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Abstract

Following Petoukhov and his collaborators we use two length n zero-one sequences, α and β,

to represent a length n genetic sequence
(
α
β

)
so that the columns of

(
α
β

)
have the following

correspondence with the nucleotides: C ∼
(

0
0

)
, U ∼

(
1
0

)
, G ∼

(
1
1

)
, A ∼

(
0
1

)
. Using the Gray

code ordering to arrange α and β, we build a 2n×2n matrix Cn including all the 4n length n genetic
sequences. Furthermore, we use the Hamming distance of α and β to construct a 2n × 2n matrix
Dn. We explore structures of these matrices, refine the results in earlier papers, and propose new
directions for further research.

1 Introduction

Genetic Code is the set of rules by which information encoded in RNA/DNA is translated into
amino acid sequences in living cells. The bases for the encoded information are nucleotides. There
are four nucleotide bases for RNA: Adenine, Uracil, Guanine, and Cytosine, which are labeled by
A,U,G, and C respectively, (in DNA Uracil is replaced by Thymine (T)). In canonical genetic code,
codons are tri-nucleotide sequences such that each triplet relates to an amino acid. For example,
the codon CAG encodes the amino acid Glutamine. Amino acids are the basic building blocks of
proteins.

The genetic code was cracked by Holley, Khorana, Nirenberg and co-workers in the sixties.
It stimulated interest of other researchers to study how genetic code was translated into amino
acids. There are 20 different amino acids (plus start and stop codons), and since there are four
nucleotide bases, A,U,C, and G, there are 4n different combinations of bases, for a string of length
n. Therefore, n = 3 is the smallest number of bases that could be used to represent the 20 different
amino acids. There is degeneracy between the codons, i.e., more than one codon can represent the
same amino acid; however, two different amino acids cannot be represented by the same codon.

In general, genetic sequences are very long, so it is difficult to extract information or to observe
patterns. The focus of this study is examining matrices which will contain all length n nucleotide
sequences and building matrices that can efficiently represent the genetic sequences. Many studies
have been devoted to examining how genetic code has evolved. Patterns that arise in genetic code
suggest that genetic code evolved to minimize the effects of mutations; for example, see [1, 6, 5, 16].
One current aspect of research is examining the redundancy of genetic code and it’s effect on the
dynamic of evolution [3]. In connection to this we consider a graph G = (V,E), where V is the set
of all length n genetic sequences, and E is the edge set where two vertices are adjacent if they differ

1Research of this author was partially supported by the NSF CSUMS and NSF UBM undergraduate research
grants at William and Mary; this research was done while he was a student at William and Mary. His current address
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by one nucleotide base. A Hamilton circuit will be given for that graph which may help analyze
mutations in genetic code.

Swanson [18] suggested that each nucleotide could be represented as a Gray code sequence.
Gray code is an encoding scheme with the property that two consecutive sequences only differ by
one position [19]. For example, the classical binary representations for three and four are 011 and
100 respectively, but the Gray code representations for three and four are 011 and 010, respectively.
In classical binary, 011 and 100 differ in all three positions, but in the Gray code representation
011 and 010 differ in only one position, namely the last position.

Define Gn to be all the Gray code sequences of length n, which can be generated by a re-
cursive algorithm. Gn is constructed by taking the sequences from Gn−1 and prepending a 0 to
them then taking the sequences of Gn−1 in reverse order and prepending a 1 to them; there-
fore Gn = {0||a0, 0||a1, . . . , 0||an−1, 1||an−1, 1||an−2, . . . , 1||a0}, where ai ∈ Gn−1. Note a||b is the
operation a concatenate b. To illustrate this process take G1 = {0, 1}. Then by construction
G2 = {0||0, 0||1, 1||1, 1||0} = {00, 01, 11, 10}.

Initially Gray code was intended for transmitting information where a change in one bit would
distort the information less than if the information was encoded using the standard binary represen-
tation [19]. It is natural to represent genetic code in this manner because Gray code is designed to
minimize the mismatches between the digit encoding adjacent bases and therefore minimizing the
mismatches between nearby chromosome segments. This may help study the mutation occurring
in genetic sequences [7, 8].

Following He et al. [8], we use the following correspondence for the nucleotides and two-bit

Gray codes: C ∼
(0
0

)
, U ∼

(1
0

)
, G ∼

(1
1

)
, and A ∼

(0
1

)
. The genetic code-based matrix, which will

contain all nucleotide strings of length n is defined as Cn. The Gray code sequences represented
by Cn will be denoted by a 2n× 2n matrix. Here are C1, C2, C3 and their corresponding Gray code
representations.

C1 =
(
C U
A G

)
∼


0 1

0
(0
0

) (1
0

)
1

(0
1

) (1
1

)
;

C2 =


CC CU UU UC
CA CG UG UA
AA AG GG GA
AC AU GU GC

 ∼


00 01 11 10
00

(00
00

) (01
00

) (11
00

) (10
00

)
01

(00
01

) (01
01

) (11
01

) (10
01

)
11

(00
11

) (01
11

) (11
11

) (10
11

)
10

(00
10

) (01
10

) (11
10

) (10
10

)

;

C3 =



CCC CCU CUU CUC UUC UUU UCU UCC
CCA CCG CUG CUA UUA UUG UCG UCA
CAA CAG CGG CGA UGA UGG UAG UAA
CAC CAU CGU CGC UGC UGU UAU UAC
AAC AAU AGU AGC GGC GGU GAU GAC
AAA AAG AGG AGA GGA GGG GAG GAA
ACA ACG AUG AUA GUA GUG GCG GCA
ACC ACU AUU AUC GUC GUU GCU GCC
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∼



000 001 011 010 110 111 101 100
000

(000
000

) (001
000

) (011
000

) (010
000

) (110
000

) (111
000

) (101
000

) (100
000

)
001

(000
001

) (001
001

) (011
001

) (010
001

) (110
001

) (111
001

) (101
001

) (100
001

)
011

(000
011

) (001
011

) (011
011

) (010
011

) (110
011

) (111
011

) (101
011

) (100
011

)
010

(000
010

) (001
010

) (011
010

) (010
010

) (110
010

) (111
010

) (101
010

) (100
010

)
110

(000
110

) (001
110

) (011
110

) (010
110

) (110
110

) (111
110

) (101
110

) (100
110

)
111

(000
111

) (001
111

) (011
111

) (010
111

) (110
111

) (111
111

) (101
111

) (100
111

)
101

(000
101

) (001
101

) (011
101

) (010
101

) (110
101

) (111
101

) (101
101

) (100
101

)
100

(000
100

) (001
100

) (011
100

) (010
100

) (110
100

) (111
100

) (101
100

) (100
100

)



.

