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Abstract

To describe the dynamics of stage-structured populations with m stages living in n
patches, we consider matrix models of the form SD where S is a block diagonal matrix
with n×n column substochastic matrices S1, . . . , Sm along the diagonal and D is a block
matrix whose blocks are n × n nonnegative diagonal matrices. The matrix S describes
movement between patches and the matrix D describes growth and reproduction within
the patches. Consider the multiple arc directed graph G consisting of the directed
graphs corresponding to the matrices S1, . . . , Sm where each directed graph is drawn
in a different color. We say G has a polychromatic cycle if G has a directed cycle
that includes arcs of more than one color. We prove that ρ(SD) ≤ ρ(D) for all block
matrices D with nonnegative diagonal blocks if and only if G has no polychromatic cycle.
Applications to ecological models are presented.

AMS Subject Classifications 15A51, 15A18, 92D25
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1 Introduction

Denote by ρ(A) the spectral radius of a square matrix A. The column sum norm of A =

(aij)1≤i,j≤n is defined by

‖A‖ = max

{
n∑

i=1

|aij| : 1 ≤ j ≤ n

}
.

An n× n nonnegative matrix S is column substochastic (respectively, column stochastic)if all

the column sums are bounded by one (respectively, equal to one). The well-known fact that

ρ(A) ≤ ‖A‖ immediately implies the following proposition.
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Proposition 1.1 Let D be a diagonal nonnegative matrices and S a column substochastic
matrix. Then

ρ(SD) ≤ ρ(D).

For biological models that account for spatial structure, this fact has some important

implications. For example, consider a population (e.g. viruses, animals, plants, molecules)

residing in an environment consisting of n spatial locations or patches. If this population did

not disperse across the environment, x = (x1, . . . , xn)t denotes the vector of abundances (e.g.

density, concentration, or expected size) and di is the per-capita growth rate of the population

in the i-th patch, then a matrix model of this population is given by

x(t + 1) = Dx(t)

where x(t) denotes the vector of abundances in the t-th time step and D = diag (d1, . . . , dn).

Since x(t) = Dtx(0), population i grows asymptotically at a geometric rate if and only if

di > 1. In particular, the entire population x1(t) + . . . + xn(t) grows asymptotically at a

geometric rate if and only if ρ(D) = maxi di > 1. Now assume the population disperses

across the environment after the reproductive or growth phase. More specifically, a fraction

of individuals sij successfully moves from location j to location i. Then the matrix S = (sij)

is column substochastic, and the population dynamics become

x(t + 1) = S Dx(t).

This dispersing population exhibits growth if and only if ρ(SD) > 1. Since ρ(SD) < ρ(D) if

not all di’s are equal and S is irreducible, one can conclude that generically dispersal decreases

the asymptotic population growth rate. Moreover, since ρ(SD) = ρ(DS), this conclusion holds

whether growth occurs before dispersal, as we have assumed, or growth occurs after dispersal.
Many biological models not only account for spatial structure but also account for stage

structure. For example, in ecological models, the population may consist of individuals in

different age classes (e.g. juveniles, sub-adults, adults) living in different spatial locations [1].

Similarly, epidemiological models often account for different classes of individuals (e.g. sus-

ceptible, exposed, infected, removed) as well as spatial structure [3]. For these multistate

models, one can ask

Question 1.2 Under what conditions does dispersal decrease the asymptotic growth rate of a
population?

In other words, when does the analog of Proposition 1.1 hold for these models. To address this

question, consider a population with m life stages living in n spatial locations. Let xi
j ∈ [0,∞)

denote the abundance of stage i individuals in location j. Then

xi =

 xi
1
...

xi
n

 , xj =


x1

j
...

xm
j

 , and x =

 x1

...
xm


2



are the vector of abundances in stage i, the vector of abundances in location j, and the vector
of all abundances, respectively. Let us assume that the population first goes through a growth
phase in which individuals within a location survive, reproduce, and change stages. For each
spatial location j, let Aj be an m×m nonnegative matrix representing the growth dynamics

in location j. In the absence of spatial considerations, the population dynamics are given by

xj(t + 1) = Ajxj(t) j = 1, . . . , n.

If P is the permutation matrix such that

Px = P

 x1

...
xm

 =

 x1
...

xn

 ,

then
x(t + 1) = Dx(t) with D = P t(A1 ⊕ · · · ⊕ An)P,

where A1 ⊕ · · · ⊕ An denotes the block diagonal matrix with diagonal blocks A1, . . . , An.

Let {E11, E12, . . . , Enn} be the standard basis for the linear space of n × n matrices, and let

A⊗ B = (aij)⊗ B = (aijB) be the Kronecker product of the two matrices A = (aij) and B.

