy to check that fi =1, fo = 2, f3 =4, f, = 10,
fs=26. So, f5 > 2fy >A4fs. If fr > 2fx 1 > 4fr o for some k > 5, then

Jern = 2fk = fo + Efim1 — 2(fe—1 + (K — 1) fr—2) > 0.

By the principle of induction, the last assertion follows.

(b) Suppose n > 5. If A = I, then (F, — g, A)/(frn — gn) = Ju/n € convSP,. If A
has an off-diagonal entry equal to one, then F, — g, A has an off-diagonal entry equal to
fo—2 — gn = 2fn_2 — fn_1 <0, and thus (F, — g,A)/(fn — gn) ¢ conv SP,,. [ ]

Lemma 3.4 Let n > 4. If ¢ : V,, —» V,, satisfies ¢(S) = S, where S = SP,, or conv SP,,,
then ¢(F,) = F, and ¢(1,) = I,.

Proof. Define F,, as in Lemma 3.3. Since ¢(SP,,) = SP,,, clearly ¢(F},,) = F,,. For n > 5,
if 9(I,) = A, then (F,, — g, A)/(fo — 9n) = O((Fr — gn1n)/(fo — 9n)) = ¢(Jn/n) € conv SP,,.
By Lemma 3.3(b), we see that A = I,,.

For n = 4, let By, By, Bs be the three elements in SP, \ T4. Then B; + By + B3 = j4,
and thus j4/3 € conv SP,. Since Fy = 41, + 2j4, it follows that a matrix A € SP, satisfies
(Fy, —4A)/6 € conv SP, if and only if A = I,. By arguments similar to those in the last
paragraph, we see that ¢(I;) = I. [ |

Proof of Theorem 3.1

For n > 5, the sufficiency part can be verified readily. For n = 4, suppose ¢(I;) = I and
¢ permutes the sets {119, T34}, {713,124}, and {114, To3}. Since every element in SP, \ Ty
has the form T, + T,s — I, where {p,q,r, s} = {1,2,3,4}, we have ¢(Tp, + T;s — I,,) =
Tij + Ty — I, where {i,7,k,1} = {1,2,3,4}. Thus, ¢ will map the set SP, \ T4 onto itself.
So, ¢(SP,) = SP,,, or equivalently, ¢(conv SP,) = conv SP,,.

To prove the converse, assume that ¢ leaves invariant SP, and conv SP,. Then ¢ is
bijective. By Lemmas 3.4 and 2.4, ¢(I,) = I, and ¢(T,) = T,. Note that Tp,, T,s € T,
correspond to disjoint transpositions if and only if T),, + T, — I,, € SP,,. Thus, ¢ maps pairs
of disjoint transpositions to pairs of disjoint transpositions. Since ¢ is bijective, we are done
if n = 4.

Suppose n > 5. It suffices to show that ¢ can be converted to the identity mapping on
V,, by the composite of a sequence of mappings of the form X — P¢(X)P?. In the following
discussion, we say that two different transpositions T;; and Ty, overlap if {i,5} N {k,1} is
a singleton, i.e., T;; and Tj; are not disjoint transpositions. Now, any two members in



{T; : 2 < j < n} overlap, so the same must be true for {¢(73,) : 2 < j < n}. Since ¢(T12)
and ¢(T13) overlap, we can replace ¢ by a mapping of the form X — P¢(X)P? so that
#(X) = X for X = I, T\, and Ty3. Since ¢(T14) = T}, overlaps with each of T}, and Ti3,
we see that p =1 or (p,q) = (2, 3). If the latter holds, then ¢(715) = T, overlaps with each
of T19,T13, and Ty3, which is impossible. So, we have ¢(T14) = T for some s > 4. We may
assume that s = 4; otherwise, replace ¢ by the mapping X +— Tys¢(X)Tys. Repeating the
same arguments, we may assume that ¢(71;) = Ty, for j = 1,...,n. Now, Tb3 is the only
matrix in T, that is disjoint with 7; for all j > 4. So, ¢(T23) = To3. Similarly, we have
¢(T;) = Ty; for all j > 4. Inductively, we see that ¢(7;,) = T, for all ,s. Since ¢ fixes
every element in a spanning set for V,,, the result follows. |

4 Symmetric Doubly Stochastic Matrices

In this section, we give a different proof of the result in [5] concerning the characterization
of linear maps leaving invariant the sets E, or conv E, = SDS,,. Note that if n = 2, then
E,, reduces to T,,. So, we assume that n > 3 in our consideration.