When n = 3, or is a multiple of 3, Cn contains nucleotide triplets, which are codons. Therefore
interesting biological structure starts to appear in C3.

The Hamming distance is a measure of how many positions are different in two equal length
sequences. For example, the binary sequences 001 and 011 have a Hamming distance 1, since
there is only one difference in the second position. This is precisely the Hamming distance of the
two binary sequences corresponding to the codon CAG because CAG ∼

(001
011

)
–by construction.

The Hamming distance is not exclusive to binary sequences; the words “math” and “bath” have a
Hamming distance 1 because they differ in the first position. To get a better understanding of the
Genetic code matrix and the recursion, the Hamming distance matrices, Dn, associated with Cn
will be studied. Each entry of Dn is the Hamming distance between the Gray code sequences that
represent the nucleotides of Cn. For example, D1, D2, D3 are as follows:

D1 =
(

0 1
1 0

)
, D2 =


0 1 2 1
1 0 1 2
2 1 0 1
1 2 1 0

 , D3 =



0 1 2 1 2 3 2 1
1 0 1 2 3 2 1 2
2 1 0 1 2 1 2 3
1 2 1 0 1 2 3 2
2 3 2 1 0 1 2 1
3 2 1 2 1 0 1 2
2 1 2 3 2 1 0 1
1 2 3 2 1 2 1 0


.

The Hamming distance matrix gives information about genetic code and yet requires less storage.
Specifically it gives information about the composition of each entry in Cn. It shows how many
possible U or A and C or G nucleotides are contained in each entry. However, it only shows how
many total U ’s and A’s (and therefore C’s and G’s) appear combined.

In the following discussion, we always assume that Cn and Dn are defined as in this section.
Also, we let Fn be the 2n × 2n matrix with (i, j) entry equal to 1 if i + j = 2n + 1, and all other
entries equal to 0 (this will also be referred to the anti-diagonal matrix); we let Jn be the 2n × 2n

matrix with all entries equal to 1. For example, we have

F1 =
(

0 1
1 0

)
, F2 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ; J1 =
(

1 1
1 1

)
, J2 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .

Also we write X ⊕ Y =
(
X 0
0 Y

)
, for two square matrices.
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Although our study does not have direct applications to biological problems yet, it is our hope
that the matrix results will help organize, store, and retrieve data in a systematic way so that
hidden patterns in genetic sequences can be recognized effectively by computers or humans. As
pointed out by a referee, information in computers is often stored in matrix form so that matrix
methods are used intensively to provide noise-immunity of information transfer of digital data. In
view of this, matrix techniques have been used in molecular genetics and in bioinformatics in the
last decade. Also, it has been suggested in [15] that bimolecular computation can be utilized by
applying biotechnology operation to do computation. In this setting, data would be encoded using
a basis of RNA or DNA. The Gray code representation of genetic sequences could be used as a
potential mathematical basis/representation of RNA/DNA computation. Furthermore, it is worth
mentioning that graph theoretic approach has also been used to understand different RNA/DNA
sequences and gene families; see for example [4, 12, 13].

Our paper is organized as follows. We obtain some basic properties for the matrices Cn and Dn

in Section 2. Section 3 concerns the eigenstructure of the matrix Dn. In particular, we show that Dn

admits a spectral decomposition n2n−1v0v
∗
0−2n−1∑n

j=1 vjv
∗
j , where {v0, . . . , vn} is an orthonormal

set in RN with N = 2n. Using this result, one can evaluate the powers of the matrix Dn. In Section
4, we obtain decomposition of Dn related to some graph structure of genetic sequences. Future
research directions and additional remarks are given in Section 5.

2 Properties of Cn and Dn

Let Cn and Dn be defined as in Section 1. We first present an easy recurrence construction of the
matrices. Moreover, we show that Dn is bisymmetric, i.e., FnDnFn = Dt

n = Dn.
In the following theorem, for Z ∈ {C,U,A,G}, Z||Cn denotes the 2n × 2n matrix obtained by

prepending Z to each sequence in Cn; CnFn denotes the matrix obtained from Cn by arranging its
columns in the reverse order; FnCn denotes the matrix obtained from Cn by arranging its rows in
the reverse order, etc; in other words, Fn is a permutation matrix.

Theorem 2.1 Suppose Cn and Dn are defined as in Section 1. Then

Cn+1 =
(

C||Cn U ||CnFn
A||FnCn G||FnCnFn

)
.

If

Dn =
(
B11 B12

B21 B22

)
,

where Bij is a 2n−1 × 2n−1 submatrix, then B11 = B22 = Dn−1, B12 = B21, and both Bij and Dn

are bisymmetric; moreover,

Dn+1 =


B11 B12 2Jn−1 +B11 B12

B12 B11 B12 2Jn−1 +B11

2Jn−1 +B11 B12 B11 B12

B12 2Jn−1 +B11 B12 B11

 .
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Proof. Clearly, we have

C1 =
(
C U
A G

)
and C2 =


CC CU UU UC
CA CG UG UA
AA AG GG GA
AC AU GU GC

 .
In general, for n ≥ 2, suppose we have constructed Cn such that each entry of Cn is encoded by
α = (a1 · · · an), β = (b1 · · · bn) ∈ Gn, where Gn denotes the set of Gray code sequences of length n.
We refer to it as the (β, α) entry in Cn.

Suppose

Cn+1 =
(
X1 X2

X3 X4

)
.

Then the entries of X1 are encoded by two Gray code sequences in Gn+1 identified as
(
α̂
β̂

)
with

α̂ = 0||α and β̂ = 0||β, where α, β ∈ Gn. Hence, X1 is obtained from Cn by prepending C ∼
(

0
0

)
to the beginning of the genetic sequences.

