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Abstract

The least possible positive determinant of zero-one matrices that have constant row and
column sums is determined, thus proving a conjecture of Newman. The result is extended
to n× n integer matrices.

In 1978, Morris Newman ([N]) discussed determinants of matrices all of whose entries
are -1,0, or 1. In particular, he studied the class of (0,1)-matrices with all row and column
sums equal. For n ≥ 2 and k an integer, let

S(n, k) be the set of all n × n (0,1)-matrices with all row sums and column sums equal
to k, for 1 ≤ k ≤ n,

Z+(n, k) be the set of all n × n nonnegative integer matrices with all row and columns
sums equal to k, for k ≥ 1, and

Z(n, k) be the set of all n× n integer matrices with all row and column sums equal to k,
for k 6= 0.

Newman obtained a number of results that support his conjecture:

Conjecture [N]. If 1 ≤ k < n and (n, k) 6= (4, 2), then

min{|det(A)| : A ∈ S(n, k) and det(A) 6= 0} = k · gcd(n, k).

In 1993, Michael Grady ([G]) suggested an algorithm for constructing a matrix in S(n, k)
having determinant ±k · gcd(n, k). The existence of such a matrix, together with Newman’s
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result appearing in Lemma 1 below, would establish the truth of the conjecture. However,
the algorithm has been verified to construct such a matrix only for n ≤ 90. Our purpose is
to prove an extension of Newman’s conjecture. While we do not prove Grady’s algorithm
valid in all cases, we begin by verifying it for (n, k) = (6, 2) and for n = 2k, (Lemmas
3 and 4, resp.). We then construct matrices in S(n, k) for other choices of (n, k) whose
determinants can be evaluated using Newman’s result in Lemma 2 below and our Lemma 5.
Our Theorem 1 proves the conjecture of Newman. We then extend the result to Z(n, k) and
Z+(n, k). The following properties are established in [N] or can be easily verified.

a. S(n, 1) is the set of permutation matrices, and clearly for A ∈ S(n, 1), |det(A)| = 1.

b. The only element in S(n, n) is denoted by Jn, or simply J , which is singular.

c. If 1 < k < n and (n, k) 6= (4, 2), then S(n, k) contains a nonsingular matrix.

d. If A ∈ S(4, 2), then det(A) = 0.

The following result is proved in [N] and in [G] for matrices in S(n, k). We observe that
the proofs given there hold for arbitrary integers n > 0 and k.

Lemma 1 ([N, Theorem 2]; [G]). If A ∈ Z(n, k) , then det(A) is a multiple of k ·gcd(n, k).

Lemma 2 ([N, Lemma 1]). Let A ∈ Z(n, k).

(a) Then det(J + A) = (n + k)det(A)/k.

(b) In particular, if A ∈ S(n, k), then J − A ∈ S(n, n− k) and

det(J − A) = (−1)n−1(n− k)det(A)/k.

The conjecture has been proved if gcd(n, k) = 1 (see [N, Theorem 2]), so we now assume
that gcd(n, k) > 1, so that n > k ≥ 2.

Let R(n, k) be the collection of all A = (aij) ∈ S(n, k) such that

(i) aij = 1 for all i ≥ n− k + 2, 1 ≤ j ≤ i− (n− k + 1), i.e., the left bottom corner of A
is a triangle of ones of size k − 1. We say that A has a k − 1 left bottom triangle of ones.

(ii) aij = 0 for all i ≥ k + 2, k ≤ j ≤ i− 2, i.e., if one removes the first k − 1 columns of
A, the remaining matrix has an n− k − 1 left bottom triangle of zeros.

For a given n, let {E11, E12, . . . , Enn} be the standard basis for n × n matrices, let
Pn = E12 +E23 + · · ·+En−1,n +En1 be the basic circulant, let Nn = E12 +E23 + · · ·+En−1,n.
We shall simply write P and N if the dimension is clear from the context.

The following special case can be verified directly.

Lemma 3. Let (n, k) = (6, 2). Then A = I + P − (E11 + E44 − E14 − E41) ∈ R(6, 2)
with det(A) = −22.