Then D is a block matrix whose blocks are n× n nonnegative diagonal matrices:

D =
n∑

j=1

Aj ⊗ Ejj.

To account for movement between locations after the growth phase, let S1, . . . , Sm be column

substochastic n × n matrices whose (i, j)th entry corresponds to fraction of individuals in a

given stage that move successfully from patch j to patch i. Including these spatial movements
by setting S = S1 ⊕ . . .⊕ Sm, we see that the population dynamics become

x(t + 1) = SDx(t).

Hunter and Caswell [6] discuss alternative representations of the same model. The population

exhibits asymptotically geometric growth if and only if ρ(SD) > 1. Unlike the purely spatially

structured model, the following example illustrates that the inclusion of spatial movement into
a stage-structured population can enhance the asymptotic growth rate of the population.

Example 1.3 Consider a population of juveniles and reproductively mature adults living in

two spatial locations (e.g. salmon where juveniles develop in fresh water and adults become

reproductively mature in the ocean). For illustrative purposes, let us assume that in location

1 (i.e. a freshwater river), all adults produce two juveniles before dying but juveniles can

not become reproductively mature adults. In location 2 (i.e. the ocean), all juveniles become

reproductively mature adults but progeny produced by the adults in location 2 can not survive
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(i.e. salmon fry can not develop in salt water). In other words, m = n = 2, A1 =
(

0 2
0 0

)
,

and A2 =
(

0 0
1 0

)
. In which case,

ρ(D) = ρ




0 0 2 0
0 0 0 0
0 0 0 0
0 1 0 0


 = 0

as D2 = 0: without movement between the patches, the population goes extinct in two time
steps. Alternatively, if all juveniles move to patch 2 and all adults move to patch 1, then

S1 =
(

0 0
1 1

)
and S2 =

(
1 1
0 0

)
. In which case,

ρ(SD) = ρ




0 0 0 0
0 0 2 0
0 1 0 0
0 0 0 0


 =

√
2,

and the population grows asymptotically at a geometric rate.

Proposition 1.1 and Example 1.3 suggest the following general question:

Question 1.4 Given S and D is there a practical way of determining whether or not ρ(SD) ≤
ρ(D)?

As a step to understanding this question, we provide in section 2 an affirmative answer to the
following question:

Question 1.5 Given S is there a practical way of determining whether ρ(SD) ≤ ρ(D) for all

block matrices D whose blocks are m×m nonnegative diagonal matrices?

In particular, if one does not have much information about D, and yet one would like to

control or change S to ensure that ρ(SD) ≤ ρ(D), our result provides useful information.

Our paper is organized as follows. In section 2, we present the statement of our main

theorem (Theorem 2.1) answering Question 1.5, and illustrate applications of the result to

biological models studied by other authors. In section 3, we give a proof of Theorem 2.1.

2 Statement of Theorem and Applications

To state our theorem, we need to introduce one definition. We say the n × n nonnegative
matrices S1, . . . , Sm admit a polychromatic cycle if there exist nonzero entries of S1+· · ·+Sm at

the (i1, i2), (i2, i3) . . . , (ik−1, ik), (ik, i1) positions for some distinct i1, . . . , ik ∈ {1, . . . , n}, and

these nonzero entries do not come from a single matrix Sj. One can think of this definition
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as follows. Let Gj be the directed graph corresponding to the matrix Sj for j = 1, . . . ,m.

In other words, Gj has vertex set V (Gj) = {1, . . . , n}, and the arc set E(Gj) consists of

arcs (r, s) from vertex r to vertex s is the (r, s) entry of Sj is nonzero. Here we do not

consider self loops. Consider the multiple arc directed graph G consisting of the directed
graphs G1, . . . , Gm, where each directed graph is drawn in a different color. A polychromatic

cycle is a (directed) cycle in G that includes arcs of more than one color. For instance, in

Example 1.3, the entries (2, 1) and (1, 2) of S1 and S2, respectively, define a polychromatic

cycle for the matrices S1 and S2.

Theorem 2.1 Suppose S = S1 ⊕ · · · ⊕ Sm so that S1, . . . , Sm are n× n column substochastic
matrices. The following conditions are equivalent.

(a) For every block matrix D = (Dij)1≤i,j≤m, where each Dij ∈ Mn is a diagonal matrix

with nonnegative diagonal entries, we have ρ(SD) ≤ ρ(D).

(b) S1, . . . , Sm do not admit a polychromatic cycle.

The proof of Theorem 2.1 will be given in Section 3. Here we provide two applications to
multistate matrix models studied by other researchers.

Example 2.2 (Patch development models) Many species live in environments where the

patches change state stochastically in time. For instance, a patch of land may be recently
disturbed by a fire or have been undisturbed for an extended period of time. Alternatively,
a patch of land may have recently experienced a rainfall or be going through a dry spell.