Similarly, if α1, . . . , α2n are the Gray code sequences of length n, and α̃j = 1||αj ∈ Gn+1 for

j = 1, . . . , 2n. Then the entries of X2 in the row labeled by the Gray code sequence β̃ = 0||β, with
β ∈ Gn, have the form (

α̃2n

β̃

)
,

(
α̃2n−1

β̃

)
, . . . ,

(
α̃1

β̃

)
.

Consequently, if we arrange the columns of Cn in the reverse order to get the matrix CnFn, and

added U ∼
(

1
0

)
to the left most position of each entry of CnFn, we obtain the submatrix X2.

We can use a similar argument to conclude that X3 = A||FnCn and X4 = G||FnCnFn as
asserted.

Now, consider Dn. The bisymmetric structure is clear for D1, D2, and one can construct D2

from D1 as asserted. We will show that the Dn+1 can be constructed from Dn and Dn−1 as asserted
for n ≥ 2 by induction. The bisymmetry condition on Dn+1 will follow from the construction.

Assume that the assertion is true for D1, D2, . . . , Dn with n ≥ 2. Consider

Dn+1 =


X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44

 where Xij ∈M2n−1 .

Note that each entry of Dn+1 corresponds to a sequence in Cn+1 represented as
(
α̃
β̃

)
, where

α̃, β̃ ∈ Gn+1, and the corresponding entry in Dn+1 is just the Hamming distance between α̃ and β̃.
Now, each entry in (

X11 X12

X21 X22

)
corresponds to an entry in C||Cn ∼

(
0||α
0||β

)
by the result on Cn+1 with α, β ∈ Gn. Clearly, the

Hamming distance between 0||α, 0||β ∈ Gn+1 is the same as that between α, β ∈ Gn. It follows
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that

Dn =
(
X11 X12

X21 X22

)
.

Similarly, we can use the result on Cn+1 to show that

FnDnFn =
(
X33 X34

X43 X44

)
.

By induction assumption, Dn is bisymmetric. We conclude that FnDnFn = Dn.
Next, we consider (

X13 X14

X23 X24

)
.

Note that if (a1, . . . , an−2), (b1, . . . , bn−2) ∈ Gn−2, we can label the entries of Dn+1 as follows.

Dn+1 =



(00a1 · · · an−2) (01an−2 · · · a1) (11a1 · · · an−2) (10an−2 · · · a1)

(00b1 · · · bn−2) X11 X12 X13 X14

(01bn−2 · · · b1) X21 X22 X23 X24

(11b1 · · · bn−2) X31 X32 X33 X34

(10bn−2 · · · b1) X41 X42 X43 X44

.

Compare two entries in X11 and X13 lying in the same row and column labeled by α′, β′ ∈ Gn−1.

Then these entries are labeled by
(

00||α′
00||β′

)
and

(
11||α′
00||β′

)
, respectively, in Cn+1. These two entries

from Cn+1 have Hamming distances differing by 2. So, we see that X13 = X11 + 2Jn−1.
Similarly, consider the two 2n−1× 2n−1 matrices X12 and X14 and compare their entries in X12

and X14 lying in the row and column labeled by α′, β′ ∈ Gn−1. Then these entries are labeled

by
(

10||α′
00||β′

)
and

(
01||α′
00||β′

)
respectively, in Cn+1. These two entries from Cn+1 have the same

Hamming distance. So, we see that X12 = X14.
We can apply similar arguments to show thatX21 = X23, X24 = X22+2Jn−1, X31 = X33+2Jn−1,

X32 = X34, X41 = X43 and X42 = X44 + 2Jn−1. By induction assumption, Dn is bisymmetric, one
sees that each Xij is bisymmetric and so is Dn+1. Our result follows. 2

Using Theorem 2.1, we can refine [8, Theorem A], which was stated without proof. We begin
with the following corollary covering [8, Theorem A (i)].

Corollary 2.2 Let Cn and Dn be defined as in Section 1. In Cn two neighboring entries of genetic
code in both directions differ by exactly one base; each two neighboring entries of Dn differ by
one. Here the first entry and the last entry of a row (respectively, a column) in Cn or Dn is also
considered as neighbors.

Proof. By the Gray code construction each binary sequence in Gn differs by one from a neigh-
boring binary sequence. Fix a row in Cn. The entries will be represented by

(α
β

)
where α, β ∈ Gn.

If the row is fixed, β will stay constant for all the columns, and α will vary only by one position
when moving from one column to another or from the last column to the first column. Thus the
genetic sequence will change by one nucleotide when moving along a row. The same is true if the
column is fixed. The conclusion on Cn follows.
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Similarly the result can be proven for Dn as well. 2

In [8, Theorem A (v)], the authors wroteDn = (Bij)1≤i,j≤2n−1 such thatBij is 2×2 for each (i, j).
They showed that there are 2×2 matrices T0, . . . , Tn−1 such that Bij ∈ {T0, . . . , Tn−1} for each (i, j),
where T0 = D1 and Tj can be easily constructed from T0. Moreover, they determined the frequency
distribution of the matrices T0, . . . , Tn−1 as entry of the block matrix Dn = (Bij)1≤i,j≤2n−1 . We
have the following generalization.

Theorem 2.3 Let Dn be defined as in Section 1. Suppose Dn = (Bij)1≤i,j≤2m, where Bij ∈ M2k

such that m = n − k ≥ 1. Then there are m + 1 distinct matrices T0, T1, . . . , Tm in each row and
each column of the block matrix (Bij)1≤i,j≤2m defined and arranged in Dn according to the following
scheme:

T0 = Dk, T1 = T0 + 2(Jk−1 ⊕ Jk−1), and Tj+2 = Tj + 2Jk for 0 ≤ j ≤ m− 2.

For 1 ≤ i, j ≤ 2m, Bij = T` if the (i, j) entry of Dm equals `.

Consequently, in each row and each column, the matrix Tj will appear
(m
j

)
times.

Note that by Theorem 2.1, we can build Dm from D1 in m − 1 steps, and use some two step
recurrence relations to define the entries of Dm. This theorem and its proof show that we can
extend the procedures to build Dn from Dk+1 in m − 1 steps for n = m + k, and determine the
2k × 2k submatrices Bij of Dn by the same two step recurrence relations.

