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Abstract

The linear structure of the real space spanned by maximally entangled states is investigated,
and used to completely characterize those linear maps preserving the set of maximally entangled
states on Mm ⊗Mm, where Mm denotes the space of m ×m complex matrices. Aside from a
degenerate rank one map, such preservers are generated by a change of orthonormal basis in
each tensor factor, interchanging the two tensor factors, and the transpose operator.
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1 Introduction and Notation

Let Mn,m be the space of n ×m complex matrices, and let Mn = Mn,n. Hn will denote the real
space of n×n (complex) Hermitian matrices. On a finite-dimensional Hilbert space H of dimension
n, a quantum state ρ is simply a density matrix in Hn (that is, ρ is a positive semi-definite n× n
matrix of trace one). A state ρ is said to be pure if it has rank one (in other words, ρ is a rank one
(orthogonal) projection).

In quantum information theory, one of the most important concepts is that of entanglement,
which occurs when dealing with a multipartite system. We shall restrict our attention to a bipartite
system H = HA ⊗ HB, where HA and HB are Hilbert spaces of dimension m and n respectively.
In this case, a state ρ is said to be separable if one can write ρ =

∑r
i=1 piρi ⊗ σi for some states

ρi ∈ Hm, σi ∈ Hn, and positive scalars pi summing to one. Otherwise we say the state is entangled.
Entanglement is considered a valuable resource, responsible for the power of quantum computing

(see [8] for a standard reference) and for applications such as superdense coding (see [3]) and
quantum teleportation (see [2]). There are various ways to measure how much entanglement a
state has; those states possessing maximal entanglement are of particular importance, and a natural
question is: what types of state transformations will preserve maximal entanglement, that is, will
map the maximally entangled states back to themselves? Answering this question is the main result
of this paper.

Questions of this type have a long history, and fall under the broader purview of linear pre-
server problems (two useful surveys are [5, 6]). Recently there has been work done on finding and
classifying linear preservers of various properties or sets related to quantum information theory.
One paper of particular relevance is [4], in which the authors classify linear preservers of separable
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states (a related paper is [7]). However, they work under the more restrictive assumption that the
linear map is surjective, an assumption we shall not require.

This paper shall be organized as follows. Section 1 will conclude by introducing some notation.
Section 2 will define what a maximally entangled state is, and investigate the real linear span of
such states. Section 3 will prepare for the final section by stating and proving a number of technical
lemmas. Finally, section 4 will contain the statement and proof of our main theorem, where we
completely characterize the linear maps preserving maximally entangled states on Mm ⊗Mm.

We close this section by fixing some additional notation.
We write Im and 0m for the m × m identity and zero matrices, respectively (omitting the

subscript if the size is clear from the context). We let ei denote the (column) vector whose only
nonzero entry is a 1 in the ith position (we do not specify the length of ei in advance, leaving that
to be determined by context), and let Eij = eie

∗
j . The group of n× n unitary matrices is denoted

by Un.
We shall abbreviate maximally entangled state(s) by MES, and will abuse notation by allowing

MES to be both singular and plural, depending on the context (for example, we might say a state
ρ is a MES, or we might refer to the set of all maximally entangled states as MES). The convex
hull of MES is co(MES); the (real) linear span of MES is Span(MES). Given a bipartite system
HA ⊗ HB, with dimHA = m and dimHB = n, the partial trace over system B is the linear map
Tr B : Mm ⊗Mn → Mm defined by Tr B(A ⊗ B) = (TrB)A, where A ∈ Mm, B ∈ Mn, and Tr is
the usual trace. The partial trace over the first system, Tr A, is defined similarly.

2 Structure of Maximally Entangled States

Let H = HA ⊗HB be a bipartite system, where the Hilbert spaces HA and HB have dimension m
and n respectively, with m ≤ n. A pure state ρ on H is a maximally entangled state (or MES for
short) if ρ = ψψ∗ where ψ = 1√

m

∑m
i=1 ui ⊗ vi for some orthonormal basis {ui} of HA and some

orthonormal set {vi} of HB. Let ψ0 = 1√
m

∑m
i=1 ei ⊗ ei. Then clearly

MES = {ψψ∗ : ψ =
1√
m

m∑

i=1

(Uei ⊗ V ei) where U ∈ Mm is unitary, V ∈ Mn is unitary}

is the similarity orbit of ψ0ψ
∗
0 under the action of the unitary subgroup Um ⊗ Un, and hence is a

compact, connected set of rank 1 projections.
Note that if ρ is a MES, then Tr B ρ = 1

mIm and Tr A ρ is 1
m times a rank m projection in Mn.

In fact, this essentially characterizes the real linear span of MES. Let

Sm,n = {X ∈ Hm ⊗Hn : Tr B X = 0}

and
Sm = {A ∈ Hm ⊗Hm : Tr B X = Tr A X = 0}.

Note that these are real vector spaces of dimension m2(n2 − 1) and (m2 − 1)2 respectively.

Proposition 2.1. The real linear span of MES, denoted by Span(MES), is RImn +Sm,n if m < n,
or RIm2 + Sm if m = n.

Proof. Note that if ρ is a MES, then ρ− 1
mnIm⊗ In lies in Sm,n or Sm according to whether m < n

or m = n. So it suffices to show that Im ⊗ In and Sm,n (or Sm if m = n) lie in Span(MES). We
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shall repeatedly use the fact that MES, and hence Span(MES), is invariant under conjugation by
U ⊗ V ∈ Um ⊗ Un.

If Wk = −2Ekk +
∑m

i=1 Eii, then

X = ψ0ψ
∗
0 − (W1 ⊗ In)ψ0ψ

∗
0(W

∗
1 ⊗ In) =

2
m


∑

j 6=1

e1e
∗
j ⊗ e1e

∗
j +

∑

i6=1

eie
∗
1 ⊗ eie

∗
1




lies in Span(MES), and hence so does

Y =
m

4
[X − (W2 ⊗ In)X(W ∗

2 ⊗ In)] = E12 ⊗E12 + E21 ⊗ E21.

Conjugating by Im⊗V for arbitrary unitary V ∈ Un shows that E12⊗A+E21⊗A∗ is in Span(MES)
for any rank one nilpotent A of norm one. By linearity, E12 ⊗ A + E21 ⊗ A∗ is in Span(MES) for
all A ∈ Mn with trace zero. Conjugating by U ⊗ In for arbitrary permutations U ∈ Um shows that
Eij ⊗A + Eji ⊗A∗ is in Span(MES) for all indices i 6= j, and all A ∈ Mn with trace zero.

Then

Z =
m∑

i=1

Eii ⊗Eii = m


ψ0ψ

∗
0 −

∑

i6=j

Eij ⊗ Eij




lies in Span(MES), and hence so does

m∑

j=1

(Qj ⊗ In)Z(Q−j ⊗ In) = Im ⊗
m∑

i=1

Eii

where Q ∈ Um is a cyclic permutation on m symbols. Thus Im ⊗ Im lies in Span(MES) if m = n.
If m < n, let V be the permutation mapping ei to ei+1 for i < n, and mapping en to e1. Then
1
m

∑n
j=1(Im ⊗ V j)(Im ⊗∑m

i=1 Eii)(Im ⊗ V −j) = Im ⊗ In lies in Span(MES).
If m < n let Qk ∈ Un be the transposition swapping ek and en while leaving all other ei fixed.

Then Z − (Im ⊗ Qk)Z(Im ⊗ Q∗
k) = Ekk ⊗ (Ekk − Enn) lies in Span(MES) for all k. Conjugating

by Im ⊗ V for arbitrary V ∈ Un and using linearity shows that Ekk ⊗ B ∈ Span(MES) for all
k = 1, . . . , m and all B ∈ Hn with trace zero. Thus Sm,n lies in Span(MES) as desired.