The construction in the following lemma was proposed by Grady [G], and he conjectured
that the resulting matrix A provides the minimum of Newman’s conjecture.
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Lemma 4. Let (n, k) = (2k, k) with k 6= 2. If

Q =

−Ik−1 0k−1,2 Ik−1

02,k−1 02 02,k−1

Ik−1 0k−1,2 −Ik−1

 ,

then A = P−1 + I + P + · · ·+ P k−2 + Q ∈ R(n, k) with det(A) = −k2.

Proof. It is easily verified that A ∈ R(n, k). To evaluate det(A), we evaluate det(J −A)
and apply Lemma 2 to see that det(A) = −det(J − A). If J − A is partitioned as

J − A =
(

E F
G H

)

with each of E, F, G, H a k × k matrix, it follows (employing the Schur complement , see
[HJ] 0.8.5) that

det(J − A) = (−1)kdet
(

F E
H G

)
= (−1)kdet(G)det(F − EG−1H).

Letting N = Nk and denoting its transpose by N t, we have

E = I + Nk−1 − Ekk +
∑k−1

i=2 (N t)i, F = I + N t +
∑k−2

i=2 N i,

G = I +
∑k−2

i=1 N i, and H = I + Nk−1 − E11 +
∑k−1

i=2 (N t)i.

Thus

E =



1 0 0 0 · · · 0 0 1

0 1 0 0
. . . 0 0 0

1 0 1 0
. . . 0 0 0

1 1 0 1
. . . 0 0 0

1 1 1 0
. . . 0 0 0

...
. . . . . . . . . . . . . . . . . .

...

1 1 1 1
. . . 0 1 0

1 1 1 1 · · · 1 0 0


, F =



1 0 1 1 · · · 1 1 0

1 1 0 1
. . . 1 1 1

0 1 1 0
. . . 1 1 1

0 0 1 1
. . . 1 1 1

...
. . . . . . . . . . . . . . . . . .

...

0 0 0 0
. . . 1 0 1

0 0 0 0
. . . 1 1 0

0 0 0 0 · · · 0 1 1


,

G =



1 1 1 1 · · · 1 1 0

0 1 1 1
. . . 1 1 1

0 0 1 1
. . . 1 1 1

0 0 0 1
. . . 1 1 1

...
. . . . . . . . . . . . . . . . . .

...

0 0 0 0
. . . 1 1 1

0 0 0 0
. . . 0 1 1

0 0 0 0 · · · 0 0 1


, H =



0 0 0 0 · · · 0 0 1

0 1 0 0
. . . 0 0 0

1 0 1 0
. . . 0 0 0

1 1 0 1
. . . 0 0 0

...
. . . . . . . . . . . . . . . . . .

...

1 1 1 1
. . . 1 0 0

1 1 1 1
. . . 0 1 0

1 1 1 1 · · · 1 0 1


.
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It is easily checked that

G−1 = I −N + Nk−1 =



1 −1 0 0 · · · 0 0 1

0 1 −1 0
. . . 0 0 0

0 0 1 −1
. . . 0 0 0

0 0 0 1
. . . 0 0 0

...
. . . . . . . . . . . . . . . . . .

...

0 0 0 0
. . . 1 −1 0

0 0 0 0
. . . 0 1 −1

0 0 0 0 · · · 0 0 1


.

Computing EG−1 column by column, we find

EG−1 = I −N −N t +
k∑

i=2

Ei1 + 2Ek1 +
k−1∑
i=3

Eik

=



1 −1 0 0 · · · 0 0 0 2

0 1 −1 0
. . . 0 0 0 0

1 −1 1 −1
. . . 0 0 0 1

1 0 −1 1
. . . 0 0 0 1

1 0 0 −1
. . . . . . 0 0 1

...
...

. . . . . . . . . . . . . . .
...

...

1 0 0 0
. . . −1 1 −1 1

1 0 0 0
. . . 0 −1 1 0

1 0 0 0 · · · 0 0 −1 1



.

Then, computing (EG−1)H column by column, we obtain

EG−1H =



2 1 2 2 2 2 · · · 2 0 3
−1 1 −1 0 0 0 · · · 0 0 0
1 −1 2 0 1 1 · · · 1 0 2

0 1 −1 2 0 1
. . . 1 0 2

0 0 1 −1 2 0
. . . 1 0 2

...
. . . . . . . . . . . . . . . . . .

...
...

...