Proof. We prove the theorem by induction on m. Suppose m = 1. Then

Dn =
(
B11 B12

B21 B22

)
with T0 = Dn−1 and T1 = T0 + 2(Jn−1 ⊕ Jn−1) as asserted.

Assume that Dn = (Bij)1≤i,j≤2m so that Bij = T` is 2k × 2k as asserted. By Theorem 2.1,

Dn+1 = (B̃ij)1≤i,j≤2m+1 =
(

Dn Dn + 2(Jn−1 ⊕ Jn−1)
Dn + 2(Jn−1 ⊕ Jn−1) Dn

)
.

First consider those B̃ij with 1 ≤ i, j ≤ 2m and 2m < i, j ≤ 2m+1. Evidently, for r, s ∈ {1, . . . , 2m},

B̃r+2m,s+2m = B̃rs = Brs = T`,

where the index ` is the (r, s) entry of Dm. By the construction of Dm+1 from Dm, we see that `
is the (r, s) entry and also the (r + 2m, s+ 2m) entry of Dm+1.

Next, we consider B̃ij with

i ∈ {1, . . . , 2m} = {r : 1 ≤ r ≤ 2m−1} ∪ {r + 2m−1 : 1 ≤ r ≤ 2m−1}, and

j ∈ {2m + 1, . . . , 2m+1} = {s+ 2m : 1 ≤ s ≤ 2m−1} ∪ {s+ 2m−13 : 1 ≤ s ≤ 2m−1}.

In other words, the submatrices of Dn + 2(Jn−1 ⊕ Jn−2) lying at the north east corner of Dn+1.
Suppose r, s ∈ {1, . . . , 2m−1}. We have

B̃r,s+2m = Brs + 2Jk = T` + 2Jk = T`+2,
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where the index ` is the (r, s) entry of Dm. By the construction of Dm+1 from Dm, we see that
`+ 2 is the (r, s+ 2m) entry of Dm+1. Similarly, we see that

B̃r+2m−1,s+2m−13 = Br+2m−1,s+2m−1 + 2Jk = T` + 2Jk = T`+2,

and `+ 2 is the (r + 2m−1, s+ 2m−13) entry of Dm+1. Furthermore,

B̃r,s+2m−13 = Br,s+2m−1 = T`,

where ` is the (r, s+ 2m−13) entry of Dm+1. We also have

B̃r+2m−1,s+2m = Br+2m−1,s = T`,

where ` is the (r + 2m−1, s + 2m) entry of Dm+1. We can analyze the south west block of Dm+1,

and conclude that B̃rs = T` whenever the (r, s) entry of Dm+1 is `. Hence, we obtain the statement
concerning the arrangement of T0, . . . , Tm in each row and each column of Dn.

Finally, note that the number of T` appearing in each row (or column) of (Bij)1≤i,j≤2m is the
same as the number of ` in each row (or column) of Dm. Each entry of Dm is Hamming distance
of α, β ∈ Gm, where

(α
β

)
corresponds to the genetic sequence in Cm. For a fixed row of Cm, the

genetic sequences are encoded by (
α1

β

)
, . . . ,

(
α2m

β

)
,

where β ∈ Gm = {α1, . . . , α2m}. Clearly, the number of sequences in Gm differ with β in ` positions
equals

(m
`

)
for ` = 0, . . . ,m. Hence, ` will occur

(m
`

)
times in each row of Dm for ` = 0, . . . ,m. So,

Tj will occur
(m
`

)
times in each row of (Bij)1≤i,j≤2m . The proof for the column is similar. 2

In [8, Theorem A (v)], the authors showed that D1 and D2 are principal submatrices of Dn.
By Theorem 2.3, we have the following extension.

Corollary 2.4 Let Dn = (Bij)1≤i,j≤2m, where Bij ∈M2k such that m = n− k ≥ 1. Then

Dk = B11 = B22 = · · · = B2m,2m

and

Dk+1 =
(

Bjj Bj,j+1

Bj+1,j Bj+1,j+1

)
, j = 1, . . . , 2m − 1.

Note that if m = 2, i.e., Dn is a 4×4 block matrix, then we see that Dn−1 is centrally embedded
in Dn.

Putting (m, k) = (n, 0) in Theorem 2.3 and using Theorem 2.1, we have the following corollary;
see [8, Theorem A (ii)–(iv)].

Corollary 2.5 Let Dn be defined as in Section 1. Each row and each column of Dn has
(n
k

)
entries

equal to k so that the row sum (respectively, column sum) equals n2n−1. Consequently, the total
sum of the entries of the matrix Dn is n22n−1, and Dn/(2n−1n) is a bisymmetric doubly stochastic
matrices.
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3 Eigenstructure and powers of Dn

Theorem 3.1 The matrix Dn ∈M2n has n+ 1 nonzero eigenvalues equal to

n2n−1,

n︷ ︸︸ ︷
−2n−1,−2n−1, . . . ,−2n−1 .

Proof. We will prove the theorem by induction. The result for n = 1 is clear. Assume the result is
true for Dn. Clearly Dn has two unit eigenvectors of the form

x = 2−n/2(1, 1, ....., 1)t and y = 2−n/2(1, . . . , 1︸ ︷︷ ︸
2n−1

,−1, . . . ,−1︸ ︷︷ ︸
2n−1

)t

for the eigenvalues n2n−1 and −2n−1. By induction assumption, there is an orthogonal matrix P ,
with x and y as the first two columns such that

An = P tDnP = [n2n−1]⊕ (−2n−1)In ⊕ 02n−n−1.

Let Q = P ⊕ P . Then

QtDn+1Q = Qt
(
Dn Dn

Dn Dn

)
Q+Qt


0 0 2Jn−1 0
0 0 0 2Jn−1

2Jn−1 0 0 0
0 2Jn−1 0 0

Q
=

(
An An
An An

)
+
(

0 Cn
Cn 0

)
,

where Cn = diag (2n, 2n, 0, . . . , 0).
Up to a permutation similarity, QtDn+1Q is a direct sum: R1 ⊕R2 ⊕R3 ⊕ 02n+1−2n−2, where

R1 = 2n−1
(

n n+ 2
n+ 2 n

)
, R2 = 2n−1

(
−1 1
1 −1

)
and R3 is a direct sum of (n− 1) copies of the matrix

−2n−1
(

1 1
1 1

)
.

