Computation of determinant

February 20, 2013

The theory of determinants is well-known and provides important information in many fields see [1]. In fact, it continues to some generate elegant and challenging problems, [2].

There are various ways to define the determinant of a square matrix in [1]. Recall that the determinant of an n-by- n matrix $A=\left(a_{i, j}\right)$ is defined as

$$
\begin{equation*}
\operatorname{det}(A) \equiv \sum_{\pi \in S_{n}}(-1)^{\mathcal{I}(\pi)} \prod_{i=1}^{n} a_{i, \pi(i)} \tag{1}
\end{equation*}
$$

where S_{n} (also known as the symmetric group on n elements) is the set of all permutations of $\{1,2, \ldots, n\}$, i.e., all the ways of pairing up the n rows of the matrix with the n columns, and $\mathcal{I}(\pi)$ is the inversion number of π, the minimal number of transpositions of adjacent columns needed to turn π into the identity permutation. This formula [1] is practical for some simple matrices such as 3 -by- 3 and 4 -by- 4 matrices, but for large dense matrices it is inefficient, since there have many of computation.

At present, most mathematicians are familiar with Gaussian elimination as a more practical method of evaluating determinants, while there have many of filled elements for a sparse matrix.

Problem: The problem is how to deal with the algebraic expression (1) to reduce its computation and at the same time increase its accuracy for some special matrices.

References

[1] Wikipedia, the free encyclopedia-http://en.wikipedia.org/wiki/Determinant.
[2] Greg Kuperberg, Another proof of the alternating sign matrix conjecture, Internat. Math. Res. Notices, 1996(3): 139-150. (arXiv:math/9712207)
[3] Anne-Ly Do, S. Boccaletti and T. Gross, Graphical notation reveals topological stability criteria for collective dynamics in complex networks, Phy. Rev. Lett., 2012(108), 194102.