0 0 0 0
. . . . . . . . . 0 0 2

0 0 0 0 0
. . . . . . 2 −1 2

0 0 0 0 0 0
. . . −1 1 1

0 0 0 0 0 0 · · · 1 −1 2



.

Here the lower left (k − 2)× (k − 2) submatrix is I −N + 2N2 +
∑k−3

i=4 N i.
Now we obtain
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F − EG−1H =



−1 −1 −1 −1 −1 −1 · · · −1 1 −3
2 0 1 1 1 1 · · · 1 1 1
−1 2 −1 0 0 0 · · · 0 1 −1

0 −1 2 −1 0 0
. . . 0 1 −1

0 0 −1 2 −1 0
. . . 0 1 −1

...
. . . . . . . . . . . . . . . . . .

...
...

...

0 0 0 0
. . . . . . . . . 0 1 −1

0 0 0 0 0
. . . . . . −1 1 −1

0 0 0 0 0 0
. . . 2 0 −1

0 0 0 0 0 0 · · · −1 2 −1



.

To evaluate the determinant of this matrix, replace the first row by the sum of all the
rows, and then replace the last column by the sum of all the columns. The result is a matrix
whose first row is (0, 0, · · · , 0, k, 0), whose last column is (0, k, 0, · · · , 0)t, and whose lower left
(k− 2)× (k− 2) submatrix is triangular with -1’s on the diagonal. Now expand by the first
row, and then by the last column, to obtain det(F − EG−1H) = (−1)kk2. Thus

det(A) = −det(J − A) = −(−1)kdet
(

F E
H G

)
= (−1)k+1det(G)det(F − EG−1H) = −k2.

Lemma 5. Let A ∈ R(n, k).

(a) If Â is obtained from J −A by moving columns k through (n− 2) over the preceding

k − 1 columns so that they become columns 1 through (n − k − 1), then Â ∈ R(n, n − k)

with |det(Â)| = (n− k)|det(A)|/k.

(b) Suppose Â =
(

Ã B
C D

)
, where Ã is n×n and is obtained from A by setting its k− 1

left bottom triangle of ones to zeros, B is n× k with a k− 1 left bottom triangle of ones and
zeros elsewhere, C is k × n with a k − 1 left bottom triangle of ones and zeros elsewhere,
and D is k×k with a k right top triangle of ones and zeros elsewhere. Then Â ∈ R(n+k, k)

with det(Â) = det(A).

Proof. (a) Direct verification.

(b) By the facts that A = Ã−BD−1C and det(Â) = det(D)det(Ã−BD−1C).

We shall make use of the basic matrices constructed in Lemmas 3 and 4 and apply
the procedures in Lemma 5 (a) and (b) repeatedly to produce a matrix A in R(n, k) that
provides a minimum positive |det(A)| over A ∈ S(n, k). As a result, we have a formally
stronger result, namely, we can find a matrix in R(n, k), a subset of S(n, k), to achieve our
goal. As can be seen in the proof of the following theorem, it is very important to establish
that the procedures in Lemma 5 produce a matrix belonging to R(n, k). In particular, it is
worth noting that the triangle of zeros in the definition of R(n, k) will grow to the appropriate
size when one applies Lemma 5(b), and the sizes and locations of the triangles of zeros and
ones will adjust themselves properly when one applies Lemma 5(a).

5



Theorem 1. Suppose 1 ≤ k < n and (n, k) 6= (4, 2). There exists A ∈ R(n, k) with

min{|det(B)| : B ∈ S(n, k) and det(B) 6= 0} = |det(A)| = k · gcd(n, k).

Proof. For k = 1 we may take A = I, so we assume k ≥ 2. Given (n, k) 6= (4, 2), define
(n1, k1), (n2, k2), . . . by the following algorithm:

Step 1. Set (n1, k1) = (n, k), and set r = 1. Go to Step 2.

Step 2. If nr = 2kr, stop. Otherwise go to Step 3.

Step 3. Set i = r. Define

(ni+1, ki+1) =
{

(ni − ki, ki) if ni > 2ki,
(ni, ni − ki) if ni < 2ki.

Step 4. Set r = i + 1. Go to Step 2.

By the Euclidean algorithm, after finitely many iterations, we get (ns, ks) = (2t, t), where
t = gcd(n, k).