Notice R1 ⊕R2 has eigenvalues (n+ 1)2n,−2n,−2n, 0, and all the n− 1 nonzero eigenvalues of R3

are equal to −2n. By an inductive argument, the assertion follows. 2

Next we obtain an orthonormal set of eigenvectors of Dn which correspond to the nonzero
eigenvalues.

Theorem 3.2 An orthonormal set of eigenvectors of Dn corresponding to the nonzero eigenvalues
n2n−1,−2n−1, . . . ,−2n−1 can be constructed as follows. For D1, the orthonormal eigenvectors are

1√
2

(
1
1

)
and 1√

2

(
1
−1

)
. Suppose v0, v1, . . . , vn is constructed for Dn. Then

ṽj =
1√
2

(
vj
vj

)
for j = 0, . . . , n and ṽn+1 =

1√
2

(
v0
−v0

)
,

form an orthonormal set of eigenvectors of Dn+1 corresponding to the nonzero eigenvalues.
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Proof. The results can be verified for n = 1, 2. Suppose n > 2, and the result is true for Dm with
m ≤ n. By Corollary 2.5, (n+ 1)2n is the common row sum of Dn+1. Thus, Dn+1ṽ0 = (n+ 1)2nṽ0.

Let Kn = Jn−1 ⊕ Jn−1 ∈M2n . By induction assumption, v0, . . . , vn form an orthonormal set of
eigenvectors for Dn. It can be seen that Knvj = 0 for all j = 1, . . . , n. Thus,

Dn+1ṽj =
1√
2

(
2Dnvj
2Dnvj

)
=

1√
2

(
2 · −2n−1vj
2 · −2n−1vj

)
= −2nṽj j = 1, . . . , n.

Moreover,

Dn+1ṽn+1 =
1√
2

[(
(Dn −Dn)v0
−(Dn −Dn)v0

)
+
(
−2Jn−1v0
2Jn−1v0

)]
=

1√
2

(
−2 · 2n−1v0
2 · 2n−1v0

)
= −2nṽn+1.

By construction, 〈ṽj , ṽj〉 = 1 for j = 0, . . . , n+ 1, and since 〈vj , vk〉 = 0 for any j 6= k, ṽ0, . . . , ṽn+1

are orthogonal. By the principle of induction, the assertion is true. 2

By Theorem 3.1 and Theorem 3.2,

Dn = n2n−1v0v
t
0 − 2n−1(v1vt1 + · · ·+ vnv

t
n).

This result provides a more efficient way to generate Dn using the n+ 1 eigenvectors. So only n+ 1
vectors of size 2n have to be stored to construct Dn. In Section 2.1, Dn was generated recursively
by Dn−1, meaning that to generate Dn, 2n−1 vectors of size 2n−1 had to be stored.

Next using Theorems 3.1 and 3.2 we can generate the powers of Dn.

Theorem 3.3 Let k be a positive integer. Then

Dk
n = a(n, k)v0vt0 + b(n, k)Dn,

where
a(n, k) = 2k(n−1)(nk + (−1)kn) and b(n, k) = (−2n−1)k−1.

Proof. By Theorem 3.1 and Theorem 3.2,

Dn = n2n−1v0v
t
0 − 2n−1(v1vt1 + · · ·+ vnv

t
n).

Let Ln = v1v
t
1 + · · · + vnv

t
n. Then Dn = n2n−1v0v

t
0 − 2n−1Ln. So 2n−1Ln = n2n−1v0v

t
0 − Dn.

Therefore, Ln = nv0v
t
0 − 21−nDn. Recall that

Dk
n = (n2n−1)kv0vt0 + (−2n−1)kLn.

Making the substitution for Ln, yields

Dk
n = (n2n−1)kv0vt0 + (−2n−1)k[nv0vt0 − 21−nDn].

Regrouping the terms, we get

Dk
n = [(n2n−1)k + (−2n−1)kn]v0vt0 + (2n−1)k−1Dn

= 2k(n−1)(nk + (−1)kn)v0vt0 + (−2n−1)k−1Dn.

The result follows. 2

As a consequence of Theorem 3.3, no matter what power k, Dk
n will only have as many distinct

values as Dn.

Corollary 3.4 For every positive integer k, Dk
n has n+ 1 distinct values.
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4 Decomposition of Dn and graph structure of genetic sequences

Since 21−nDn is a doubly stochastic matrix, it can be decomposed into a convex combination of
permutation matrices [10, 19]. We will show that the combination involves only 2n permutation
matrices, which can be defined recursively. The decomposition for n = 3 was shown in [8].

Theorem 4.1 Let Dn be the Hamming distance matrix defined in Section 1. Then

Dn =
2n∑
i=1

ani P
n
i ,

where (an1 , a
n
2 , . . . , a

n
2n) with ani ∈ {0, 1, . . . , n}, and Pni are permutation matrices determined as

follows:
For n = 1,

(a1
1, a

1
2) = (0, 1) and P 1

1 =
(

1 0
0 1

)
and P 1

2 =
(

0 1
1 0

)
.

For n ≥ 1

Pn+1
j =

(
Pnj 0
0 Pnj

)
and Pn+1

j+2n =
(

0 Pnj
Pnj 0

)
and

(an+1
1 , an+1

2 , . . . , an+1
2n+1) = (an1 , . . . , a

n
2n , an1 , . . . , a

n
2n) + (0, . . . , 0︸ ︷︷ ︸

2n

, 2, . . . , 2︸ ︷︷ ︸
2n−1

, 0, . . . , 0︸ ︷︷ ︸
2n−1

).

Moreover, Pn1 + . . .+ Pn2n−1 = Jn−1, and each Pni is bisymmetric.