If m = n then

Z − (Im ⊗Qk)Z(Im ⊗Q∗
k) = Ekk ⊗ (Ekk −Emm) + Emm ⊗ (Emm − Ekk)

lies in Span(MES) for all k = 1, . . . , m− 1. Conjugating by Im⊗V for arbitrary V ∈ Um and using
linearity shows that Ekk⊗B +Emm⊗ (−B) ∈ Span(MES) for all k = 1, . . . ,m− 1 and all B ∈ Hm

with trace zero. By linearity,

m−1∑

i=1

Eii ⊗Bi + Emm ⊗
(
−

m−1∑

i=1

Bi

)

lies in Span(MES) for any B1, . . . , Bm−1 ∈ Hm with trace zero. Thus Sm lies in Span(MES) as
desired.

In general, the real linear span of an arbitrary set of projections contains additional projections
not in the original set. This is not the case for MES.

Remark 2.2. The set of pure states in the real linear span of MES is precisely MES.

3



Proof. Suppose ψψ∗ is a pure state in Span(MES). By the preceding proposition, Tr Bψψ∗ = 1
mIm.

Using the Schmidt decomposition for ψ shows that ψψ∗ ∈ MES as desired.

Definition 2.3. Let

ψ0 =
1√
m

m∑

i=1

ei ⊗ ei, ρ0 = ψ0ψ
∗
0 =

1
m

m∑

i,j=1

Eij ⊗Eij ,

and set

ψU,V =
m∑

i=1

Uei ⊗ V ei, ρU,V = ψU,V ψ∗U,V .

Note that, if m < n, there is an obvious arbitrariness in the choice of V , if we treat V as a
unitary matrix in Mn. (That is, V em+1, . . . , V en play no role in determining ψU,V and can be
anything at all.) To eliminate such extraneous information, we shall henceforth treat V ∈ Mn,m as
an isometry from Cm to Cn (here we identify Cm with the subspace of Cn spanned by {e1, . . . , em}).
Lemma 2.4. Let U ∈ Um be unitary and let V,W ∈ Mn,m be isometries. Then ρU,V = ρI,W if and
only if W = eiφV U t for some φ ∈ R.

Proof. Note ρU,V = ρI,W if and only if ψU,V = eiθψI,W for some θ ∈ R. But

eiθψI,W = ψU,V ⇐⇒ (e∗j ⊗ e∗k)(e
iθψI,W ) = (e∗j ⊗ e∗k)ψU,V for all j = 1, . . . , m; k = 1, . . . , n

⇐⇒ eiθWkj =
m∑

i=1

(e∗jUei)(e∗kV ei) =
m∑

i=1

UjiVki = (UV t)jk

⇐⇒ W = e−iθV U t

as asserted.

Thus, every MES can be expressed as ρI,W for an appropriate W , and clearly ρI,V = ρI,W if
and only if W = eiφV for some φ ∈ R. Note also that ρU,V = ρ0 if and only if UV t = [eiθIm|0] for
some θ ∈ R. The following lemma gives some insight into the linear structure of MES.

Lemma 2.5. Fix λ, µ ∈ (0, 1) and an isometry V1 ∈ Mn,m such that ρI,V1 6= ρ0. Then there exist
isometries V2, V3 ∈ Mn,m satisfying

λρ0 + (1− λ)ρI,V1 = µρI,V2 + (1− µ)ρI,V3 (1)

if and only if one of the following cases hold (for brevity, we shall write ρi = ρI,Vi):

1. λ = µ, ρ0 = ρ2, and ρ1 = ρ3.

2. λ = 1− µ, ρ0 = ρ3, and ρ1 = ρ2.

3. There exist k ∈ R and a complex unit ξ such that ξV1 = W =
[
K + kI

B

]
for some skew-

hermitian matrix K ∈ Mm and B ∈ Mn−m,m (thus k2Im − K2 + B∗B = Im), and the
conditions for the appropriate case (i) - (iv) below hold. Moreover, the states ρ2 and ρ3 must

be given by V2 = a

[
Im

0

]
+ bW and V3 = c

[
Im

0

]
+ δW , where a, b, c > 0 and δ < 0 are given

by (17), (16), (13), and (12) respectively. (See the proof for these equations.)
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(i) k = 0 and λ 6= 1/2: µ lies strictly between λ and 1− λ. In this case a =
√

λ(1−λ−µ)
µ(1−2λ) .

(ii) k = 0 and λ = 1/2: µ = 1/2. In this case a = cosφ, b = sinφ, c = sin φ, δ = − cosφ for
0 < φ < π/2 are all solutions.

(iii) k 6= 0 and µ = 1− λ: k(1− 2λ) > 0. In this case a = 2λ|k|√
(1−2λ)2+4λ(1−λ)k2

.

(iv) k 6= 0 and µ 6= 1− λ: k, µ, and λ must be such that (11), (12), (13), and (15) all hold.
In any case, there are at most two distinct solutions for a. (A particular example is
µ = 1/2, λ 6= 1/2: we get two distinct solutions for a in this case.)

Proof. Suppose (1) holds. Write V1ei = xi, V2ei = yi, and V3ei = zi, so {x1, . . . , xm}, {y1, . . . , ym},
{z1, . . . , zm} are orthonormal sets in Cn. Since each term in equation (1) is positive semidefinite
and of rank one, we must have that ψI,V2 , ψI,V3 both lie in the span of ψ0, ψI,V1 . Hence

m∑

i=1

ei ⊗ yi = a
m∑

i=1

ei ⊗ ei + b
m∑

i=1

ei ⊗ xi (2)

and
m∑

i=1

ei ⊗ zi = c
m∑

i=1

ei ⊗ ei + δ
m∑

i=1

ei ⊗ xi (3)

for some constants a, b, c, δ. Since replacing Vi with eiθiVi does not affect equation (1), we may
assume that a, b, c ≥ 0 and write δ = deiθ with d ≥ 0. Now if any of a, b, c, d are zero, then two
of the states in (1) are identical (one from each side). The coefficients in front of these two states
must match. (Otherwise, by re-arranging (1), we would obtain a linear combination of three pure
states, with nonzero coefficients, equalling zero. This would imply that all the pure states ρi are
identical, contradicting ρ1 6= ρ0.) Thus we must have either the first or second case, and it is clear
that both cases give a solution to (1). Henceforth, we assume a, b, c, d > 0.

Now since V1, V2, V3 are isometries we have

x∗i xj = δij ∀i.j = 1, . . . , m (4)

and similarly y∗i yj = δij , z∗i zj = δij for all i, j = 1, . . . , m. Using yi = aei +bxi and zi = cei +deiθxi,
we see that these latter conditions are satisfied if and only if

Re (e∗i xi) =
1− a2 − b2

2ab
∀i and e∗i xj = −x∗i ej ∀i 6= j (5)

and

Re (eiθe∗i xi) =
1− c2 − d2

2cd
∀i and e2iθe∗i xj = −x∗i ej ∀i 6= j. (6)

We temporarily subdivide into two cases.

CASE I: Suppose xi and ei are linearly dependent for all i. From (4) we have xi = ωiei for some
complex units ωi, i = 1, . . . ,m, while (5) holds if and only if Re ωi = (1 − a2 − b2)/2ab for all i.
Thus there is some complex unit ω and subset I ⊂ {1, . . . , m} such that ωi = ω for all i ∈ I and
ωi = ω̄ for all i /∈ I. Since ρ1 6= ρ0, I is a nonempty, proper subset and ω /∈ R. For (6) to hold we
must have Re eiθω = Re eiθω̄, implying that eiθ is 1 or -1, and hence δ ∈ R.