Following Horvitz and Schemske [5], Caswell [1, Example 4.3.1.5 on pg. 70] describes matrix

models that account for changes in the state of a patch. These models assume that each patch
exhibits transitions between n different states and individuals living in these patches can be

in one of m stages, where m ≥ 2. Let xi
j denote the abundance of individuals of state j living

in a patch in stage i. Let S be a column stochastic matrix that represents the transition
probabilities between patch states i.e. sij is the probability that the patch goes from state

j to state i in one time step. Let A1, . . . , An be m ×m nonnegative matrices that represent

the population dynamics (i.e. transitions between life stages and reproduction) for a patch in

states 1, . . . , n. If we define

S = Im ⊗ S and D =
n∑

j=1

Aj ⊗ Ejj

then the population dynamics are given by x(t+1) = SDx(t). Since S admits a polychromatic

cycle if and only if S has a cycle, Theorem 2.1 implies that ρ(SD) ≤ ρ(D) for all D if and

only if S admits no cycle.

Example 2.3 (Planktonic dynamics) Many species have a single life stage that disperses

through the environment [6, 7, 8]. For matrix models of these species, Theorem 2.1 typically

implies that dispersal decreases the asymptotic population growth rate. Sometimes this ap-
plication of Theorem 2.1 requires augmenting the matrix model by additional state variables.
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For instance, Caswell [1, Example 4.3.1.3 on pg. 68] describes a stage structured and spa-

tially structured model of Davis [2] for planktonic species (e.g. copepods, water fleas, etc.)

dispersing in ocean currents during their larval stage. This model assumes that the growth
dynamics are independent of spatial location and determined by two nonnegative matrices:

a nonnegative m × m matrix T = (tij) that represents the transitions between life stages

and a nonnegative m×m matrix F = (fij) that represents reproduction. Since reproduction

only contributes to first life stage (i.e. the larval stage), F has all zero entries except in the

first row. To describe dispersal between locations by the larvae, let S be a n × n column

substochastic matrix whose (i, j)th entry sij corresponds to the likelihood that a newly born

larva from location j ends up in location i. Then, the model for the planktonic dynamics is
given by

xi(t + 1) = T xi(t) +
n∑

j=1

sijFxj(t), i = 1, . . . , n,

where the first term corresponds to transitions between life stages and the second term corre-
sponds to new larvae dispersing to an i-th patch. Equivalently,

x(t + 1) = Ax(t) where A = T ⊗ In + (S ⊕ (Im−1 ⊗ In))(F ⊗ In). (2.1)

In particular, if the planktonic larvae do not disperse between spatial locations, then the

matrices S and A reduce to In and (T + F )⊗ In, respectively. We claim that

ρ(T ⊗ In + (S ⊕ (Im−1 ⊗ In))(F ⊗ I)) ≤ ρ((T + F )⊗ In) (2.2)

for any column substochastic matrix S. In other words, dispersal of the larva reduces the
asymptotic growth rate of the population.

To prove this claim using Theorem 2.1, we need to introduce an extra variable x̃0
j that keeps

track of the newly born larval stage. Let x̃i
j for i = 0, 1, . . . ,m and j = 1, . . . , n correspond to

the abundance of life stage i in location j, x̃i =

 x̃i
1
...

x̃i
n

, and x̃ =

 x̃0

...
x̃m

. Moreover, define

D =


f11 f11 f12 . . . f1m

t11 t11 t12 . . . t1m

t21 t21 t22 . . . t2m
...

...
...

...
...

tm1 tm1 tm2 . . . tmm

⊗ In and S = S ⊕ (Im ⊗ In)

With the inclusion of this additional variable, the planktonic model in (2.1) becomes

x̃(t + 1) = SD x̃(t)

Furthermore, we have(
In In 0n,n(m−1)

0n(m−1),n 0n(m−1),n Im−1 ⊗ In

)
SD = A

(
In In 0n,n(m−1)

0n(m−1),n 0n(m−1),n Im−1 ⊗ In

)
.
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Hence, if x̃ =


x̃0

x̃1

...
x̃m

 is a nonnegative right eigenvector of SD, then x =


x̃0 + x̃1

x̃2

...
x̃m

 6= 0 is a

nonnegative right eigenvector of A with the same eigenvalue. Conversely, if y = (y1, . . . , yn)

is a left eigenvector of A, then ỹ = (y1, y1, y2, . . . , yn) 6= 0 is a left eigenvector of SD with

the same eigenvalue. It follows that that ρ(SD) = ρ(A). Evidently, S does not admit a

polychromatic cycle. By Theorem 2.1, we have ρ(A) = ρ(SD) ≤ ρ(D) and thus (2.2) holds

for any column substochastic matrix S.