Proof. We prove the result by induction on n, including the additional property that Pn1 + . . . +
Pn2n−1 = Jn−1 and Pni is bisymmetric. Take

D1 =
(

0 1
1 0

)
= 0

(
1 0
0 1

)
+ 1

(
0 1
1 0

)
,

and

D2 =


0 1 2 1
1 0 1 2
2 1 0 1
1 2 1 0

 = 0


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ 1


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

+ 2


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

+ 1


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .
Assume that the scheme is true for n, it will be shown that this is true for n+ 1. By Theorem

2.1, if

Dn =
(
B1 B2

B2 B1

)
then

Dn+1 =


B1 B2 B1 B2

B2 B1 B2 B1

B1 B2 B1 B2

B2 B1 B2 B1

+


0 0 2Jn−1 0
0 0 0 2Jn−1

2Jn−1 0 0 0
0 2Jn−1 0 0

 .
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For j = 1, . . . , n+ 1, define an+1
j and Pn+1

j as in the theorem. Clearly, we have

2n∑
j=1

an+1
j

(
Pnj 0
0 Pnj

)
=


B1 B2 0 0
B2 B1 0 0
0 0 B1 B2

0 0 B2 B1

 .
By induction assumption,

Pn−1
1 + · · ·+ Pn−1

2n−1 = Jn−1,

we have

2n−1∑
j=1

Pn+1
j+2n =


0 0

∑
Pn−1
j 0

0 0 0
∑
Pn−1
j∑

Pn−1
j 0 0 0

0
∑
Pn−1
j 0 0

 =


0 0 Jn−1 0
0 0 0 Jn−1

Jn−1 0 0 0
0 Jn−1 0 0

 .
It follows that

2n∑
j=1

an+1
j+2n

(
0 Pnj
Pnj 0

)
=


0 0 2Jn−1 +B1 B2

0 0 B2 2Jn−1 +B1

2Jn−1 +B1 B2 0 0
B2 2Jn−1 +B1 0 0

 .
Thus, Dn+1 has the asserted combination. It is also easy to check that Pn+1

1 + · · ·+ Pn+1
2n+1 = Jn+1

using the induction assumption. 2

Consider the graph G∗n using the genetic sequences of Cn as vertices, and two vertices are
adjacent if they have a Hamming distance of 1. It is trivial to show that G has a Hamilton circuit,
between all the length n nucleotide sequences. Start at position (1, 1) and connect the neighboring
entry with an edge and do that for every cell until position (1, 2n). Then draw and edge from
position (1, 2n) and (2, 2n), connect the edges in the reverse direction. Repeating this process will
connect all 4n nucleotide sequences of Cn. However we can make a stronger statement: G∗n has
a Hamilton circuit, such that each circuit of the subgraph corresponding to a permutation matrix
can be connected to form a Hamilton circuit of all length n nucleotide sequences. The Hamilton
circuit which provides a pathway for the genetic code structure [7, 8]. For n = 2:

P1 =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ∼
CC 0 0 0

0 CG 0 0
0 0 GG 0
0 0 0 GC

 , P2 =

 0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ∼
 0 CU 0 0

CA 0 0 0
0 0 0 GA
0 0 GU 0

 ,

P3 =

 0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ∼
 0 0 UU 0

0 0 0 UA
AA 0 0 0
0 AU 0 0

 , P4 =

 0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ∼
 0 0 0 UC

0 0 UG 0
0 AG 0 0

AC 0 0 0

 .
So the circuits correspond to these matrices are CC−CG−GG−GC−CC, CU−CA−GA−GU−
CU , UU −UA−AA−AU −UU , and UC −UG−AG−AC −UC for P1, P2, P3, P4, respectively.
If the first edge in every circuit is deleted, an edge can be drawn between CG − CA, CU − UU ,
UA− UG, and UC − CC. For n = 2 a Hamilton circuit of G∗2 can be constructed as follows:

CC−GC−GG−CG−CA−GA−GU−CU−UU−AU−AA−UA−UG−AG−AC−UC−CC

12



which is a circuit containing all entries of C2. The pattern to observe is that the first circuit
starts by going backwards, and the next circuit runs forwards. This pattern repeats itself until the
Hamilton circuit is completed.

Lemma 4.2 Assume Pni is the permutation matrix as defined in Theorem 4.1. If Pni has a nonzero
entry at position (1, q1), then the (2n, 2n − q1 + 1) and the (2n−1 + 1, 2n−1 − q2n−1 + 1) entry of Pni
will also be nonzero.

Proof. This follows from the bisymmetry of Pni . 2

Theorem 4.3 Consider Dn =
∑2n

i=1 a
n
i P

n
i as described in Theorem 4.1.

(a) Suppose Pni has nonzero entries at the (1, q1), (2, q2), . . . , (2n, q2n) positions where the genetic
sequences corresponding to those in Cn are g1, g2, . . . , g2n, of Cn. Then g1−g2− . . .−g2n−g1
is a circuit in G∗n. In other words, every consecutive pair of sequences in g1−g2−· · ·−g2n−g1
differ by one nucleotide.

(b) One can combine the circuits in part (a) to form a Hamilton circuit in G∗n.

Proof. (a) Consider the graph G∗n. The assertion is clearly true for n = 2, by the discussion before
Lemma 4.2. So assume the nucleotide sequences corresponding to the nonzero entries of Pni can
be connected to form a circuit in the graph G∗n. It will be shown that the nucleotide sequences
corresponding to the nonzero entries of Pn+1

i and Pn+1
i+2n , can be connected to form a circuit in the

graph G∗n+1.
By induction assumption the nonzero entries of Pni corresponds to a circuit in G∗n denoted as

x1 − x2 − · · · − x2n − x1, where the position of x1 is (1, q1), x2 is (2, q2), . . ., x2n is (2n, q2n). So
the nonzero entries at the (1, q1), . . . , (2n, q2n) positions gives rise to a circuit x1− x2− · · ·x2n − x1

in G∗n. By the recursive structure in Pn+1
i , the nucleotides corresponding to the nonzero entries of

Pn+1
i form two disjoint circuits with no common edges, because Pni appears as two sub-matrices

of Pn+1
i . Let the two circuits of Pn+1

i be x1 − x2 − . . . − x2n − x1 and y1 − y2 − . . . − y2n − y1,
respective to the nucleotide sequences. Note that the circuits corresponding positions in the matrix
are (1, q1)−(2, q2)−· · ·−(2n, q2n)−(1, q1) and (2n+1, r1)−(2n+2, r2)−· · ·−(2n+1, r2n)−(2n+1, r1),
respectively.