Theorem 4.1 Supposen > 3. Let S be E,, or conv E,, = SDS,,. A linear map ¢ : V,, -V,
satisfies ¢(S) = S if and only if there is P € P, such that ¢ has the form X — P'XP.

The sufficiency part of Theorem 4.1 can be verified readily. We divide the proof of the
necessity part into several lemmas. Similar to the proofs in the previous section, a key step
is to show that ¢(I,,) = I,, (see Lemma 4.4).

To represent matrices in E,, we use the following notation. Each matrix in E, will be
represented formally as a product of 1-cycles, 2-cycles, and odd cycles of length at least 3.
The presence of an 1-cycle (i1) in the product will mean that the matrix has 1 in the (i1, ;)
position; the presence of a 2-cycle (iy,i5) will mean that the matrix has 1 in the (i, 43) and
(19,11) positions; the presence of a k-cycle (iy, 19,13, ...,14), where k is an odd integer > 3,
will mean that the matrix has 1/2 in the (i1, %) and (i, 71) positions as well as in the (;,4;41)
and (i;41,1%;) positions for j =1,2,...,k—1. For example, A = (3)(1,2)(4,5,6) € Eg means
that the matrix A has 1 in the (3,3), (1,2), and (2, 1) positions, has 1/2 in the (4,5), (4, 6),
(5,4), (5,6), (6,4), and (6,5) positions, and has 0 in all other positions.

Lemma 4.2 Suppose n > 3. Let C,, be the sum of matrices in E,,. Then
Co = anly + buJy (3)
for some positive numbers a,, and b,,.
(a) If n > 3, then a, < 2b,.

(b) Suppose n >3 and n # 4, and let A € E,. Then all nonzero entries of A equal 1/2,
i.e., A can be represented as a product of odd cycles each of length at least 3, if and
only if

(Cp —2b,A)/(an + (n — 3)b,) € SDS,,.



Proof. For any P € P, clearly P'C,P = P"(YX 4cg, A)P = X scg, P'AP =Y 4cp, A =

Cy,. By Lemma 2.3, C, = a,I, + b,J, for some positive real numbers a,, and b,.

(a) Note that a,, is equal to the number of matrices in E,, with 1 in the (1,1) position.
Thus, a, = |E,—1|]. Now, the common row sum of C, is a, + (n — 1)b,, and since each
member of E,, in the summation that produces C,, contributes an increment of 1 to the row
sum, it follows that

E.| =an+ (n—1)b, = |[E,_i1| + (n — 1)b,.
Thus, b, = (|En| — |En_1])/(n — 1). So, a, < 2b, if and only if

2(|Ep| — |Epn_
B, < 2Bl = Bus)
n—1
or equivalently,
(n+1)[Ens| < 2[E, | (4)

Let 2E,, be the multi-set (i.e., a set with elements counting multiplicities) such that every
matrix in E,, appears exactly twice in 2E,,. (We sometimes refer to two identical matrices in
2E,, as two copies of a matrix of a given form.) To prove (4), it suffices to construct an n+1
element multi-set S(X) in 2E,, for each matrix X € E,_; such that the union Uxcg, ,S(X)
(counting multiplicities) is a proper subset of 2E, with (n + 1)|E,_1| elements.

To achieve our goal, for each X € E,,_;, we construct the n + 1 element multi-set S(X)
as follows. First, we associate each X € E,_; with the two identical matrices

X & [n] € 2E,. (5)

To determine the other n — 1 matrices in S(X), we consider two types of matrices in E,,_;.

Type 1. A € E,_; has nonzero diagonal entries at the 4,%,...,%, positions with

1 <4 <---<ipy <n—1forsomep > 1, ie., the cycle decomposition of A includes the
1-cycles (¢1),...,(ip). For r=1,...,n— 1, we construct A, € 2E,, as follows.

(i) If A has (r) as an 1-cycle in the cycle decomposition, replace (r) by the 2-cycle (n,r) to
obtain A,

(ii) if A has (r,%) as a 2-cycle in the cycle decomposition, replace (r,4) by the 3-cycle (n,r, )
to obtain flr;

(iii) if A has (r,j1,...,jk) as an odd cycle with £ > 1 in the cycle decomposition, replace
the cycles (i1) and (7, j1, ..., jk) in A by the single odd cycle (i1, n,r, j1,- .., jx) to obtain
A,. Here we always assume that j; < ji; otherwise, rewrite the cycle (ryj1y.--yJk) as
(75 ks Jr—15 - - -, J1)-

For every matrix A € E,,_;, the cycle decomposition of A, € 2E,, has n in a cycle of length

at least 2, so A, will not be of the form (5). Now, let S(A) consist of A,..., A, ; and

the two identical matrices A @ [n] in 2E,,. If we consider the union of S(A) for all Type 1

matrices A € E,,_1, we have the following observations.

