On finite groups in which elements of the same order are conjugate

February 22, 2013

Let $a, b \in G$ be conjugate elements in a finite group G, i.e. there exists $g \in G$ such that $g^{-1}ag = b$, it's obvious that a and b have the same order. But $a, b \in G$ with the same order maybe not conjugate in G. For example: 1,2 are elements of the same order 3 in \mathbb{Z}_3 , but there exists no $g \in \mathbb{Z}_3$ such that $g^{-1}ag = b$ since \mathbb{Z}_3 is Abelian.

Problem Determine all finite groups in which elements of the same order are conjugate.

Solution $G \cong S_1, S_2$ or S_3 .

Reference

- 1. Feit W., Seitz G.M., On finite ration groups and related topics. Illinois J. Math., 1988, 33: 103-131.
- 2. Zhang J. P., On Syskin problem of finite group. Science in China, 1988, 2: 189-193.
- 3. Qian G.H., Shi W. J., You X. Z., Finite groups in which elements of the same order outside of center are conjugate. Since in China(Series A: Mathematics), 2007, 10: 1493-1500.