On the other hand, (2) and (3) imply that yi = (a + bω)ei, zi = (c + δω)ei for i ∈ I, and
yi = (a + bω̄)ei, zi = (c + δω̄)ei for i /∈ I. Substituting these expressions for yi and zi into (1) gives

λ + (1− λ)ω2 = µ(a + bω)2 + (1− µ)(c + δω)2
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as a necessary and sufficient condition for (1).
In summary, there is a solution to (1) in this case if and only if there exist a complex unit

ω 6= ±1, nonzero δ ∈ R, and a, b, c > 0 such that

λ + (1− λ)ω2 = µ(a + bω)2 + (1− µ)(c + δω)2, (7)

Re ω =
1− a2 − b2

2ab
=

1− c2 − δ2

2cδ
, (8)

and V1ei = ωei for all i ∈ I and V1ei = ω̄ei for all i /∈ I.
To solve these equations, we write ω = eiφ. Taking the real and imaginary parts of (7) gives

0 = µa2 + (1− µ)c2 − λ + cosφ[2abµ + 2cδ(1− µ)] + cos 2φ[µb2 + (1− µ)δ2 − (1− λ)] (9)

and, after dividing by 2 sinφ (note sinφ 6= 0 since ω 6= ±1),

0 = [abµ + cδ(1− µ)] + cosφ[µb2 + (1− µ)δ2 − (1− λ)] (10)

respectively. Substituting 2ab cosφ = 1 − a2 − b2 and 2cδ cosφ = 1 − c2 − δ2 from (8) into (9),
simplifying, and dividing by cos 2φ− 1, gives

µb2 + (1− µ)δ2 = 1− λ, (11)

whence
abµ + cδ(1− µ) = 0 (12)

from (10), and thus
µa2 + (1− µ)c2 = λ (13)

from (9). Note that (12) implies that δ < 0.

CASE II: Suppose that for some i, xi and ei are linearly independent. Substituting (2) and (3)
into (1) and simplifying shows that (1) holds if and only if

0 = eie
∗
j [µa2 + (1− µ)c2 − λ] + xix

∗
j [µb2 + (1− µ)d2 − (1− λ)]

+ eix
∗
j [µab + (1− µ)cde−iθ] + xie

∗
j [µab + (1− µ)cdeiθ] (14)

for all i, j = 1, . . . , m. But xi and ei are linearly independent for some i, whence eie
∗
i , xix

∗
i , eix

∗
i ,

xie
∗
i are linearly independent, so (14) holds if and only if the coefficients are all zero; that is, if and

only if (11), (12), and (13) hold, with eiθ, and hence δ, real.
Now the isometry conditions (4), (5), (6) hold if and only if the isometry V1 satisfies

Re (V1)ii =
1− a2 − b2

2ab
=

1− c2 − δ2

2cδ

for all i = 1, . . . ,m and (V1)ij = −(V1)ji for all i 6= j, i, j = 1, . . . , m.

Combining Case I and II: Thus, we see that in both cases, there exist isometries V2, V3 satisfying
(1) if and only if there exist a, b, c > 0 and δ < 0 such that (11), (12), and (13) hold (this ensures

(1) holds) and V1 =
[
K + kI

B

]
for some skew-hermitian matrix K ∈ Mm and B ∈ Mn−m, where

2abk = (1− a2 − b2) (15)
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(this ensures (5), (6) hold, so that V2, V3 are isometries). Note that (11), (12), (13) automatically
imply that

1− c2 − δ2

2cδ
=

1− c2 − δ2

−2abµ
(1− µ) using (12)

=
1− a2 − b2

2ab

by adding (11) and (13) together and substituting for (1− µ)(c2 + δ2).

Solving for c2 in (13) and δ2 in (11) and substituting into (12) gives, after squaring and simpli-
fying,

λ(1− λ)− µ(1− λ)a2 − µλb2 = 0. (16)

By solving for b2 in (16) and substituting into (15), then squaring and simplifying, we obtain the
quadratic equation

ã(a2)2 + b̃a2 + c̃ = 0 (17)

where

ã = µ2[(1− 2λ)2 + λ(1− λ)4k2],

b̃ = 2λµ[(1− 2λ)(µ− 1 + λ)− λ(1− λ)2k2],

c̃ = λ2(µ− 1 + λ)2,

and the discriminant is

16µ2λ3(1− λ)k2[λ(1− λ)k2 − (µ− λ)(µ− (1− λ))].

The maximum value of the factor in square brackets (as a function of µ) is attained when µ = 1/2,
and equals (1/4)− λ(1− λ)(1− k2). Since λ(1− λ) ≤ 1/4 and k2 < 1 (since V1 is an isometry and
ρ1 6= ρ0), this factor is positive when µ = 1/2. The minimum value of the factor in square brackets
(as a function of µ ∈ [0, 1]) is attained when µ = 0 or 1, and equals λ(1 − λ)(k2 − 1) < 0, so the
discriminant is negative for values of µ sufficiently close to 0 or 1 (provided k 6= 0).

So, for a solution to exist, (17) must have a positive root for a2; one can then solve for b > 0,
c > 0, and δ < 0 from (16), (13), and (12) respectively. Conversely, if one solves for a, b, c > 0 and
δ < 0 in this manner, then one can readily verify that (11) automatically holds, as does the square
of (15). To have b2 > 0 and c2 > 0 from (16) and (13) though, it is necessary and sufficient that
a2 < λ/µ. We now consider some special cases where the analysis is simplified.

Subcase 1: k = 0 and λ 6= 1/2.
The only solution to (17) is

a2 = − b̃

2ã
=

λ(1− λ− µ)
µ(1− 2λ)

,

so we get a solution a > 0 if and only if λ < 1/2 and µ < 1−λ, or λ > 1/2 and µ > 1−λ. One can
then uniquely determine b, c, and δ by using (16), (13), and (12) respectively. As already noted,
(11) and (15) will also hold, and to ensure b2, c2 > 0 in (16) and (13), we need λ− µa2 > 0 as well.
Coupled with the preceding conditions, we find a (unique) solution for a, b, c > 0 if and only if µ lies
strictly between λ and 1− λ (that is, the vector

[
µ 1− µ

]t is strictly majorized by
[
λ 1− λ

]t).

Subcase 2: k = 0 and λ = 1/2.
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In this case, (17) reduces to µ = 1/2. Thus (11), (12), (13), and (15) become

b2 + δ2 = 1, ab + cδ = 0, a2 + c2 = 1, and a2 + b2 = 1.

There are infinitely many solutions: a = cosφ, b = sin φ, c = sin φ, and δ = − cosφ for 0 < φ < π/2.

Subcase 3: k 6= 0 and µ = 1− λ.
In this case c̃ = 0, so the only nonzero solution for a is given by

a2 = − b̃

ã
=

4λ2(1− λ)k2

µ[(1− 2λ)2 + 4λ(1− λ)k2]
=

4λ2k2

(1− 2λ)2 + 4λ(1− λ)k2
.

One can then uniquely determine b, c, and δ by using (16), (13), and (12) respectively. To ensure
b2, c2 > 0 in (16) and (13), we need a2 < λ/µ which occurs if and only if λ 6= 1/2. Also, (15)
holds if and only if k(1 − 2λ) > 0. Thus we get a (unique) solution for a, b, c > 0 if and only if
k(1− 2λ) > 0. (In particular, there is no solution if λ = 1/2.)

Subcase 4: k 6= 0 and µ 6= 1− λ.
We simply note that there are at most two solutions for a > 0, and that, for certain values of

µ and λ, one can obtain two solutions. For example, if µ = 1/2, then the discriminant is positive.
Since ã, c̃ > 0 and b̃ < 0, both roots of (17) are positive, and one can readily verify that a2 < λ/µ
for both roots.

We shall refer to the solutions to (1) obtained in the first two cases of Lemma 2.5 as trivial
solutions. In the nontrivial third case, there are always at least two choices for W (since−ξV1 = −W
is also of the correct form). More precisely, if K + kI is a scalar multiple of I (note B 6= 0 in this
case, since ρ1 6= ρ0), then there are infinitely many choices for W (any complex unit ξ works).
Otherwise, if K + kI is not a scalar multiple of I, then there are exactly two choices for W . So,
in order to have infinitely many solutions to (1), we are either in case 3(ii), or there are infinitely
many choices for W . In either event it is possible to choose ξ so that k = 0. For future reference,
we note and extend these observations in the following remark.

Remark 2.6. Equation (1) has infinitely many solutions (for ρI,V2 and ρI,V3) when λ = µ = 1/2 if

and only if ξV1 =
[
K
B

]
for some complex unit ξ and skew-hermitian K ∈ Mm. We can distinguish

three cases:

1. K is not a scalar multiple of I. In this case, there are finitely many solutions to (1) when

λ = 3/4 and µ = 1/2 (we must have W = ±
[
K
B

]
in case 3(i)). There is no nontrivial

solution when λ = 3/4 and µ = 1− λ = 1/4.

