Sufficient Condition for $\mathbf{A B}=\mathbf{B A}$

by Chunyuan Deng

Let $\mathcal{H}, \mathcal{B}(\mathcal{H})$ be separable complex Hilbert space and the set of all bounded linear operators on \mathcal{H}, respectively. The elements of $\mathcal{E}(\mathcal{H})=\{A \in \mathcal{B}(\mathcal{H}): 0 \leq A \leq I\}$ are called quantum effects. For $A, B \in \mathcal{E}(\mathcal{H})$, the sequential product of A and B is $A \circ B=A^{\frac{1}{2}} B A^{\frac{1}{2}}$ and the Jordan product of A and B is $A * B=\frac{A B+B A}{2}$. Many of results show that algebraic conditions on $A \circ B$ or $A * B$ imply that $A B=B A[?]-[?]$. There are some questions as following.

1. Can we get that $A_{i}, 1 \leq i \leq n$ are commutative if sequential product $A_{n} \circ A_{n-1} \circ$ $\cdots \circ A_{2} \cdots A_{1}=A_{n}^{\frac{1}{2}} A_{n-1}^{\frac{1}{2}} \cdots A_{2}^{\frac{1}{2}} A_{1} A_{2}^{\frac{1}{2}} \cdots A_{n-1}^{\frac{1}{2}} A_{n}^{\frac{1}{2}}$ satisfies certain distributive or associative laws.
2. Can we get that $A_{i}, 1 \leq i \leq n$ are commutative if sequential product $A_{n} * A_{n-1} *$ $\cdots * A_{2} * A_{1}$ satisfies certain distributive or associative laws.

References

[1] A. Arias, A. Gheondea and S. Gudder: Fixed points of quantum operations, J. Math. Phys. 43 (2002), 5872-5881.
[2] A. Gheondea and S. Gudder: Sequential product of quantum effects, Proc. Amer. Math. Soc. 132 (2003), 503-512.
[3] S. Gudder: Sequential products of quantum measurements, Rep. Math. Phys. 60 (2007), 273-288.