If t > 2, one can construct As ∈ R(ns, ks) with |det(As)| = t2 by Lemma 4. Then
for i = s − 1, . . . , 1, one can apply Lemma 5(a) (if ni < 2ki) or 5 (b) (if ni > 2ki) to
construct Ai ∈ R(ni, ki) with |det(Ai)| = tki. One readily checks that A1 ∈ R(n, k) satisfies
|det(A1)| = kt.

If t = 2, then (ns, ks) = (4, 2) and (ns−1, ks−1) = (6, 2). One can construct As−1 ∈
R(ns−1, ks−1) with |det(As−1)| = 22 by Lemma 3. Then for i = s − 2, . . . , 1, one can apply
Lemma 5 (a) or (b) as before to construct Ai ∈ R(ni, ki) with |det(Ai)| = tki. One readily
checks that A1 ∈ R(n, k) satisfies |det(A1)| = kt.

Lemma 1 completes the proof.

To illustrate the process described in the proof, we construct a matrix A1 in R(15, 6)
with |det(A1)| = 6 · gcd(15, 6) = 18.

First we construct the sequence: (n1, k1) = (15, 6), (n2, k2) = (9, 6), (n3, k3) = (9, 3),
(n4, k4) = (6, 3).

Then we construct the matrices:

A4 =



0 1 0 0 1 1
1 0 1 0 0 1
0 1 1 1 0 0
0 0 1 1 1 0
1 0 0 1 0 1
1 1 0 0 1 0


,

6



A3 =



0 1 0 0 1 1 0 0 0
1 0 1 0 0 1 0 0 0
0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0 1


,

A2 =



1 1 0 0 1 1 0 1 1
0 1 1 0 1 0 1 1 1
0 0 1 1 1 1 0 1 1
0 0 0 1 1 1 1 1 1
1 0 1 0 0 1 1 1 1
1 1 0 1 0 1 1 0 1
1 1 1 1 0 1 1 0 0
1 1 1 1 1 0 1 0 0
1 1 1 1 1 0 0 1 0


,

A1 =



1 1 0 0 1 1 0 1 1 0 0 0 0 0 0
0 1 1 0 1 0 1 1 1 0 0 0 0 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 1 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 1 0 1 1 0 1 1 1 0 0 0 0
0 0 0 1 0 1 1 0 0 1 1 1 0 0 0
0 0 0 0 1 0 1 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 1 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 1 0 0 0 0 0 0 0 0 0 1 1
1 1 1 1 1 0 0 0 0 0 0 0 0 0 1



.

By our results (Lemmas 4 and 5) or by direct verification, one sees that |det(A4)| =
|det(A3)| = 9 and |det(A2)| = |det(A1)| = 18.

Because of the more general hypothesis in Lemmas 1 and 2, we now relax the conditions
on k and obtain the following theorem concerning integer matrices.

Theorem 2. Let n ≥ 2 and k be nonzero integers.

(a) Then min{|det(A)| : A ∈ Z(n, k) and det(A) 6= 0} = |k| · gcd(n, k).
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(b) If k ≥ 1, then

min{|det(A)| : A ∈ Z+(n, k) and det(A) 6= 0} = k · gcd(n, k).

Proof. It suffices to prove (b). In case we are dealing with (a) and a negative integer k,
we only need to construct A ∈ Z+(n,−k) satisfying (b). Then −A ∈ Z(n, k) will satisfy the
requirement.

First suppose 1 ≤ k ≤ n. Then all these cases are covered by Theorem 1 except the cases
(n, k) = (4, 2) and k = n. For (n, k) = (4, 2), the lower bound of 4 provided by Lemma 1 is
attained by the direct sum (J3 − I3)⊕ [2].

For k = n, the lower bound of n2 provided by Lemma 1 is attained by the direct sum
(In−1+Jn−1)⊕[n], which is clearly in Z+(n, n). The eigenvalues of In−1+Jn−1 are n, 1, 1, · · · , 1,
and so the determinant of the direct sum is n2.

Suppose k = qn+r for some q ≥ 1 and 1 ≤ r ≤ n. Then gcd(n, r) = gcd(n, k) and we can
construct A ∈ Z+(n, r) such that |det(A)| = r · gcd(n, k). One can then apply Lemma 2(a)

repeatedly to conclude that qJ + A ∈ Z+(n, k) satisfies |det(qJ + A)| = k · gcd(n, k).
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