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Let G be a graph of order n and let Q G (x) = ∑n
i=0(−1)i pi(G)xn−

be the characteristic polynomial of the signless Laplacian of G . Let
E g,n (respectively, C g(Sn−g+1)) denote the unicyclic graph of or-
der n obtained by a coalescence of a vertex in the cycle C g with an
end vertex (respectively, the center) of the path Pn−g+1 (respec-
tively, the star Sn−g+1). It is proved that for k = 2, . . . ,n − 1, as
G varies over all unicyclic graphs of order n, depending on k and n
the maximum value of pk(G) is attained at G = Cn or E3,n , and the
minimum value is attained uniquely at G = C4(Sn−3) or C3(Sn−2)

Except for the resolution of a conjecture on cubic polynomials, the
uniqueness issue for the maximization problem is also settled.

© 2013 Elsevier Inc. All rights reserved

1. Introduction

For a (simple) graph G , let A(G) and D(G) be respectively the adjacency matrix and the diagona
matrix of vertex degrees of G . Then L(G) = D(G) − A(G) is the Laplacian and Q (G) = D(G) + A(G) is
the signless Laplacian of G .

The Laplacian polynomial (respectively, signless Laplacian polynomial) of G , denoted by LG(x) (respec-
tively, Q G(x)), is the characteristic polynomial of L(G) (respectively, Q (G)). Let ck(G) (respectively
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k(G)) (0 � k � n) be the absolute values of the coefficients of LG(x) (respectively, Q G(x)), so that

LG(x) =
n∑

k=0

(−1)kck(G)xn−k

nd

Q G(x) =
n∑

k=0

(−1)k pk(G)xn−k.

learly c0(G) (also, p0(G)) equals 1 and for 1 � k � n, ck(G) (also, pk(G)) is nonnegative, as ck(G)

respectively, pk(G)) is equal to the kth elementary symmetric function of the eigenvalues of the
ositive semidefinite matrix L(G) (respectively, Q (G)).

In this paper we consider the problem of maximizing (also, minimizing) the absolute values of
he signless Laplacian coefficients pk(G) (hereafter, referred to simply as the signless Laplacian coeffi-
ients) among all unicyclic graphs G of a given order. Work on the corresponding extremal problems
r the Laplacian coefficients first began with Gutman and Pavlović [8]. They showed that for all

-vertex trees T we have

ck(Sn) � ck(T ) � ck(Pn), (1.1)

here Sn and Pn denote respectively the star and the path on n vertices, for k = 1,2,3,n − 3,n − 2,

− 1,n, and they conjectured that the inequalities are valid for all integral values of k between 0
nd n. The conjecture was established by Zhou and Gutman [16] and an alternative proof was later
ffered by Mohar [12]. In [14] Stevanović and Ilić extended the extremal problems to unicyclic graphs
nd proved that for a unicyclic graph G on n vertices, we have ck(S ′

n) � ck(G) � ck(Cn), where the
rst inequality is strict if 2 � k � n − 1 and G is different from (that is, not isomorphic with) S ′

n , and
he second inequality is strict if 2 � k � n − 2 and G �= Cn . Here S ′

n denotes the graph obtained from
he star Sn by adding an edge between a pair of pendant vertices and Cn is the cycle on n vertices.

Our interest in the set of conditions

pk(G) � pk(H)
(
or ck(G) � ck(H)

)
for k = 1, . . . ,n,

here G, H are graphs of order n, has been aroused by a classical result of Efroymson, Swartz and
endroff [6]. They proved that if (x1, . . . , xn) and (y1, . . . , yn) are n-tuples of nonnegative real num-

ers such that

Sk(x1, . . . , xn) � Sk(y1, . . . , yn) for k = 1, . . . ,n,

hen for any real number α with 0 < α � 1, we have

Sk
(
xα

1 , . . . , xα
n

)
� Sk

(
yα

1 , . . . , yα
n

)
for k = 1, . . . ,n,

nd, in particular,
∑n

i=1 xα
i �

∑n
i=1 yα

i . Since pk(G) (respectively, ck(G)) (1 � k � n) is the kth elemen-
ary symmetric function of the signless Laplacian (respectively, Laplacian) eigenvalues of G , by the
esults of [6], one can readily write down consequences of the above-mentioned set of conditions on
he signless Laplacian (or Laplacian) coefficients. For instance, the weak inequality between Laplacian-
ke energy or incidence energy of different graphs as given in [13, Lemma 2] and [11, Theorem 4.2]
espectively are such easy consequences. (However, the conclusions concerning strict inequality seem
ot direct consequences of the results of [6], as claimed in [11] for the incidence energy, because a
tatement for the corresponding result for strict inequality cannot be found in [6].)