3 Proof of Theorem 2.1

In this section, we give a proof of Theorem 2.1. Because our proof contains some intricate
combinatorial arguments and constructions, we give several examples at the end of this section
to illustrate the ideas and constructions in our proofs. In particular, Example 3.1 illustrates

the idea and construction in the proof of (a) ⇒ (b), and the other examples illustrate the

ideas and constructions in the proof of (b) ⇒ (a). Readers may study the examples along

with the proofs to gain better insight.

Throughout this section, we will assume that P is the permutation matrix such that

Px = P

 x1

...
xm

 =

 x1
...

xn

 . (3.1)

We often use the notation PSP t = S̃ and PDP t = D̃. Note that D̃ will be a direct sum of

n matrices of order m ×m; and S̃ will be an n × n block matrix such that each block is an
m×m diagonal matrix.

Also, we will continue to use the graph theory notation introduced at the beginning of
Section 2. Note that if Gj is the directed graph of Sj, and if we relabel the vertices of Gj, it

is the same as replacing Sj by QtSjQ for a suitable n × n permutation matrix Q. Note that

replacing Sj by QtSjQ for all j = 1, . . . ,m, is the same as replacing S by (Im⊗Q)tS(Im⊗Q).

If we also replace each D by (Im⊗Q)tD(Im⊗Q), conditions (a) and (b) will not be affected.

We will write X ≥ Y if X − Y is nonnegative. Clearly, if X, Y and Z are nonnegative

matrices satisfying X ≥ Y , then XZ ≥ Y Z and hence ρ(XZ) ≥ ρ(Y Z); see [4, Theorem

8.4.5]

The proof of (a) ⇒ (b)

We prove the contrapositive. Suppose ¬(b) holds, i.e., S1, . . . , Sm admit a polychromatic

cycle. We will construct an m×m block matrix D such that ρ(D) > ρ(SD) and each block

is a nonnegative diagonal matrix.

Assume S1, . . . , Sm admit a polychromatic cycle (i1, . . . , ik). Replacing S and D by

(I ⊗ Q)tS(I ⊗ Q) and (Im ⊗ Q)tD(Im ⊗ Q) with a suitable permutation matrix Q, we
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may assume that (i1, . . . , ik) = (1, . . . , k). Then G has a polychromatic cycle with arcs

(1, 2), (2, 3), . . . , (k, 1). For i = 1, . . . ,m, construct the n × n zero-one matrix Fi from Si

by changing those entries of Si which contribute to the arcs (1, 2), (2, 3), . . . , (k, 1) of the poly-

chromatic cycle to one, and changing all other entries to zero. Let F = d(F1 ⊕ · · · ⊕ Fm),

where
d = min{s : s is a positive entry of S}.

Then F has k nonzero entries all equal to d and S ≥ F. We will construct D so that

ρ(FD) = ρ(DF) > ρ(D). (3.2)

Since S ≥ F, it will then follow that ρ(SD) ≥ ρ(FD) > ρ(D).

Let P be the permutation matrix satisfying (3.1), and let F̃ = PFP t = d(F̃ij)1≤i,j≤n, where

F̃ij are m×m diagonal matrices. Then F̃ij = 0 if (i, j) /∈ {(1, 2), (2, 3), . . . , (k − 1, k), (k, 1)}.
Since the nonzero entries in F1 + · · ·+ Fm do not come from a single matrix Fr, the matrices

F̃12, . . . , F̃k−1,k, F̃k,1 cannot be identical and each of them has only one nonzero entry equal to

1 on the diagonal.

Let {e1, . . . , em} be the standard basis for IRm, and let µ > max{d−k, 1}. Suppose

D̃ = D̃1 ⊕ · · · ⊕ D̃n,

where

(i) D̃j = [er + µ
∑

s 6=r es]e
t
r if the (r, r) entry of F̃j,j+1 is nonzero for j ∈ {1, . . . , k − 1},

(ii) D̃k = [er + µ
∑

s 6=r es]e
t
r if the (r, r) entry of F̃k,1 is nonzero,

(iii) D̃j = 0m for j ∈ {k + 1, . . . , n}.

Then ρ(D̃) = 1, and D̃F̃ = (Rij), where

(R12, R23, . . . , Rk−1,k, Rk,1) = (dD̃1, · · · , dD̃k)

and Rij = 0 for all other (i, j). Thus,

(D̃F̃)k = T1 ⊕ · · · ⊕ Tk ⊕ 0m(n−k),

where each Tj is a cyclic product of dD̃1, . . . , dD̃k so that all Tj have the same eigenvalues.