1. The two identical matrices A € 2E,, of the form (n, j1,72)(: - -) that contains at least
one 1-cycle will be used in the construction of S(A) for a unique Type 1 matrix A;
namely, one copy of A will appear as ﬁjl for A = (j1,72)(---) € E,_1, and the other
copy will appear as /Th for the same A € E,,_;.
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2. Exactly one of the two identical matrices A € 2E, of the form A = (n,5)(---) will be
used in the construction of S(A) for a unique Type 1 matrix A. In fact, the matrix
A will appear as A; in S(A) for A = (§)(---) € E,_y, i.e., A is obtained from A by
replacing (n, j) with (7).

3. At most one of the two identical matrices A € 2E,, of the form

A= (nan,j?n s )jkflajk)(' : )

with & > 5 will appear in S(A) for a Type 1 matrix A, which is unique if it exists.
In fact, by our construction, if j3 < ji_1, then there exists A; € E,_; such that
A € S(A)) if and only if Ay = (jx)(Ja, J3, - - - > jk—1)(---) and j < i, for every l-cycle
(ip) in A; if j3 > ji_1, then there exists Ay € E,_; such that A € S(Ay) if and only if
Ay = (j2) Uk, Jk—1,- - -, J3) (- - +) and jo < i, for every l-cycle (i,) in A.

Type 2. B € E,, ; has no nonzero diagonal entries, i.e., the cycle decomposition of B
has no 1-cycles. For r =1,...,n — 1, we construct the matrix B, as follows.

First, in the cycle decomposition of B € E,,_1, replace the indices 1,2,...,n — 1 respec-
tively by 1,2,...,7 — 1,7 +1,...,n, and then construct B, by inserting the 1-cycle (r)
into the resulting matrix. In the cycle decomposition of Er, if n is contained in a 3-cycle,
i.e., B, = (r)(n, j1,72)(- - ), then the two identical matrices B, € 2E,, were already used
up in the construction of S(A) for Type 1 matrices A; in such case, we modify B, by
changing (r)(n, j1,72)(: - -) to (n,7)(j1) (G2) (- - ).
Since a Type 2 matrix does not have an 1-cycle, the above construction will not result in
a matrix of the form Y & [n] € 2E,. Let S(B) consist of the matrices Bi,...,B,_; and
the two identical matrices B @ [n] € 2E,. If we consider the union of S(B) for all Type 2
matrices B € E,,_;, we have the following observations:

1. Excluding matrices of the form (5), at most one of the two identical matrices in 2E,
of any given form will appear in the union of S(B) for all Type 2 matrices B. Indeed,
if B € 2E,, has exactly one 1-cycle (i) where i < n, then at most a single copy of B
will appear in S(B) for the unique Type 2 matrix B € E,,_; formed by removing (7)
from the cycle decomposition of B and replacing the indices 1,2,...,i—1,2+1,...,n
with 1,2,...,n — 1, respectively.

If B € 2E, has exactly two 1-cycles and n is contained in a 2-cycle, ie., B =
(71)(J2)(n,9)(- - -), then exactly one copy of B will appear in S(B) for the unique Type
2 matrix B formed by constructing the intermediary matrix (n, ji, j2)(7)(- - -), removing
() from the cycle decomposition, and replacing the indices 1,2,...,i—1,i4+1,...,nin
the intermediary matrix with the indices 1,2,...,n — 1, respectively. No other forms
of B € 2E, will appear in S(B) for a Type 2 matrix B € E,,_;.

2. The union of S(B) for all Type 2 matrices B € E,,_; will not contain any matrices of
the form (n, j1,j2)(- - ) € 2E, and thus will not contain any matrices in 2E,, of which
two copies were used up in the construction of S(A) for Type 1 matrices A.



Thus, Uxeg,_,S(X) (counting multiplicities) is a subset of the multi-set 2E,. If n # 4,
this union is a proper subset of 2E,, because any matrix in 2E,, with a cycle decomposition
having n in a 3-cycle and having no 1-cycles does not belong to S(X) for any X € E,, ;.
For n = 4, since Cy = 5I, + 3.J;, we have ay < 2bs. This completes the proof of (a).