By Lemma 4.2, r1 = 2n+1−q2n +1, so r1 and q2n are equidistant from the vertical center because
r1 + q1 = 2n+1 + 1. Also if Pn+1

i has a nonzero entry at (1, q1), then it also has a nonzero entry at
(2n+1, 2n+1−q1+1). So since the position corresponding to y2n is (2n+1, r2n), and r2n = 2n+1−q1+1,
so x1 and y2n are also equidistant from the center. Since

Gn = {0||a0, 0||a1, . . . , 0||an−1, 1||an−1, 1||an−2, . . . , 1||a0},

two Gray codes equidistant from the center only change in the first bit, i.e., the first bit will change
from a 0 to a 1 or vise versa. Therefore x2n and y1 are adjacent, and y2n and x1 are adjacent.
So, delete the edges (x2n , x1) and (y2n , y1), and then connect (x2n , y1) and (y2n , x1); that will be a
circuit in G∗n+1.

(b) Consider the nucleotide sequences corresponding to the nonzero entries in Pni , described
as in part (a), labeled xi1, x

i
2, . . . , x

i
2n . For all i ≤ 2n − 1, Delete the edge (xi1, x

i
2). As proven in
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Corollary 2.2, each neighboring nucleotide has a Hamming distance of 1; also the nucleotide in the
last and first column have a Hamming distance of 1. By construction of Pni , the ith column of the
first row, of Pni , is nonzero. Therefore, an edge can be drawn between the nucleotides corresponding
to the nonzero entries, in the first row of Pni and Pni+1.

Also by the recursive construction of Pni , when i is odd, the nucleotides corresponding to the
nonzero entries in the second rows of Pni and Pni+1 correspond to neighboring nucleotides. Thus
when i is odd, an edge can be drawn between the nucleotides corresponding to the non-zero entries in
the second row of Pni and Pni+1; when i is even, draw an edge between the nucleotides corresponding
to the nonzero entries in the first row of Pni and Pni+1. Also draw an edge between the nucleotides
corresponding to the nonzero entries in the first row of Pn2n and Pn1 . This creates a Hamilton circuit
that is connected via the circuits of part (a). 2

5 Further remarks and research

As presented in Section 1, Cn is the genetic code matrix with each cell represented by n-distinct
nucleotides, and there is a recursive way to generate Cn.

Evidently, each entry of Dn records the total number of occurrences of U and A in the genetic
sequence in the corresponding entry in Cn. Using Theorem 2.1, one can easily extend the construc-
tion of Dn and Cn to build a matrix Sn such that each entry is a four tuple recording the number
of occurrences of C,U,A,G in the corresponding entry as described in the following.

Theorem 5.1 Define Sn to be a matrix of size 2n × 2n, where each cell of Sn is represented
by a numerical sequence, (xC , xU , xA, xG), where xi is the number of times the ith nucleotide is
represented in Cn. Then

Sn+1 =
(

(1000)Jn + Sn (0100)Jn + SnFn
(0010)Jn + FnSn (0001)Jn + FnSnFn

)
.

Note that Sn can also be identified with a 4-tuple of matrices in M2n , namely,

Sn ∼ (SCn , S
U
n , S

A
n , S

G
n ),

so that the each entry of SXn records the number of times the symbol X ∈ {C,U,A,G} appears in
the corresponding entry in Cn. It would be interesting to study the algebraic structure of each SXn ,
and explore the implications to biological study.

As pointed out by one of the referees, information is often stored in computers in matrix form,
and matrix methods have been used in the study of many branches of natural and physical sciences
such as quantum mechanics. Matrix analysis methods in molecular genetics and bioinformatics
have been utilized intensively in the last decade. Our study has revealed new patterns and sym-
metrical relations in genetic sequences stored in matrix forms. Hopefully, these will inspire new
techniques and methods in the study of genetic sequences and bioinformatics. We will say more
about implications of our results, together with their limitations and other connections to other
study as mentioned by the referees in the following.

Through this paper, we explored information on genetic code and the corresponding Hamming
distances that are related to nucleotide strings. This information has been presented in a struc-
turally recursive manner that is easy to generate. An important issue that can be addressed is how
to apply the recursive schemes to current biological problems.

14



There may be interesting implications of the graph structure and Hamilton circuit that could
be useful in genetic mutation. Since the two vertices of the graph are adjacent if and only if the
codons differ in one position, what effect would changing a codon during RNA transcription have
on the corresponding amino acid? For example, if one wanted to compute how many mutations it
would take for GCU to mutate into CUC, one could examine all of the pertinent Hamilton paths
between the two codons.

Furthermore, we have described an efficient way to generate Dk
n using the eigenstructure. In

graph theory, the (i, j) entry of the kth power of the adjacency matrix of a graph counts the number
of length k walks from vertex i to vertex j. It would be interesting to find a connection between
the entries of Dk

n and the genetic sequences obtained by joining k sequences in Cn.
A referee pointed out that the amino acid code structure using Gray code may be effective in

minimizing reading errors, but not for studying mutation errors since mutation errors are random
with respect to base position within a codon. Responding to this comment, we think that it is a
good idea to include a probability component in the matrix model. For example, as shown in [8,
Section 3.2], there is a connection between the entries of the mth power of the matrix D3 and some
simple paths of a certain simple graph with codons as vertices. One may scale the entries of D3 by
some factors to reflect the probabilities connecting two vertices in the simple graph.

Another referee pointed out that in protein evolution one is interested in assigning probabilities
to the possible paths between a pair of codons after k steps. Usually, the most parsimonious 3 path
is assumed in the construction of phylogenetic trees. A clearly ad hoc assumption, that may not
be correct in many cases. To some researchers, this may not be the right approach to phylogenetic
trees. Using the entries of the adjacency matrix to evaluate a priori mutation probabilities could
be a better choice.

As mentioned in Section 1, there are redundancies in the codons of genetic code, but there is no
ambiguity. For example, CCU and CCC both represent Prolic (Pro) acid, but there is no ambiguity
so that no codon represents more than one amino acid. There are also start and stop codons. The
translation section of genetic code starts with an initiation chain which is called a start codon. Stop
codons are identified by the name of a color, and they signal release factors, so there is a mapping
that maps the Genetic codons to their amino acids. There are 20 amino acids and 1 start codon, so
there is obviously going to be some overlap, which is modeled in this matrix. Note that this is only
for n = 3 and any multiple of three, since codons are tri-nucleotide sequences. Cn can be mapped
from codons to amino acids.

