Motivated by the inverse eigenvalue problem, we study the following geometry problem.
Suppose H is a triangle is a convex hexagon with vertices $v_{i}=\left(a_{i}, b_{i}\right) \in \mathbb{R}^{2}$ in the counterclockwise direction. Assume that the triangle $T\left(v_{1}, v_{3}, v_{5}\right)$ with vertices v_{1}, v_{3}, v_{5} has the maximum area among all triangles formed by any 3 of the 6 vertices. Determine the smallest γ (conjectured value 1.2) such that

$$
\operatorname{Area}\left(T\left(v_{1}, v_{2} v_{3}\right)+\operatorname{Area}\left(T\left(v_{3}, v_{4}, v_{5}\right)+\operatorname{Area}\left(T\left(v_{4}, v_{5}, v_{6}\right) \leq \operatorname{Area}\left(T\left(v_{1}, v_{2}, v_{3}\right)\right.\right.\right.\right.
$$

Some reduction by linear algebra. Construct the real matrix

$$
A=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6}
\end{array}\right) .
$$

Let $A[i, j, k]$ be the submatrix formed by column $i<j<k$. The problem reduced too:
Assume that $|\operatorname{det}([i, j, k])| \leq|\operatorname{det}(A[1,3,5])|$ for all $1 \leq i<j<k \leq 6$. Determine the smallest γ such that

$$
|\operatorname{det}([1,2,3])|+|\operatorname{det}([3,4,5])|+|\operatorname{det}(A[4,5,6])| \leq \gamma|\operatorname{det}(A[1,3,5])| .
$$

Since the hypothesis and conclusion will be change if we replace A by $R A$ for any invertible $R \in M_{3}$, we may choose a suitable R to convert $A[1,3,5]$ to a nice form, say, with the vertices of the triangle corresponding to $(0,0),(1,0),(0,1)$.