2. K is a nonzero scalar multiple of I. There are infinitely many nontrivial solutions when

λ = 3/4 and µ = 1 − λ = 1/4 (take W = eiθ

[
K
B

]
with 0 < θ < π or −π < θ < 0 as

appropriate in case 3(iii)).

3. K = 0. In this case, there are infinitely many solutions to (1) when λ = 3/4 and µ = 1/2.
There is no nontrivial solution when λ = 3/4 and µ = 1− λ = 1/4.
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Let us now focus on the special case m = n. Lemma 2.5 shows that MES of the form ρI,U , with
U skew-hermitian, play a special role in the linear structure of Span(MES). A natural question is:
does this smaller set of special MES span all of Span(MES)? The answer is no. First note that

T0 = {ρI,U : U∗ = −U is unitary} = {ρI,U : U∗ = U is unitary}
since, by Lemma 2.4, there is freedom in choosing a complex phase for U . We claim that iE12 ⊗
E12−iE21⊗E21 lies in Span(MES) but does not lie in Span(T0). To see the latter assertion, suppose
H is a hermitian unitary. Then the entry in the E12 ⊗E12 position of

ρI,H =
1
m

m∑

i,j=1

Eij ⊗HEijH
∗

is e∗1He1e
∗
2H

∗e2, which is always real. Hence the entry in the E12 ⊗ E12 position of any matrix in
Span(T0) is real, so iE12 ⊗ E12 − iE21 ⊗E21 /∈ Span(T0).

Also from Lemma 2.5, one observes that T = {ρI,U : U ∈ Ω}, where

Ω = {eiθ(xI + iyH) : H ∈ Hm ∩ Um; x, y, θ ∈ R; x2 + y2 = 1},
also plays a distinguished role in the linear structure of Span(MES). It requires a little more effort,
but one can also show that iE12⊗E12−iE21⊗E21 /∈ Span(T ) either when m > 2, and so Span(T ) 6=
Span(MES) if m > 2. (They are equal, however, when m = 2; this follows since Ω is precisely the
set of unitaries with at most two distinct eigenvalues.) We are close, though; one can in fact extend
T slightly to obtain a spanning set for Span(MES).

Lemma 2.7. Let m = n > 2. The real linear span of

T+ = {ρI,U : U ∈ Un has at most 2 distinct eigenvalues or is unitarily similar to
[
i 0
0 −i

]
⊕ In−2}

is Span(MES).

Proof. Let P1, . . . , Pn ∈ Hn be orthogonal rank 1 projections. Set U = I − 2Pk, V = I − 2Pl, and
W = I − 2Pk − 2Pl where k 6= l. Then

ρI,U − ρ0 =
1
m

m∑

i,j=1

Eij ⊗ (−2PkEij − 2EijPk + 4PkEijPk);

summing over k, adding 4ρ0, and then dividing by 4/m shows that

m∑

i,j=1

Eij ⊗
n∑

k=1

PkEijPk ∈ Span(T0) ⊂ Span(T+). (18)

We also have

ρI,W − ρ0 − (ρI,U − ρ0)− (ρI,V − ρ0) =
4
m

m∑

i,j=1

Eij ⊗ (PkEijPl + PlEijPk).

This shows that, for any orthogonal rank 1 projections P and Q,
m∑

i,j=1

Eij ⊗ (PEijQ + QEijP ) ∈ Span(T0) ⊂ Span(T+). (19)
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Given an arbitrary unitary Û we can use the spectral decomposition to write Û =
∑n

k=1 αkPk for
some orthogonal rank 1 projections P1, . . . , Pn with |αk| = 1 for all k. Note

mρI,Û =
m∑

i,j=1

Eij ⊗
n∑

k,l=1

αkᾱlPkEijPl

=
m∑

i,j=1

Eij ⊗
n∑

k=1

PkEijPk +
m∑

i,j=1

Eij ⊗
∑

k 6=l

αkᾱlPkEijPl

We must show that ρI,Û ∈ Span(T+).
By (18), we see it suffices to show

m∑

i,j=1

Eij ⊗ (eiθPkEijPl + e−iθPlEijPk) ∈ Span(T+) ∀k 6= l;

by (19), it suffices to show

m∑

i,j=1

Eij ⊗ (iPkEijPl − iPlEijPk) ∈ Span(T+) ∀k 6= l. (20)

Let U = I − 2Pk, V = I − 2Pl, and X = iPk − iPl + (I − Pk − Pl). A computation gives

ρI,X − 1
2
ρI,U − 1

2
ρI,V

=
1
m

m∑

i,j=1

Eij ⊗ i[2(PlEijPk − PkEijPl) + (PkEij − EijPk)− (PlEij − EijPl)].

Since ρI,X , ρI,U , ρI,V all lie in T+, the above equation shows that (20) will hold if

m∑

i,j=1

Eij ⊗ i(PEij − EijP ) =
m∑

i,j=1

Eij ⊗ [(iP )Eij + Eij(iP )∗] ∈ Span(T+) (21)

for all rank 1 projections P .

Given any skew-hermitian unitary K and x, y > 0 satisfying x2 + y2 = 1, xI + yK is a unitary
matrix with at most two distinct eigenvalues. Since

ρI,xI+yK = x2ρ0 + y2ρI,K + xy
1
m

m∑

i,j=1

Eij ⊗ (KEij + EijK
∗),

we have that
m∑

i,j=1

Eij ⊗ (KEij + EijK
∗) ∈ Span(T+) (22)

for all skew-hermitian unitary K. By linearity, and since the set of skew-hermitian unitaries spans
the space of skew-hermitian matrices, we see that (22) holds for all skew-hermitian K, in particular
K = iP , where P is a projection. Thus (21) holds for all projections P , and the proof is complete.

10



3 Technical Lemmas

In this section we state and prove a number of lemmas which will be needed to prove our main
theorem in the next section.

Our first result is a simple one; it will allow us to define a linear map on a quotient space in
the proof of the main theorem.

Lemma 3.1. For A ∈ Mm, AEij + EijA
∗ = 0 for all i, j = 1, . . . , m if and only if A = ikI for

some k ∈ R.

Proof.

AEij + EijA
∗ = 0 ∀i, j ⇐⇒ e∗k(AEij + EijA

∗)el = 0 ∀i, j, k, l ⇐⇒ Akiδjl + δik(A∗)jl = 0

Thus all off-diagonal entries of A are zero, and the diagonal entries Akk are all equal and pure
imaginary, as claimed.

The next two results will allow us to extend a linear map on a quotient space of Hn to a very
nice linear map on Hn.

Lemma 3.2. Let r ∈ N. There do not exist four rank r projections Q1, Q2, Q3, Q4 ∈ H2r such that,
for any i 6= j, Qi + Qj equals a projection plus a real scalar multiple of I.

Proof. Suppose, by way of contradiction, that for any i 6= j, Qi + Qj + kI is a projection for
some k ∈ R (which may depend on the pair {i, j}). We can use the CS-decomposition to find an
orthonormal basis such that, with respect to this basis,

Qi =
[
Ir 0
0 0

]
, Qj =

[
C2 CS
CS S2

]

where C, S ∈ Mr are nonnegative diagonal matrices satisfying C2 + S2 = Ir. By equating block-
entries in (Qi + Qj + kI)2 = Qi + Qj + kI and simplifying, we have

1. 2(1 + k)C2 = −k(1 + k)I from the upper left block,

2. (2k + 1)CS = 0 from the upper right block, and

3. 2kS2 = k(1− k)I from the lower right block.

So, from the second equation, we have either:

(a) k = −1/2 (in which case C = 1
2I and S =

√
3

2 I from the first and third equations), or

(b) CS = 0 (in which case the other equations imply C = 0).