Let D̃i = [eri
+ µ

∑
s 6=ri

es]e
t
ri

for i = 1, . . . , k. Then

D̃1 · · · D̃k = (ν1 · · · νn−1)[er1 + µ
∑
s 6=r1

es]e
t
rn

,

where for j = 1, . . . , k − 1,

νj = et
rj

[erj+1
+ µ

∑
s 6=rj+1

es] =

{
1 if rj = rj+1,
µ if rj 6= rj+1.
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Since F̃12, . . . , F̃k1 are not identical, the matrices D̃1, . . . , D̃k are not identical. So, there is

j ∈ {1, . . . , k−1} such that νj = µ. As a result, the matrix T1 = dk(D̃1 · · · D̃k) has exactly one

nonzero column which contains a diagonal entry of the form dkµs for some s ≥ 1. It follows

that ρ((D̃F̃)k) = ρ(T1) = dkµs > 1 because µ > max{d−k, 1} and s ≥ 1. Let D = P tD̃P .

Then

ρ(DF) = ρ(D̃F̃) > 1 = ρ(D̃) = ρ(D).

The proof of (b) ⇒ (a)

Suppose S satisfy condition (b). Using the graph theory description of condition (b) before

Theorem 2.1, we see that if Gi is the directed graph associated with Si for i = 1, . . . ,m, then

in the multiple arc directed graph G with vertex set V (G) = {1, . . . , n} and multiple arc set

E(G) = ∪m
j=1E(Gj) every cycle is monochromatic. We will show that

ρ(SD) ≤ ρ(D) (3.3)

for all m×m block matrices D in which each block is a diagonal matrix with positive diagonal

entries. By continuity, the inequality (3.3) will also hold for m × m block matrices D such

that each block is a nonnegative diagonal matrix.

To prove inequality (3.3), we can impose some additional assumptions on the matrix D as

follows. Suppose PDP t = D̃ = D1 ⊕ · · · ⊕Dn. We can replace D by D/ρ(D) on both sides

of (3.3) and assume that ρ(D) = 1. Furthermore, we can replace Dj by Dj/ρ(Dj) for each

j = 1, . . . , n, and assume that ρ(D1) = · · · = ρ(Dn) = 1. Note that after such a replacement,

ρ(D) will stay the same, but ρ(SD) may increase.

Now, suppose D is an m × m block matrix such that each block is an n × n diagonal

matrix with positive diagonal entries, and PDP t = D̃ = D1 ⊕ · · · ⊕ Dn with ρ(Dj) = 1 for

each j = 1, . . . , n. Our strategy is to show that there exists a diagonal matrix V with positive

diagonal entries such that VDV−1 is column stochastic and VSV−1 has column sum norm
at most one. It will then follow that

ρ(SD) = ρ(VSV−1VDV−1) ≤ ‖VSV−1VDV−1‖

≤ ‖VSV−1‖ ‖VDV−1‖ ≤ 1 = ρ(D).

To achieve our goal, let Q be an n× n permutation matrix such that

Qt(S1 + · · ·+ Sm)Q = (Tij)1≤i,j≤k (3.4)

is in block upper triangular form (Frobenius normal form) and each diagonal block Tjj is

an irreducible square matrix. We may assume that Q = In; otherwise, replace S by (Im ⊗
Q)tS(Im ⊗Q), and replace D by (Im ⊗Q)tD(Im ⊗Q), accordingly.

Suppose C1, . . . , Ck are the strongly connected components of the directed graph G with

multiple arcs corresponding to the matrices T11, . . . , Tkk. For r ∈ {1, . . . ,m}, if (p, q) is an arc
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of Gr in Ci, then (p, q) belongs to a cycle in Gr lying entirely in Ci. Otherwise, the arc (p, q)

will lie in a polychromatic cycle in the strongly connected component Ci. So, each arc of Gr in
Ci must belong to a strongly connected component of Gr lying entirely in Ci. Consequently,
every Ci is a directed graph consisting of strongly connected sub-components Ci,1, . . . , Ci,pi

from the directed graphs G1, . . . , Gm.

To construct the desired diagonal matrix V, we need to relabel the vertices of G. We do
this in two steps.

Step 1 We relabel the sub-components Ci,1, . . . , Ci,pi
of Ci for each i as follows.

If pi = 1, then no relabeling is needed. If pi > 1 then Ci,1 has a common vertex with one

of directed graphs Ci,2, . . . , Ci,pi
. Since C1 is strongly connected, permuting the subscripts

2, . . . , pi if necessary, we may assume that Ci,1 and Ci,2 have common vertices. Observe that

Ci,1 and Ci,2 cannot have two or more common vertices; otherwise, there will be a two-color

cycle in Ci. If pi > 2, then Ci,1∪Ci,2 will have a common vertex with one of the sub-components

Ci,3, . . . , Ci,pi
, say, Ci,3. Here the union of two directed graphs means the union of vertex sets

as well as the arc sets of the two directed graphs. Again, Ci,1 ∪Ci,2 and Ci,3 cannot have two

common vertices; otherwise, there will be a polychromatic cycle in Ci. We can repeat this
argument until we are done with Ci,pi

.