For n=3

C3 =



CCC CCU CUU CUC UUC UUU UCU UCC
CCA CCG CUG CUA UUA UUG UCG UCA
CAA CAG CGG CGA UGA UGG UAG UAA
CAC CAU CGU CGC UGC UGU UAU UAC
AAC AAU AGU AGC GGC GGU GAU GAC
AAA AAG AGG AGA GGA GGG GAG GAA
ACA ACG AUG AUA GUA GUG GCG GCA
ACC ACU AUU AUC GUC GUU GCU GCC


3Principle of Parsimony is a minimalist principle, sometimes also referred to as “Ockham’s razor,” and sates that

one should prefer simpler explanation, requiring fewer assumptions over more complex, ad hoc ones. In phylogeny
reconstruction, this principle has been applied in two ways. One emphasizes the feature that minimalist principle
favors the tree requiring the fewest evolutionary events (such as mutations) to explain the observed data and thus,
in some sense, the ‘simplest,” or an “optimal” description of the the data. A second appeals to the Principal of
Parsimony is to assume as little as possible about any underlying model or mechanism for evolution; see for example
[17, 20].
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But our Amino Acid Matrix (denoted by An, where n is a multiple of 3) is as follows

A3 =



Pro Pro Leu Leu Phe Phe Ser Ser
Pro Pro Leu Leu Leu Leu Ser Ser
Gln Gln Arg Arg OPAL Trp AMBER OCHRE
His His Arg Arg Cys Cys Tyr Tyr
Asn Asn Ser Ser Gly Gly Asp Asp
Lys Lys Arg Arg Gly Gly Glu Glu
Thr Thr MET (START ) Ile V al V al Ala Ala
Thr Thr Ile Ile V al V al Ala Ala


Note that in A3, MET,OPAL,AMBER and OCHRE, are the start and stop codons as men-
tioned in the previous paragraph. Note that the matrix A3 is for the so called the Standard code,
which is one of many dialects of the genetic code. All dialects are presented in the NCBIs site
http://www.ncbi.nlmnih.gov/Taxonomy/Utils/wprintgc.cgi. The matrix approach on the basis of
the Hamming distance should be applied for all dialects in future. It would be interesting to encode
and study the matrix An.

We close the paper by presenting some additional inspiring remarks of two referees.
A referee has the following reservation for our work as follows. “The work in this paper develops

matrix machinery to represent and compare all possible nucleotide sequences of a given length, but
this does not lead to any new biological insights. From a practical standpoint this representation
is too abstract and general to be useful to a biologist. For example, for a 100 nucleotide sequence,
which is tiny, the matrix machinery considers 2100 (note by the authors: it should actually be 4100)
possible sequences, or 1030 sequences. In the entirety of Genbank, there are only on the order of 108

sequences of all lengths. In conclusion, the referee thinks that the suggested potential applications
we mentioned can be accomplished by less cumbersome machinery, likely by existing software.”

We certainly agree with the referee that there is much room for improvement of our results.
Nevertheless, our results do give efficient way to store and manipulate the data. For example, not
only can we obtain an efficient algorithm to generate the 2n×2n matrices Cn and Dn by our results
in Section 2, we can use the results in Section 3 to represent the 2n × 2n matrix Dn in terms of
the eigenvalues n2n−1 and −2n−1 (multiplicity n) together with their eigenvectors n + 1 vectors
v0, . . . , vn ∈ R2n

, which requires the storage of 2 + (n + 1)2n+1 numbers. Moreover, the power
of Dn can be expressed as a combination of v0vt0 and Dn, that requires hardly any extra memory
to compute and store. Moreover, results in Section 4 provide systematic ways to decompose the
matrices Dn into sum of permutation matrices corresponding to Hamiltonian graph structure that
may have implications to the study of mutations. Even if our decompositions may not be most
effective in studying patterns arising in biology applications, the general ideas and techniques may
be modified and adapted to study important problems.

To a certain extent, the following comment of another referee may help put our work in per-
spective. “The modern situation in the theoretic field of genetic informatics can be characterized
by the following statement by famous researches from GenBank: ‘What will we have when these
genomic sequences are determined? What do we have now in the 10 million nucleotide of sequence
data determined to date? We are in the position of Johann Kepler when he first began looking for
patterns in the volumes of data that Tycho Brahe had spent his life accumulating. We have the
program that runs the cellular machinery, but we know very little about how to read it. Bench
biologists, by experiment and by close association with the data, have found meaningful patterns.
Theoreticians, by careful reasoning and use of collections of data, have found others, but we still
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understand frustratingly little;’ see [2]. Kepler is mentioned here not without reason. The history
of science shows the importance of cognitive forms of presentation of phenomenological data to
find regularities or laws in this phenomenology. The work by Kepler is the classical example of
an important meaning of a cognitive form of presentation of phenomenological data. He did not
make his own astronomic observations, but he found the cognitive form of presentation in the huge
astronomic data from the collection of Tycho Brahe. This discovered form, which was connected to
the general idea of movements along ellipses, allowed him to formulate the famous Kepler’s laws of
planetary movements relative to the Sun. Owing to this cognitive form, Kepler and Newton have
led us to the law of Newtonian attraction. A discovery of such a cognitive form of presentation in
the case of the phenomenology of genetic code systems is a modern challenge, which arises from
the very beginning in the course of attempts to find regularities among a huge number of genetic
data and to create a relevant theory. Matrix genetics proposes a new cognitive form of presentation
of phenomenological data in the field of genetic informatics. This cognitive matrix form gives new
tools to analyze and to model ensembles of the genetic code as well. It paves the way for a worthy
attempt at answering the mentioned challenges. This article belongs to this actual direction and
proposes interesting improvements of relevant mathematical apparatus. Matrix genetics gives new
results which reveal new branches of biological and bio-mathematical researches; for example see
[9, 14].”

As pointed out by the editor, the work in [9, 14] is more theoretical and provides a methodology
that may be relevant in the future. We believe that our paper belongs to the same category.
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