By the lollipop graph, denoted by E g,n , we mean the unicyclic graph of order n obtained by a
oalescence of a vertex in the cycle C g with an end vertex of the path Pn−g+1. We also denote by
g(Sn−g+1) the unicyclic graph of order n obtained by a coalescence of a vertex in the cycle C g with

he center of the star Sn−g+1. Note that C3(Sn−2) = S ′
n .

Below are the main results of this paper:
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Theorem 1.1. Let n � 5 be a positive integer. Let αn be the unique real root of the cubic polynomial fn(x) given
by:

fn(x) = 3x3 + (7 − 10n)x2 + 2
(
6n2 − 11n + 8

)
x − (

4n3 − 6n2 − 10n + 24
)
.

For any positive integer k = 2, . . . ,n − 1, the maximum value of pk(G), as G varies over all unicyclic graphs o
order n, is attained uniquely at G = Cn if k < αn and uniquely at G = E3,n if αn < k, and precisely at G = Cn
and G = E3,n if k = αn (and αn is an integer).

Theorem 1.2. Let n � 5 be a positive integer. For any positive integer k = 2, . . . ,n − 1, the minimum value o
pk(G), as G varies over all unicyclic graphs of order n, is attained uniquely at G = C4(Sn−3) for k = 2, . . . ,n−4
or k = n − 3 and n = 5, . . . ,24 or k = n − 2 and n = 5, . . . ,8, and is attained uniquely at G = C3(Sn−2) for
k = n − 3 and n � 25 or k = n − 2 and n � 9 or k = n − 1.

Believing that the optimal graph for the maximization problem is always unique, we pose the
following:

Conjecture. For every positive integer n � 5, the unique real root αn of the cubic polynomial fn(x) := 3x3 +
(7 − 10n)x2 + 2(6n2 − 11n + 8)x − (4n3 − 6n2 − 10n + 24) is never an integer.

A computer program has been set up to determine the integer in that satisfies fn(in − 1) < 0 and
fn(in) > 0. Using the program, we have verified the conjecture for 5 � n � 10,000.

In this paper we need a combination of proof techniques, most of which are borrowed from
previous work on the extremal problems for the Laplacian coefficients or related topics, but in our
treatment we often need more involved and refined arguments.

This paper is organized as follows. In Section 2, we give most of the necessary definitions, no-
tations and background results. In particular, we introduce the known graph-theoretic interpretation
of the signless Laplacian coefficients in terms of T U -subgraphs. It is shown that among all unicyclic
graph G of order n � 5 the maximum value of pn−1(G) is attained uniquely at G = E3,n . In Section 3
we give the second graph-theoretic interpretation of the signless Laplacian coefficients via subdivision
graphs and matching polynomials. We introduce the concept of a generalized π -transform and in-
vestigate the effects on the matching coefficients of a graph (especially for unicyclic graphs) or of its
subdivision graph, upon the application of a generalized π -transformation. In Section 4 and Section 5
we give the proofs for Theorem 1.1 and Theorem 1.2 respectively.

An initial work on the extremal problems over unicyclic graphs of a fixed order for the signless
Laplacian coefficients has been carried out recently by Mirzakhah and Kiani [11] — we were not aware
of this until near the completion of our work. Making use of the π - and σ -transformations on graphs
and the T U -subgraphs description for the signless Laplacian coefficients, they proved that the optima
graphs for the maximization (respectively, minimization) problem are among graphs constructed from
a cycle by attaching at each vertex a path (respectively, a star). We could have shortened our proofs
a bit in the initial stage of our solution by using their results, but we keep our approach as we
expect that the generalized π -transformation will be useful for future study and also our work on
the matching coefficients obtained in Section 3 has independent interest.