Step 2 We relabel the vertex set V (G) = {1, . . . , n} as follows.

Assume that C1 is a union of C1,1, C1,2, . . . , C1,p1 , and C1 has q1 vertices. Arrange the

vertices of C1,1 in a sequence (in any order); then continue with the vertices in C1,2, till we get

to the vertices of C1,p1 . Relabel these vertices by the indices 1, . . . , q1. Assume C2 is a union

of C2,1, . . . , C2,p2 and has q2 vertices. Then use a similar procedure to relabel the vertices of

C2 by the indices q1 + 1, . . . , q1 + q2. Continue this process till we are done with Ck.

Suppose Q is the n×n permutation matrix corresponding to the relabeling of vertices of G

in Step 2. Again, we may assume that Q = In. Otherwise, replace S by (Im ⊗Q)tS(Im ⊗Q),

and replace D by (Im ⊗Q)tD(Im ⊗Q) accordingly.

We are now ready to construct the desired diagonal matrix V. Since Dj is a positive

matrix and ρ(Dj) = 1, there is a left Perron vector vj = (vj1, . . . , vjm) with positive entries

such that vj1 = 1 and vjDj = vj for j = 1, . . . , n; see [4, Theorem 8.2.11]. If Vj is the diagonal

matrix with diagonal entries vj1, . . . , vjm, then VjDjV
−1
j is column stochastic. Let µ1, . . . , µn

be positive numbers, and V be such that PVP t = µ1V1 ⊕ · · · ⊕ µnVn. Then

P (VDV−1)P t = (V1D1V
−1
1 ⊕ · · · ⊕ VnDnV

−1
n )

is column stochastic. Consider the diagonal entries of V arranged as follows:

µ1v11 µ1v12 · · · µ1v1m

µ2v21 µ2v22 · · · µ2v2m
...

... · · · ...
µnvn1 µnvn2 · · · µnvnm.

(3.5)
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If Ui = diag (µ1v1i, µ2v2i, . . . , µnvni) for i = 1, . . . ,m, then V = U1 ⊕ · · · ⊕ Um. We will select

positive numbers µ1, . . . , µn so that the column sum norm of UiSiU
−1
i is at most one for each

i. Then V will satisfy the desired property.

If C1 has only one vertex, set µ1 = 1. Otherwise, suppose the sub-component C1,1 of C1 is a

strongly connected component of Gr and has α1 vertices. Then in the matrix S = S1⊕· · ·⊕Sm,
only Sr has a leading α1 × α1 irreducible principal submatrix, and all other Sj will have a

diagonal leading α1 × α1 principal submatrix. For j = 1, . . . , α1, select µj so that µjvjr = 1.

Then for any choices of other µj for j > α1, if VSV−1 = Ŝ1 ⊕ Ŝ2 ⊕ · · · ⊕ Ŝm then the α1 × α1

leading submatrix of Ŝj will be the same as that of Sj for j = 1, . . . ,m. Note that at this

point, we have selected the first α1 rows in list (3.5).

Next, consider the sub-component C1,2 in C1. By the discussion in the Step 1 relabeling

procedure, C1,1 and C1,2 has exactly one common vertex say, s ∈ {1, . . . , α1}. Suppose C1,2

comes from Gt 6= Gr and has α2 − α1 + 1 vertices (including s). Then µsvst is determined

in the preceding paragraph, and we can choose µα1+1, . . . , µα2 so that µjvjt = µsvst for j =

α1 + 1, . . . , α2. Then for any choices of other µj for j > α2, if VSV−1 = Ŝ1 ⊕ Ŝ2 ⊕ · · · ⊕ Ŝm

then the α2×α2 leading submatrix of Ŝj will be the same as that of Sj for j = 1, . . . ,m. Note

that at this point, we have selected the first α2 rows in list (3.5).

In the labeling of the sub-components of C1 in the Step 1 relabeling procedure, every addi-
tional sub-component would have exactly one common vertex with the union of the previously
labeled sub-components. So, we can repeat the above process to select µj until we are done

with all the sub-components of C1. Since C1 has q1 vertices, for any choices of other µj with

j > q1, if VSV−1 = Ŝ1 ⊕ Ŝ2 ⊕ · · · ⊕ Ŝm then the q1 × q1 leading submatrix of Ŝj will be the

same as that of Sj for j = 1, . . . ,m. Note that at this point, we have selected the first q1 rows

in list (3.5).

