Sufficient Condition for AB = BA

by Chunyuan Deng

Let \mathcal{H} , $\mathcal{B}(\mathcal{H})$ be separable complex Hilbert space and the set of all bounded linear operators on \mathcal{H} , respectively. The elements of $\mathcal{E}(\mathcal{H}) = \{A \in \mathcal{B}(\mathcal{H}) : 0 \leq A \leq I\}$ are called quantum effects. For $A, B \in \mathcal{E}(\mathcal{H})$, the sequential product of A and B is $A \circ B = A^{\frac{1}{2}}BA^{\frac{1}{2}}$ and the Jordan product of A and B is $A * B = \frac{AB+BA}{2}$. Many of results show that algebraic conditions on $A \circ B$ or A * B imply that AB = BA [?]-[?]. There are some questions as following.

1. Can we get that $A_i, 1 \leq i \leq n$ are commutative if sequential product $A_n \circ A_{n-1} \circ \cdots \circ A_2 \cdots A_1 = A_n^{\frac{1}{2}} A_{n-1}^{\frac{1}{2}} \cdots A_2^{\frac{1}{2}} A_1 A_2^{\frac{1}{2}} \cdots A_{n-1}^{\frac{1}{2}} A_n^{\frac{1}{2}}$ satisfies certain distributive or associative laws.

2. Can we get that $A_i, 1 \le i \le n$ are commutative if sequential product $A_n * A_{n-1} * \cdots * A_2 * A_1$ satisfies certain distributive or associative laws.

References

- A. Arias, A. Gheondea and S. Gudder: Fixed points of quantum operations, J. Math. Phys. 43 (2002), 5872-5881.
- [2] A. Gheondea and S. Gudder: Sequential product of quantum effects, Proc. Amer. Math. Soc. 132 (2003), 503-512.
- [3] S. Gudder: Sequential products of quantum measurements, Rep. Math. Phys. 60 (2007), 273-288.