2. Preliminaries

For a vertex v in a (simple) graph G , denote by dG(v), or simply d(v), the degree of v in G .
As usual, let Cn , Pn and Sn denote respectively the cycle, the path and the star on n vertices.
The cardinality of a set S is denoted by |S|.
The direct sum G1 +̇ G2 of vertex-disjoint graphs G1 = (V 1, E1) and G2 = (V 2, E2) is the graph

G = (V , E) for which V = V 1 ∪ V 2 and E = E1 ∪ E2. The characteristic polynomial of (the adjacency
matrix of) G is denoted by P G(x), i.e., P G(x) = det(xI − A(G)).

Given a graph G and an edge uv of G , we denote by G − uv (respectively, G − v) the graph
obtained from G by deleting the edge uv (respectively, the vertex v and the edges incident with v)
For a subgraph H of G , let G − H denote the subgraph of G induced by vertices not in H .

Original text:
Inserted Text:
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A connected graph is said to be unicyclic if it has as many vertices as edges or, equivalently, if
has a unique cycle. We refer to a unicyclic graph as odd-unicyclic or even-unicyclic, depending on

hether the cycle it contains has odd length or even length. The set of unicyclic graphs of order n
ith a cycle of length g is denoted by Ug,n .

The following nontrivial formula for the Laplacian coefficients of a graph G , due to Kelmans and
helnokov [10], was invoked in the work of [8] and [14]:

ck(G) =
∑

F

γ (F ) for k = 1, . . . ,n, (2.1)

here the summation runs over all spanning forests F of G with exactly n −k components (or, equiv-
lently, with exactly k edges) and γ (F ) is the product of the number of vertices in the components
f F .

By a T U -subgraph of G we mean a spanning subgraph whose components are either trees
r odd-unicyclic graphs. If H is a T U -subgraph of G which has as components c odd-unicyclic
raphs together with the trees T1, T2, . . . , Ts , then the weight W (H) of H is defined by W (H) =
c ∏s

i=1 |V (Ti)|. Equivalently, we let W (C) equal |V (C)| if C is a tree and equal 4 if C is an odd-
nicyclic graph, and for a T U -subgraph H define W (H) to be

∏
C W (C), where the product runs

hrough all components C of H .
For a graph G of order n, the signless Laplacian coefficients pk(G) have the following graph-

heoretic interpretations (see [5,3]):

pk(G) =
∑

H

W (H) for k = 1,2, . . . ,n, (2.2)

here the summation runs over all T U -subgraphs H of G with k edges. (Note that our definition of
k(G), which is given at the beginning of Section 1, differs from that as given in [3] or [4] by a factor
f (−1)k .)

As an immediate consequence of (2.2) we have the following result, a special case of which has
een proved in a different way (and stated somewhat inaccurately) in [11, Theorem 2.1]:

emark 2.1. Let G be a graph with n vertices and m edges. If H is a proper spanning subgraph with
t least one edge, then for any positive integer k � n,

pk(H) � pk(G) and with strict inequality if and only if 1 � k � min{m,n}.

The point is, any T U -subgraph of H is necessarily a T U -subgraph of G and there is at least one
U -subgraph of G with k edges which is not a T U -subgraph of H if and only if 1 � k � min{m,n}.
y (2.1) a similar remark also holds for the Laplacian coefficients.

Note that the spanning forests of G are precisely T U -subgraphs of G whose components are all
rees. So (2.1) and (2.2) imply that every term in the formula for ck(G) also appears in the formula for
k(G). So it is expected that the work on the extremal problems for the signless Laplacian coefficients
more involved than that for the Laplacian coefficients.
By definition p0(G) = 1. As simple consequences of formula (2.2), one readily derives the following

nown basic facts concerning pk(G) for k = 1,2,n − 1,n (see [3, Corollary 4.5], [4, Proposition 6.1]):

emma 2.2.