Now we move to the second strongly connected component C2 of G. Let us identify the
smallest constant η such that

µivi` ≤ ηvj` if j > q1, and ` ∈ {1, . . . , n} (3.6)

for each number µivi` in the first q1 rows of list (3.5). In the future selection of µj for j > q1,

we will insist that µj ≥ η. Then

(µivi`)(µjvj`)
−1 ≤ 1 for all i ≤ q1 < j, and ` ∈ {1, . . . , n}. (3.7)

In other words, all diagonal entries of (µiVi)(µjVj)
−1 are less than or equal to one for i ≤ q1 ≤ j.

If C2 has only one vertex, set µq1+1 to be any number larger than η. Otherwise, consider the

first sub-component C2,1 in C2. Assume C2,1 belongs to G` and has β1 vertices. Then for

j = q1 +1, . . . , q1 +β1, choose µj ≥ η so that µjvj` are all equal. Then for any choices of other

µj with j > q1 + β2, if VSV−1 = Ŝ1 ⊕ Ŝ2 ⊕ · · · ⊕ Ŝm the q1 × q1 leading submatrix and the

11



following β1 × β1 principal submatrix of Ŝj will be the same as that of Sj for j = 1, . . . ,m.

Note that at this point, we have selected the first q1 + β1 rows in list (3.5).

Applying similar arguments as those to C1 with the precaution that µj ≥ η for j =

q1 + 1, . . . , q1 + q2, we can select the first q1 + q2 rows of list (3.5) so that for any choices of

other µj with j > q1+q2, if VSV−1 = Ŝ1⊕Ŝ2⊕· · ·⊕Ŝm then the q1×q1 leading submatrix and

the following q2× q2 principal submatrix of Ŝj will be the same as that of Sj for j = 1, . . . ,m.

Note that each Sj has an upper triangular block form according to the Frobenius normal

form (Tij) in (3.4). If VSV−1 = Ŝ1 ⊕ Ŝ2 ⊕ · · · ⊕ Ŝm and there is a nonzero (i, j) entry ξ in S`

such that 1 ≤ i ≤ q1 < j ≤ q1 + q2, then it is obtained from the original entry by multiplying

the quantity (µivi`)(µjvj`)
−1, and hence it is not larger than the original entry by (3.7). So,

the first q1 + q2 columns of VSV−1 have column sums bounded above by one.

Now, update η in (3.6) so that

µivi` ≤ ηvj` if i ≤ q1 + q2 < j, ` ∈ {1, . . . , n}

for all numbers µivi` in the first q1 + q2 rows of list (3.5). Then we can proceed to consider the

strongly connected component C3 of G and determine µj for j = q1 + q2 + 1, . . . , q1 + q2 + q3.

Repeating the above argument, we can determine µ1, . . . , µn and construct the diagonal

matrix V = U1 ⊕ · · · ⊕ Um so that UiSiU
−1
i is still in upper block triangular form, whose

diagonal blocks are the same as those of Si, and Si − UiSiU
−1
i is nonnegative. Hence,

‖VSV−1‖ ≤ ‖S‖ ≤ 1.

The following example illustrates the construction in our proof of the implication (a) ⇒
(b).

Example 3.1 Let S = S1 ⊕ S2, where

S1 =
1

2

 2 1 0
0 1 2
0 0 0

 and S2 =
1

2

 0 0 2
0 2 0
2 0 0

 .

Then the directed graph G of S1+S2 admits a polychromatic cycle with arcs (1, 2), (2, 3), (3, 1).

Let F = F1 ⊕ F2 with

F1 =

 0 1/2 0
0 0 1/2
0 0 0

 and F2 =

 0 0 0
0 0 0

1/2 0 0

 .

Then S ≥ F and F̃ = PFP t = (F̃ij)1≤i,j≤3, where

F̃12 = F̃23 =
1

2

(
1 0
0 0

)
, F̃31 =

1

2

(
0 0
0 1

)
, and F̃ij =

(
0 0
0 0

)
otherwise.
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Suppose µ > 0 satisfies µ2 > 8. Construct D so that D̃ = PDP t = D̃1 ⊕ D̃2 ⊕ D̃3 with

D̃1 = D̃2 =
(

1 0
µ 0

)
and D̃3 =

(
0 µ
0 1

)
.