Thus for i 6= j, we have QiQjQi = 1
4Qi in case (a), or QiQj = QjQi = 0 in case (b). If case (b)

occurs for every pairing of Qi and Qj , i 6= j, we get four orthogonal rank r projections Q1, Q2, Q3, Q4

in M2r, a contradiction. Hence case (a) must occur at least once. Without loss of generality, we
can write

Q1 =
[
Ir 0
0 0

]
, Q2 =

1
4

[
Ir

√
3Ir√

3Ir 3Ir

]
.
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Note that Q3 and Q4 cannot both be orthogonal to Q1; otherwise we would have Q3 = Q4 and
then Q3 + Q4 could not equal a projection plus a scalar multiple of I, a contradiction. Without
loss of generality case (a) occurs for the pairing Q1 and Q3; then Q1Q3Q1 = 1

4Q1, so we can write
[

1
4Ir B
B∗ D

]
= Q3 = Q2

3 =
[

1
16Ir + BB∗ 1

4B + BD
1
4B∗ + DB∗ B∗B + D2

]
.

Equating the upper left blocks, we see that B =
√

3
4 U for some unitary U , whence D = 3

4I from
equating the upper right blocks. But

Q2 + Q3 + kI =

[
(1
2 + k)I

√
3

4 (I + U)√
3

4 (I + U∗) (3
2 + k)I

]

is a projection for some k ∈ R; comparing the upper right blocks of (Q2 +Q3 +kI)2 = Q2 +Q3 +kI
gives (2k + 1)(I + U) = 0. If k = −1/2 then for Q2 + Q3 + kI to be positive semidefinite we have
U = −I. Thus U = −I in any case, and Q3 is uniquely determined.

Now if case (a) occurs for the pairing Q1 and Q4, the same argument shows that Q4 = Q3, giving
a contradiction as before. Thus case (b) occurs for the pairing Q1 and Q4, whence Q4 = I − Q1.
But then

Q2 + Q4 + kI =

[
(1
4 + k)I

√
3

4 I√
3

4 I (7
4 + k)I

]

is not idempotent for any k, giving our final contradiction.

Lemma 3.3. Let H̃n denote the quotient space Hn/RI = {A +RI : A ∈ Hn}, and for A ∈ Hn, let
Ã = A + RI. Suppose ψ̃ : H̃n → H̃n is a (real) linear map such that, for any projection P ∈ Hn,
ψ̃(P̃ ) contains a projection QP . Then there exists a linear map ψ : Hn → Hn such that ψ̃◦π = π◦ψ,
where π : Hn → H̃n is the canonical quotient map. Moreover, ψ has the form ψ(A) = εUAσU∗ for
all A ∈ Hn, where U is a unitary matrix, ε ∈ {−1, 0, 1}, and A 7→ Aσ denotes either the identity
or the transpose map.

Proof. Note that the only coset in H̃n containing more than one projection is 0̃, which contains 0
and I. Let Pk denote the set of rank k projections in Hn, and let P̃k = π(Pk). Since ψ̃ is continuous
and P̃0 = P̃n, P̃1, . . . , P̃n−1 form n disjoint path-connected components, we have ψ̃(P̃1) ⊆ P̃r for
some r ≥ 0. If r = 0 then, since ψ̃ is linear and the set of rank one projections span Hn, we have
ψ̃ ≡ 0̃ and the lemma holds by taking ψ ≡ 0. So suppose r > 0. We split into two cases.

Case 1: Suppose 1 ≤ r ≤ n/2. Let P1, . . . , Pn be orthogonal rank 1 projections, and let Qi be
the unique projection (of rank r) in ψ̃(P̃i). Let i 6= j, so Pi + Pj is a projection. Then there exists
a projection in ψ̃(P̃i + Pj) = ψ̃(P̃i) + ψ̃(P̃j) = Q̃i + Q̃j , that is, Qi + Qj + kI is a projection for
some k ∈ R.

If r < n/2, then rank (Qi + Qj) < n, so 0 is an eigenvalue of Qi + Qj . For the spectrum
of Q1 + Q2 + kI to lie in {0, 1}, we must have k = 0. Thus Qi + Qj is a projection, whence
QiQj = QjQi = 0. Then Q1, . . . , Qn are orthogonal rank r projections, so we must have rn ≤ n,
whence r = 1. On the other hand, if 1 6= r = n/2, then we have n ≥ 4. But this leads to a
contradiction, since Lemma 3.2 says that it is impossible to have projections Q1, . . . , Q4 of rank r
such that Qi +Qj +kijI is a projection for all i 6= j. Thus we must have r = 1, that is, ψ̃(P̃1) ⊆ P̃1.
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We now construct the map ψ. Given X ∈ Hn, we may write X =
∑

i aiPi for some real scalars
ai and rank 1 projections Pi. Define ψ(X) =

∑
i aiQPi . Provided ψ is well-defined, this clearly

defines a linear map. Moreover,

(π ◦ ψ)(X) =
∑

i

aiψ̃(P̃i) = ψ̃

(∑

i

aiP̃i

)
= ψ̃(X̃) = (ψ̃ ◦ π)(X)

since ψ̃ is linear. Thus, it suffices to show that ψ is well-defined.
We must show that if

∑
i aiPi = 0, then

∑
i aiQPi = 0. Applying ψ̃ ◦ π to both sides of

0 =
∑

i aiPi gives
0̃ =

∑

i

aiψ̃(P̃i) =
∑

i

aiQ̃Pi ,

that is,
∑

i aiQPi ∈ RI. It follows that
∑

i aiQPi = 0 if and only if Tr (
∑

i aiQPi) = 0. Thus, it
suffices to show that TrQP = TrP = 1 for any rank 1 projection P . But this is true because
ψ̃(P̃1) ⊆ P̃1.

Indeed, we also have ψ(P1) ⊆ P1. By [1, Corollary 1], ψ must have one of the following forms:

1. ψ(A) = SAS∗ for some S ∈ Mn,

2. ψ(A) = SAtS∗ for some S ∈ Mn, or

3. ψ(A) = L(A)B for some linear functional L : Hn → R and B ∈ Hn of rank 1.

We claim that the third case is inadmissable. Suppose, by way of contradiction, the third case
occurs. We may assume that B is a rank 1 projection. Since ψ(P1) ⊆ P1, we have L(A) = 1 for all
rank one projections; since P1 spans Hn, we have L(A) = TrA for all A ∈ Hn. But then

0̃ = ψ̃(0̃) = ψ̃(Ĩ) = ψ̃ ◦ π(I) = π ◦ ψ(I) = nB̃,

a contradiction.
So, either the first or second case must occur. Since ψ(P ) is a rank one projection for any rank

one projection P , S must be invertible. Since ψ(P )2 = ψ(P ) for all rank one projections P , we
conclude that S must be unitary. Thus the lemma holds in this case.

Case 2: Suppose n/2 < r < n. Then the map φ̃ = −ψ̃ satisfies the hypotheses of the theorem
and φ̃(P̃1) = −ψ̃(P̃1) ⊆ −P̃r = P̃n−r with 1 ≤ n − r < n/2. (Note that if P is a projection, then
−P̃ contains the projection I − P .) Thus Case 1 applies to φ̃ and the lemma holds.

The final two lemmas will allow us to single out a particular unitary as being essentially unique.

Lemma 3.4. Let n ≥ 3 and T = {z ∈ C : |z| = 1}. Let

Rα =
[
cosα sinα
sinα − cosα

]

and
R = {Rα ⊕ V : α ∈ [0, 2π]; V ∈ Hn−2 ∩ Un−2}.

Then

{U ∈ Un : RU ∈ THn ∀R ∈ R} = T
{[

cos θ − sin θ
sin θ cos θ

]
⊕ In−2 : θ ∈ [0, 2π]

}
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Proof. Suppose U is unitary and RU ∈ THn for all R ∈ R. Set

U0 =
([

1 0
0 −1

]
⊕ In−2

)
U and write U =

[
A B
C D

]
,

where A ∈ M2, D ∈ Mn−2. We may remove an arbitrary complex phase by assuming that U0 is
hermitian. Suppose, by way of contradiction, that U0 has a nonzero off-diagonal entry in the kth
row for some k ≥ 3. Let V = I−2ek−2e

∗
k−2. Note that a matrix X ∈ THn if and only if X∗ = eiθX

for some θ ∈ R. Since ([
1 0
0 −1

]
⊕ V

)
U = (I2 ⊕ V )U0 ∈ THn

and U0 ∈ Hn, we must have U0(I2⊕V0) = ((I2⊕V )U0)∗ = −(I2⊕V )U0. Thus, any entry of U0 not
in the kth row or column is zero—but then U0 cannot be unitary, a contradiction. It follows that
all off-diagonal entries of U0 not in the (1,2)- or (2,1)-positions are zero. Thus B = 0, C = 0, A
is unitary, and D is diagonal with ±1 on the diagonal. Without loss of generality we may assume
D11 = 1.