(b) («=) If there is some nonzero entry of A that is not 1/2, then A has an 1 in either
a diagonal entry or an off-diagonal entry. If 1 is in the (4,4) diagonal position of A (i < n),
then the (4,4) position of C}, — 2b,A is a,, — 2b, < 0. If 1 is in the (i, j) off-diagonal position
of A, then the (7, j) position of C,, — 2b, A is b, — 2b, < 0. In either case,

(Cn — 2b,A)/(an + (n — 3)b,) & SDS,..

(=) If every nonzero entry of A € E, is equal to 1/2, then all the diagonal entries of
2b,A are 0 and all the off-diagonal entries of 2b,A are either 0 or b,. Thus, C, — 2b,A is
a nonnegative matrix with a common row sum and column sum of a, + (n — 1)b, — 2b, =
an + (n — 3)by, giving (C, — 2b,A)/(a, + (n — 3)b,) € SDS,,. [

Lemma 4.3 Suppose n > 3 and n # 4. Let D, be the sum of matrices A in B, such that
all nonzero entries of A equal 1/2. Then D,, = c,J, for some positive number c,.

Proof. Note that except for n = 4, there are matrices in E,, with all nonzero entries equal
to 1/2. In fact, if n is odd, then a matrix in E,, corresponding to the long cycle (1,2,...,n)
will be such a matrix; if n > 6 is even, then there are matrices whose cycle decompositions
consist of two odd cycles, each of length at least 3.

It is easy to check that P!D,P = D, for any P € P,,. By Lemma 2.3, D, is a linear
combination of I, and J,. Now, each matrix in E,, with all nonzero entries equal to 1/2 has
all diagonal entries equal to 0. So, D,, = CnJ, for some positive number c,. [ |

Lemma 4.4 If ¢ : V,, = V,, satisfies $(S) = S, where S = E,, or SDS,,, then ¢(I,) = I,.

Proof. Since ¢ maps a spanning set of V,, onto itself, ¢ is a bijective linear map on V,,.
Now, conv E,, = SDS,,. Thus, ¢(E,) = E,, if and only if ¢(SDS,,) = SDS,,.

Define C,, and D,, as in Lemmas 4.2 and 4.3. Since ¢(E,) = E,,, we have ¢(C,) = C,.
Suppose n # 4. By Lemma 4.2 (b), if X € E, has all nonzero entries equal to 1/2, then so
does ¢(X). Thus, we have ¢(D,,) = D,,. Since I, is a linear combination of C,, and D,,, we
see that ¢(I,) = I,.

Suppose n = 4. Then Cy = 514 + 3j4. One easily checks that a matrix A € E, satisfies
(Cy—5A)/9 € SDS, if and only if

AeB={I,(1)(23,4),(2)(1,3,4), (3)(1,2,4), (4)(1,2,3)}.

Let G = Y a5 A = 21, + Jy. Then ¢(B) = B and ¢(G) = G. Since I = 3G — C4, we have
(1) = ¢(3G — Cy) = 3¢(G) — ¢(Cy) = 3G — Cy = 1. -

Proof of the necessity part of Theorem 4.1.
By Lemmas 4.4 and 2.4, we may assume that ¢(I,,) = I,, and ¢(T,) = T,. If n = 3, one
readily checks that there is P € P such that P¢(X)P' = X for all X € T3\ {I3}. Thus, ¢
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has the asserted form. If n > 5, then one can use arguments similar to those in the proof of
Theorem 3.1 to show that ¢ has the asserted form.

Suppose n = 4. One can again use the arguments similar to those in the proof of Theorem
3.1 to show that pairs of disjoint transpositions are mapped to pairs of disjoint transpositions.
We may assume that ¢(7T2) = T1o and ¢(T'3) = Ti3; otherwise, replace ¢ by a mapping of the
form X — P@(X)P? for some suitable P € P,. Since T4 is not disjoint with 75 and T3, we
have ¢(T14) € {T14,T23}. Let A =Tio+Ti13+T14. Then X € E, satisifes (A—X)/2 € SDS,
if and only if X € {T19,T13,T14}. Thus, there are exactly 3 elements Y € E, such that
(d)(A) — Y)/2 € SDS4 HOWGVGI’, if ¢(T14) = T23, then d)(A) = T12 + T13 + T23, and Y € E4
satisifes (¢(A) — Y)/2 € SDS, if and only if Y = Tyy,Ti3,Ta3, or (1,2,3)(4), which is a
contradiction. Thus, ¢(7T14) = T14. One can then use the arguments similar to those in the
proof of Theorem 3.1 to conclude that ¢ has the asserted form. [ ]

We note that one can also prove the necessity part of Theorem 4.1 using the arguments
in Assertions 3 and 4 from the proof of Theorem 2.2 in [4].
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