Then

D̃F̃ =
1

2

 02 D̃1 02

02 02 D̃2

D̃3 02 02

 ,

and

(D̃F̃)3 =
1

8

{
D̃1D̃2D̃3 ⊕ D̃2D̃3D̃1 ⊕ D̃3D̃1D̃2

}
=

1

8

{(
0 µ
0 µ2

)
⊕

(
µ2 0
µ3 0

)
⊕

(
µ2 0
µ 0

)}

has spectral radius µ2/8 > 1, and hence ρ(D̃F̃) > 1. Since S ≥ F, we have

ρ(SD) ≥ ρ(FD) = ρ(DF) = ρ(D̃F̃) > 1 = ρ(D).

The next three examples illustrate the idea and construction in our proof for implication

(b) ⇒ (a).

Example 3.2 Suppose S = S1 ⊕ S2 ⊕ S3, and Q is a permutation matrix such that QtS1Q,

QtS2Q and QtS3Q, are the column stochastic matrices:

1

3


3 1 1 1 1
0 1 1 0 0
0 1 1 0 0
0 0 0 2 0
0 0 0 0 2

 ,
1

3


3 1 1 1 1
0 1 0 1 0
0 0 2 0 0
0 1 0 1 0
0 0 0 0 2

 ,
1

3


3 1 1 1 1
0 1 0 0 1
0 0 2 0 0
0 0 0 2 0
0 1 0 0 1

 .

We may relabel the vertices of G and assume that Q = I5. Then G has two strongly con-

nected components C1 and C2, where C1 has vertex set {1} and C2 has vertex set {2, 3, 4, 5}.
Furthermore, C2 has three sub-components C21, C22, C23 with vertex sets {2, 3}, {2, 4}, {2, 5},
respectively. Now, suppose D is given such that P tDP = D1 ⊕ · · · ⊕D5 with

D1 =
1

12

 1 3 8
1 3 8
1 3 8

 , D2 = D3 =
1

6

 1 2 3
1 2 3
1 2 3

 , and D4 = D5 =
1

4

 1 1 2
1 1 2
1 1 2

 .

Then ρ(Dj) = 1 for each j; (1, 3, 8)D1 = (1, 3, 8), (1, 2, 3)Dj = (1, 2, 3) for j = 2, 3,

(1, 1, 2)Dj = (1, 1, 2) for j = 4, 5. Consider the list

µ11 µ13 µ18
µ21 µ22 µ23
µ31 µ32 µ33
µ41 µ41 µ42
µ51 µ51 µ52.
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We follow the construction in the proof and choose µ1 = 1, and insist that

µj ≥ η = max{v1j/v`j : 1 ≤ j ≤ 3; 2 ≤ ` ≤ 5} = 4, j = 2, 3, 4, 5.

Now, C21 comes from G1 and has vertex set {2, 3}; so, we choose µ2 = µ3 = 4. Next, C22

comes from S2 and has vertex set {2, 4}; so, we choose µ4 such that µ2v22 = µ4v42, i.e., µ4 = 8.

Finally, C23 comes from S3 and has vertex set {2, 5}; so, we choose µ5 such that µ2v32 = µ5v35,

i.e., µ5 = 6. Consequently, we have

V = diag (1, 4, 4, 8, 6)⊕ diag (3, 8, 8, 8, 6)⊕ diag (8, 12, 12, 16, 12).

Then VDV−1 is column stochastic, and ‖VSV−1‖ ≤ 1.

Example 3.3 Suppose S is such that S2 = · · · = Sm = In. Let Q be a permutation matrix

such that QtS1Q is in the block upper triangular form. Then Qt(S1+ · · ·+Sm)Q = (Tij)1≤i,j≤k

is in block upper triangular form (3.4) as in our proof. We can relabel the vertices of G and

assume that Q = In. Now, G has k connected components, and each comes from G1. Suppose
Tjj is nj × nj for j = 1, . . . , k. Given any D, we can follow the construction in our proof and

obtain the desired V = U1 ⊕ · · · ⊕Um such that U1 = µ1In1 ⊕ · · · ⊕ µkInk
with µ1 < · · · < µk.

Then VDV−1 is column stochastic, U1S1U
−1
1 is in block upper triangular form such that

S1 ≥ U1S1U
−1
1 , and UiSiU

−1
i = In for i = 2, . . . ,m; thus, ‖VSV−1‖ ≤ 1.

Example 3.4 Suppose there is an n×n permutation matrix Q such that Qt(S1 + · · ·+Sn)Q

is in upper triangular form. Thus, each connected component of G has only one vertex. We
may relabel the vertices of G and assume that Q = In. Given any D, we can follow the
construction in our proof and obtain the desired V = U1 ⊕ · · · ⊕ Um such that each Ui is a
diagonal matrix with diagonal entries arranged in ascending order. Since each Si is in upper

triangular form, we see that Si−UiSiU
−1
i is a nonnegative matrix in strictly upper triangular

form. So, VDV−1 is column stochastic and ‖VSV−1‖ ≤ 1.
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