Suppose, by way of contradiction, that Dkk = −1 for some k. Let V ∈ Hn−2∩Un−2 be arbitrary.
Since ([

1 0
0 −1

]
⊕ V

)
U ∈ THn implies V D ∈ THn−2,

we can use the same argument as before to conclude that PV P t is either block-diagonal or block-
off-diagonal (where P is a permutation such that PDP t = Ir ⊕ (−In−2−r)). But V was arbitrary,
so this is a contradiction. Thus D = In−2.

It follows that RαA ∈ H2 for all α ∈ [0, 2π]. Considering α = 0 and α = π/2, we see that all
four entries of A must be real. Direct computation reveals that

A =
[
cos θ − sin θ
sin θ cos θ

]

for some θ ∈ [0, 2π], as asserted.

Lemma 3.5. Let U ∈ Mn, n ≥ 3, be a unitary of the form

U =
[
cos θ − sin θ
sin θ cos θ

]
⊕ In−2

for some θ ∈ [0, 2π). Let

A =
[

0 1
−1 0

]
⊕ iIn−2, B =

[
1√
2

1√
2

− 1√
2

1√
2

]
⊕ eiπ/4In−2.

If AU and BU each have at most two distinct eigenvalues, then U =
[
0 −1
1 0

]
⊕ In−2 or U = In.

Proof. The eigenvalues of AU are ei(π/2−θ), e−i(π/2−θ), i. Two of these three eigenvalues must be
equal; considering all three cases we find that θ = 0, π/2, π, or 3π/2. When θ = π or 3π/2, BU
has three distinct eigenvalues: eiπ/4, ei3π/4, e−i3π/4. One can readily verify that, when θ = 0 or
π/2, AU and BU have two distinct eigenvalues, so the lemma holds.
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4 Linear Preservers of Maximally Entangled States

We would like to characterize the real linear maps on Hm ⊗ Hn which preserve the set of MES.
Clearly there is a lot of freedom in devising such maps: if Φ is one such map, one can obtain another
linear preserver Φ̃ by setting Φ̃(X) = Φ(X) for all X ∈ Span(MES), and defining Φ̃ however we
like on a basis for the orthogonal complement of Span(MES). Thus we should restrict our attention
to real linear maps on Span(MES) which preserve the set of MES. Note that such a restriction
makes this problem significantly more difficult: often one can solve preserver problems by making
use of existing nice results for preservers on entire matrix spaces like Mn or Hn. In our case we do
not have recourse to such results, as there appears to be no natural way to extend a preserver on
Span(MES) to a map on all of Hm ⊗Hn.

In practice, one may be concerned with affine maps on states which preserve MES. The following
proposition shows that, to characterize affine maps of co(MES) preserving MES, it is sufficient to
consider linear maps on Span(MES) preserving MES.

Proposition 4.1. Let Φ : co(MES) → co(MES) be an affine map such that Φ(MES) ⊆ MES.
Then Φ extends to a unique linear map Ψ : Span(MES) → Span(MES).

Proof. Let

K =

{
k∑

i=1

λiρi : k ∈ N, λi ≥ 0, ρi ∈ MES

}

be the cone of positive semidefinite matrices generated by MES. Since an element A ∈ K lies in
co(MES) if and only if TrA = 1, we can extend Φ to a map Ψ : K → K by defining Ψ(tρ) = tΦ(ρ) for
any t ≥ 0 and any ρ ∈ co(MES). Clearly Ψ is affine and homogeneous. Given A ∈ Span(MES),
we can write A = ρ+−ρ− for some ρ+, ρ− ∈ K. Set Ψ(A) = Ψ(ρ+)−Ψ(ρ−). It is easy to check that
this gives a well-defined linear map on Span(MES). It is clear that this extension is unique.

We come to the main theorem of this paper. Henceforth, we restrict ourselves to the case m = n,
but we do not assume that the preserver is surjective.

Theorem 4.2. Let MES denote the set of maximally entangled states in Mm⊗Mm. A linear map
Φ : Span(MES) → Span(MES) preserves MES if and only if it has one of the following forms:

1. Φ(A⊗B) = UAσU∗ ⊗ V BσV ∗ for some unitaries U, V ∈ Mm.

2. Φ(A⊗B) = UBσU∗ ⊗ V AσV ∗ for some unitaries U, V ∈ Mm.

3. Φ(X) = (TrX)ρ for some ρ ∈ MES.

Here the map A 7→ Aσ denotes either the identity or the transpose map.

Note that if the preserver Φ is surjective, only the first two cases can occur.

Proof. Sufficiency is clear. To prove necessity, suppose Φ(MES) ⊆ MES. We may write Φ(ρ0) =
(U ⊗ V )ρ0(U ⊗ V )∗ for some unitaries U, V ∈ Mm. By replacing Φ with the map X 7→ (U ⊗
V )∗Φ(X)(U ⊗ V ) if necessary, we may assume Φ(ρ0) = ρ0.

Step 1. Let Pskew = {ρI,V : V ∈ Mm is skew-hermitian unitary}. We claim Φ(Pskew) ⊆ Pskew.
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Let V1 be a skew-hermitian unitary and write ρ1 = ρI,V1 . Suppose, by way of contradiction,
that Φ(ρ1) /∈ Pskew, so ρ1 6= ρ0. By Lemma 2.5, case 3(ii), the equation

1
2
ρ0 +

1
2
ρ1 =

1
2
ρ2 +

1
2
ρ3 (23)

has infinitely many solutions for MES ρ2, ρ3; for example, one can take ρ2 = ρI,V2 where V2 =
cos θ I + sin θ V1, θ ∈ [0, 2π]. By applying Φ to both sides of (23), we see that the equation

1
2
ρ0 +

1
2
Φ(ρ1) =

1
2
ρ̃2 +

1
2
ρ̃3. (24)

has solutions ρ̃2 = Φ(ρI,V2). On the other hand, by Lemma 2.5 and our assumption, the only
solutions to (24) are trivial, namely ρ̃2 = ρ0 or Φ(ρ1). Thus

{Φ(ρI,cos θ I+sin θ V1) : θ ∈ [0, 2π]} ⊆ {ρ0, Φ(ρ1)}.
Considering θ = 0, π/2, we see that these two sets are equal. But the set on the left-hand side
is connected, while the set on the right-hand side is not, unless Φ(ρ1) = ρ0. But this contradicts
Φ(ρ1) /∈ Pskew. Thus our claim holds.

Step 2. We claim there is a map g from the set of skew-hermitian unitaries back to itself
satisfying

Φ




m∑

i,j=1

Eij ⊗ (KEij + EijK
∗)


 =

m∑

i,j=1

Eij ⊗ (g(K)Eij + Eijg(K)∗)

and
Φ(ρI,xI+yK) = ρI,xI+yg(K)

for all skew-hermitian unitaries K and all x, y ∈ R.

Set g(iI) = iI and g(−iI) = −iI; from Lemma 3.1 and Φ(ρ0) = ρ0, the asserted conditions
hold. So now assume K ∈ Mm is a skew-hermitian unitary that is not a scalar multiple of I. Write
ρ1 = ρI,K , and suppose 0 < λ < µ < 1− λ < 1 with µ 6= 1/2. By Lemma 2.5,

λρ0 + (1− λ)ρ1 = µρ2 + (1− µ)ρ3 (∗)
is satisfied for ρ2 = ρI,aI+bK and ρ3 = ρI,cI+δK , where a, b, c, δ are as described in Lemma 2.5,
case 3(i). Since Φ preserves Pskew, we may write Φ(ρ1) = ρI,K̃ for some skew-hermitian unitary
K̃ ∈ Mm. Applying Φ to (∗), we have

λρ0 + (1− λ)ρI,K̃ = µΦ(ρ2) + (1− µ)Φ(ρ3).

Now if ρI,K̃ 6= ρ0, then by Lemma 2.5 we must have Φ(ρ2) = ρI,aI+bK̃ (in which case set g(K) = K̃)
or ρI,aI−bK̃ (in which case set g(K) = −K̃). On the other hand, if ρI,K̃ = ρ0 then we must have
Φ(ρ2) = ρ0 and K̃ = ±iI. In this case set g(K) = iI; since a2 + b2 = 1 (see (15) in the proof of
Lemma 2.5), we have Φ(ρ2) = ρ0 = ρI,(a+ib)I = ρI,aI+bg(K).

In any case, we have Φ(ρ2) = ρI,aI+bg(K). Now compare the two sides of this equation:

mρI,aI+bg(K) =
m∑

i,j=1

Eij ⊗ (aI + bg(K))Eij(aI + bg(K))∗

= a2ρ0 + b2ρI,K̃ + ab
m∑

i,j=1

Eij ⊗ (g(K)Eij + Eijg(K)∗)
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whereas mΦ(ρ2) equals

Φ




m∑

i,j=1

Eij ⊗ (aI + bK)Eij(aI + bK)∗


 = Φ


a2ρ0 + b2ρ1 + ab

m∑

i,j=1

Eij ⊗ (KEij + EijK
∗)




= a2ρ0 + b2ρI,K̃ + abΦ




m∑

i,j=1

Eij ⊗ (KEij + EijK
∗)


 .

Since a, b > 0, we have

Φ




m∑

i,j=1

Eij ⊗ (KEij + EijK
∗)


 =

m∑

i,j=1

Eij ⊗ (g(K)Eij + Eijg(K)∗);

it then follows that Φ(ρI,xI+yK) = ρI,xI+yg(K) for all x, y ∈ R, as claimed.

Step 3: We claim that either

(a) Φ(ρI,xI+iyH) = ρ0 for all hermitian unitary H and all x, y ∈ R satisfying x2 + y2 = 1, or

(b) there is a linear map ψ : Hm → Hm such that Φ(ρI,xI+iyH) = ρI,xI+iyψ(H) for all hermitian
unitary H and all x, y ∈ R.

Moreover, ψ has the form ψ(A) = εUAσU∗ for all A ∈ Hm, where U is a unitary matrix,
ε ∈ {−1, 1}, and A 7→ Aσ denotes either the identity or the transpose map.

Since the real linear span of skew-hermitian unitaries is the space of skew-hermitian matrices,
and since Φ is linear, Step 2 shows that for each skew-hermitian K we have

Φ




m∑

i,j=1

Eij ⊗ (KEij + EijK
∗)


 =

m∑

i,j=1

Eij ⊗ (K̂Eij + EijK̂
∗)

for some skew-hermitian K̂ (depending on K). This allows us to define a real linear map ψ̃ : H̃m →
H̃m (here H̃m denotes the quotient space H̃m = Hm/RI = {A + RI : A ∈ Hm}) as follows. Given
X ∈ Hm, let X̃ denote its coset in H̃m and define ψ̃(X̃) = Ỹ where

Φ




m∑

i,j=1

Eij ⊗ (iXEij − iEijX)


 =

m∑

i,j=1

Eij ⊗ (iY Eij − iEijY ).

By Lemma 3.1, this map is well-defined, and it is clearly linear. Moreover, if H is a hermitian
unitary we have ψ̃(H̃) = ˜−ig(iH), where g is as in Step 2. Since P ∈ Hm is a projection if and
only if 2P − I is a hermitian unitary, it follows that for any projection P there exists a projection
QP such that ψ̃(P̃ ) = Q̃P .

By Lemma 3.3, ψ̃ ◦ π = π ◦ψ for a linear map ψ : Hm → Hm of a particular form. This implies
that, for any hermitian unitary H, ψ̃(H) = ˜−ig(iH), so that g(iH) = iψ(H) + ikHI for some
kH ∈ R.

Case (a): If ψ = 0 we have g(K) ∈ {±iI} for all skew-hermitian unitary K. In this case

Φ(ρI,xI+yK) = ρI,xI+yg(K) = ρI,(x+iy)I = ρI,(x−iy)I = ρ0
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for all skew-hermitian unitary K and x, y ∈ R satisfying x2 + y2 = 1.
Case (b): If ψ 6= 0, then ψ has the form ψ(A) = εUAσU∗ for all A ∈ Hm, where U is a unitary

matrix, ε ∈ {−1, 1}, and A 7→ Aσ denotes either the identity or the transpose map. Thus any
hermitian unitary H that is not a multiple of I is mapped to a hermitian unitary ψ(H) that is not
a multiple of I. Since g(iH) must be a skew-hermitian unitary it follows that kH = 0 for such H.
Since setting g(iI) = iψ(I) = ±iI does not affect Φ(ρI,xI+yK) = ρI,xI+yg(K), we have

Φ(ρI,xI+iyH) = ρI,xI+yg(iH) = ρI,xI+iyψ(H)

for all hermitian unitary H and all x, y ∈ R. The claim holds.

Step 4: We normalize Φ in the following sense. If case (b) in Step 3 holds, there is a linear
map L on the real space RI + iHm such that

Φ(ρI,xI+iyH) = ρI,L(xI+iyH)

for all hermitian unitary H and all x, y ∈ R. More explicitly: if ψ(A) = UAσU∗ then L(B) =
UBσU∗; if ψ(A) = −UAσU∗ then L(B) = U(B∗)σU∗ (here A 7→ Aσ denotes either the identity
or the transpose map). Thus L is a composition of unitary similarity, transpose, and/or complex
conjugation. Each of these maps (acting on unitary matrices) give rise to maps on Span(MES) that
are of the form asserted by the main theorem; we list the correspondences below.

Let f : Um → Um and define a map φ on MES by φ(ρI,A) = ρI,f(A).

1. Let f(A) = UA for some unitary U . Then φ(ρ) = (I ⊗ U)ρ(I ⊗ U∗).

2. Let f(A) = AV for some unitary V . Then

φ(ρI,A) = ρI,AV = ρV t,A

by Lemma 2.4, so
φ(ρ) = (V t ⊗ I)ρ(V t ⊗ I)∗.

3. Let f(A) = Ā. Consider the map on Hm⊗Hm given by B⊗C 7→ (B⊗C)t = Bt⊗Ct. Under
this map, we have

ρU,V =
1
m

m∑

i,j=1

UEijU
∗ ⊗ V EijV

∗ 7→ 1
m

m∑

i,j=1

ŪEjiU
t ⊗ V̄ EijV

t = ρŪ ,V̄ .

Setting U = I we see that this is identical to the map φ(ρI,V ) = ρI,f(V ).

4. Let f(A) = At. Consider the map U ⊗ V 7→ V ⊗ U . Under this map, we have

ρU,V =
1
m

m∑

i,j=1

UEijU
∗ ⊗ V EijV

∗ 7→ 1
m

m∑

i,j=1

V EijV
∗ ⊗ UEijU

∗ = ρV,U = ρI,UV t

by Lemma 2.4. Setting U = I we see that this is identical to the map φ(ρI,V ) = ρI,f(V ).

It follows that Φ is equal to an invertible map Ψ of the desired form when restricted to the set

T = {ρI,xI+iyH : H ∈ Hm ∩ Um; x, y ∈ R; x2 + y2 = 1}.
Since Φ is of the desired form (on all of Span(MES)) if and only if Ψ−1 ◦Φ is, we may, without loss
of generality, replace Φ with Ψ−1 ◦Φ and assume that Φ fixes each element of T . Now, considering
both cases from Step 3, we have either
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(a) Φ(ρ) = ρ0 for all ρ ∈ T , or

(b) Φ(ρ) = ρ for all ρ ∈ T .

It is worth recalling that T = {ρI,U : U ∈ Ω}, where

Ω = {eiθ(xI + iyH) : H ∈ Hm ∩ Um; x, y, θ ∈ R;x2 + y2 = 1}

is precisely the set of unitaries with at most two distinct eigenvalues. Thus, for m = 2, we have
T = MES. Since Φ is linear, Φ is either the identity map or the degenerate map X 7→ (TrX)ρ0 on
Span(MES). In either case Φ is of the desired form and the theorem holds. Henceforth we assume
m > 2.

Step 5: With the normalization from Step 4 (namely, Φ(ρ) = ρ0 for all ρ ∈ T or Φ(ρ) = ρ for
all ρ ∈ T ), we claim that either

(a) Φ(ρ) = ρ0 for all ρ ∈ T+, or

(b) Φ(ρ) = ρ for all ρ ∈ T+ (note T+ is defined in Lemma 2.7).

From this claim, combined with Lemma 2.7 and the linearity of Φ, the theorem follows immediately.

Case A: Suppose we are in the case where Φ(ρ) = ρ0 for all ρ ∈ T . To show that Φ(ρ) = ρ0

for all ρ ∈ T+, it suffices to show that Φ(ρI,Z) = ρ0 where Z is any unitary matrix with eigenvalues
i,−i, 1, . . . , 1 (counting multiplicity). By choosing a suitable orthonormal basis, we may write

Z =
[
0 −1
1 0

]
⊕ Im−2.

Let

A =
[

0 1
−1 0

]
⊕ iIn−2, B =

[
1√
2

1√
2

− 1√
2

1√
2

]
⊕ eiπ/4In−2.

With the aid of Lemma 2.5, one can verify that the equation

λρ0 + (1− λ)ρI,AZ = µρI,U2 + (1− µ)ρI,U3 (25)

is satisfied for λ = 1/2 and µ = 1/6 by U2 = aI +bW , U3 = cI +δW where W = −e−iπ/4AZ, a = 1,
b =

√
2, c =

√
2/5, and δ = −1/

√
5. Applying the similarity transform X 7→ (I ⊗A∗)X(I ⊗A) to

(25) gives
λρI,A∗ + (1− λ)ρI,Z = µρI,A∗U2 + (1− µ)ρI,A∗U3 . (26)

Applying Φ to (26), we get

λρ0 + (1− λ)Φ(ρI,Z) = µρ0 + (1− µ)ρ0

since

A∗, A∗U2 =
[
0 −i
i 0

]
⊕ (−Im−2), A∗U3 =

[
0 − 3+i√

10
3+i√

10
0

]
⊕ 1− 3i√

10
Im−2

each have 2 distinct eigenvalues. Thus Φ(ρI,Z) = ρ0 as desired.
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Case B: Suppose we are in the case where Φ(ρ) = ρ for all ρ ∈ T . To show that Φ(ρ) = ρ for
all ρ ∈ T+, it suffices to show that Φ(ρI,Z) = ρI,Z where Z is any unitary matrix with eigenvalues
i,−i, 1, . . . , 1 (counting multiplicity). As in Case A, we can choose a suitable orthonormal basis
and write

Z =
[
0 −1
1 0

]
⊕ Im−2.

We now make a few general observations.
Consider the equation

λρI,U0 + (1− λ)ρI,U1 = µρI,U2 + (1− µ)ρI,U3 (27)

where U0, U1, U2, U3 ∈ Mm are unitary and λ, µ ∈ (0, 1). By applying the similarity transform
X 7→ (I ⊗ U∗

0 )X(I ⊗ U0) to both sides of (27), we see that (27) holds if and only if

λρ0 + (1− λ)ρI,U∗0 U1 = µρI,U∗0 U2 + (1− µ)ρI,U∗0 U3 (28)

does. We may write Φ(ρI,U ) = ρI,f(U) for some function f : Um → Um. Then applying Φ to (27)
gives

λρI,f(U0) + (1− λ)ρI,f(U1) = µρI,f(U2) + (1− µ)ρI,f(U3),

which in turn holds if and only if

λρ0 + (1− λ)ρI,f(U0)∗f(U1) = µρI,f(U0)∗f(U2) + (1− µ)ρI,f(U0)∗f(U3) (29)

does. From this we obtain two useful properties.

1. If U∗
0 U1 has two distinct eigenvalues, then, by Lemma 2.5, (28) has solutions for unitary U2, U3

when µ = 1/2 and λ = 1/4. It follows that (27) and hence (29) also have solutions when
µ = 1/2 and λ = 1/4. By Lemma 2.5, f(U0)∗f(U1) has at most two distinct eigenvalues.

2. If U∗
0 U1 is hermitian with two distinct eigenvalues, then, by Lemma 2.5, (28) has infinitely

many solutions for U2, U3 when µ = λ = 1/2. In particular, U2 = (cos θ) U0 + (sin θ) U1 is a
solution for any θ ∈ [0, π/2]. It follows that these choices for U2 will also give solutions to
(29) when µ = λ = 1/2.

Suppose for the moment that f(U0)∗f(U1) /∈ THm, where T = {z ∈ C : |z| = 1}. By Lemma
2.5, (29) has only the trivial solutions

ρI,f(U0)∗f(U2) = ρ0 or ρI,f(U0)∗f(U2) = ρI,f(U0)∗f(U1).

But then

{ρ0, ρI,f(U0)∗f(U1)} ⊆ {ρI,f(U0)∗f(U2) : U2 = (cos θ) U0 + (sin θ) U1, 0 ≤ θ ≤ π/2}
⊆ {ρ0, ρI,f(U0)∗f(U1)};

since the middle set is path connected, we have ρI,f(U0)∗f(U1) = ρ0, whence f(U0)∗f(U1) ∈ TI,
contradicting our assumption that f(U0)∗f(U1) /∈ THm. Thus it is always the case that
f(U0)∗f(U1) ∈ THm.
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By our assumption on Φ, if U ∈ Um has at most two distinct eigenvalues, f(U) ∈ TU . If V ∈ Um

and UV has at most two distinct eigenvalues then Uf(V ) has at most two distinct eigenvalues by
property (1). Similarly, if UV ∈ THm then Uf(V ) ∈ THm by property (2).

Using the notation

A =
[

0 1
−1 0

]
⊕ iIn−2, B =

[
1√
2

1√
2

− 1√
2

1√
2

]
⊕ eiπ/4In−2

and the results from Lemmas 3.4 and 3.5, it follows that

{U ∈ Um : RU ∈ THm∀R ∈ R, AU and BU have at most two distinct eigenvalues} = {TI,TZ};

on the other hand, if U lies in the set on the left-hand side, then so does f(U). Thus f(Z) ∈ TI∪TZ,
or equivalently, Φ(ρI,Z) = ρ0 or ρI,Z .

Suppose, by way of contradiction, that Φ(ρI,Z) = ρ0. Applying Φ to (26), we get

λρI,A∗ + (1− λ)ρ0 = µρI,A∗U2 + (1− µ)ρI,A∗U3 (30)

by our assumption and since A∗, A∗U2, A
∗U3 each have 2 distinct eigenvalues. But by Lemma 2.5,

since A∗ is skew-hermitian (resulting in k = 0 in case 3), there is no solution to (30) when λ = 1/2
and µ = 1/6. Hence Φ must fix ρI,Z and our proof for is complete.

Corollary 4.3. Let Φ : Mm ⊗Mm be an affine map such that Φ(co(MES)) = co(MES). Then Φ
has one of the following forms, when restricted to Span(MES):

1. Φ(A⊗B) = UAσU∗ ⊗ V BσV ∗ for some unitaries U, V ∈ Mm.

2. Φ(A⊗B) = UBσU∗ ⊗ V AσV ∗ for some unitaries U, V ∈ Mm.

Here the map A 7→ Aσ denotes either the identity or the transpose map.

Proof. Since the extreme points of the convex hull of MES is MES, we must have Φ(MES) = MES.
By Proposition 4.1 and Theorem 4.2, the result follows.

A final comment on the case of a bipartite system where the subsystems have different dimen-
sions m 6= n: we conjecture that the linear preservers in this case must have either form (1) or (3)
from our main Theorem 4.2. Unfortunately the case m < n appears to be substantially different,
and our methods seem to break down around step 3 of the proof. It would be interesting to verify
or refute this conjecture; we hope that the structural Lemma 2.5 might be of some use in this
regard.
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