(i) For a graph G with m edges,

p1(G) = 2m and p2(G) = a + 3

2
m(m − 1),

where a denotes the number of pairs of nonadjacent edges in G.
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(ii) For G ∈ Ug,n, if G is even-unicyclic, then

pn(G) = 0 and pn−1(G) = ng;
if G is odd-unicyclic, then

pn(G) = 4 and pn−1(G) = ng + 4
∑

e∈E(G)\E(C)

te(G),

where C denotes the unique cycle of G and te(G) is the order of the unique tree component of the graph
G − e.

So the unmentioned cases (k = 0,1,n) of Theorem 1.1 and Theorem 1.2 are in fact known: For a
unicyclic graph G of order n, p1(G) is always equal to 2n, and pn(G) is equal to 4 if G is odd-unicyclic
and equal to 0 if G is even-unicyclic.

Let us recall the definition for a π -transform of a graph, as introduced by Mohar [12] for trees
and extended to graphs in general by Stevanović and Ilić [14]. We say that the path P = u0u1u2 · · · up

in G is a pendant path of length p attached at vertex u0 if dG (u0) � 3,dG (up) = 1 and the interna
vertices u1, u2, . . . , up−1 all have degree two. Suppose that P = u0u1u2 · · · up and Q = u0 v1 v2 · · · vq

are distinct pendant paths of G attached at u0 of lengths p � 1 and q � 1 respectively. We call the
graph G ′ obtained from G by relocating the path Q from u0 to up (by deleting the edge u0 v1 and
adding the edge up v1) a π -transform of G and denote it by π(G, u0, P , Q ).

We call a unicyclic graph a sun graph if the tree attached at each vertex of its cycle is a path
(possibly of length zero). It is known that every tree can be transformed into a path by a sequence of
π -transformations (see [12, Proposition 2.1]). Likewise, if G ∈ Ug,n is not a sun graph then by applying
a sequence of π -transformations we obtain a sun graph G ′ ∈ Ug,n .

Using Lemma 2.2(ii), one readily shows the following: (1) If G is an odd-unicyclic graph of order n
and G ′ = π(G, u0, P , Q ) is a π -transform of G , then pn−1(G ′) > pn−1(G); and (2) if G ∈ Ug,n (where
g is odd) is a sun graph, different from the lollipop graph E g,n , then pn−1(E g,n) > pn−1(G). (We are
essentially following the argument given in [4], but we use Fact (1) in place of [4, Lemma 6.2], which
as it stands, is incorrect.)

Also, it is not difficult to show that pn−1(E3,n) > pn−1(E g,n) for g > 3. Thus, we conclude that
among all odd-unicyclic graphs G of order n, the maximum value of pn−1(G) is attained uniquely at
G = E3,n .

Now by Lemma 2.2(ii), we have

pn−1(E3,n) = 3n + 4
[
(n − 3) + (n − 2) + · · · + 1

] = 2n2 − 7n + 12,

and also the maximum value of pn−1(G), as G runs through all even-unicyclic graphs of order n, is
attained uniquely at G = Cn (with value n2) when n is even, and at G = En−1,n (with value n(n − 1))
when n is odd. But 2n2 − 7n + 12 > n2 for n � 5, so we obtain:

Remark 2.3. Among all unicyclic graphs G of order n � 5, the maximum value of pn−1(G) is attained
uniquely at G = E3,n .

3. Matching polynomials

As in the works of Zhou and Gutman [16] and Mohar [12], the subdivision graph and the matching
polynomial also play a role in this paper.

Recall that the subdivision graph S(G) of a graph G is obtained from G by replacing each of its
edges by a path of length 2, or, equivalently, by inserting an additional vertex into each edge of G . We
need the following known formula, which provides a link between the signless Laplacian polynomia
of G and the characteristic polynomial of its subdivision graph:

Original text:
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P S(G)(x) = xm−n Q G
(
x2), (3.1)

here n,m are respectively the number of vertices and edges of G . (See [11].)
A k-matching in a graph is a set of k edges, no two of which have a vertex in common. The

atching polynomial of a graph G with n vertices is defined to be

MG(x) =
α′(G)∑
k=0

(−1)kmk(G)xn−2k,

here m0(G) = 1,mk(G) denotes the number of k-matchings of G and α′(G) is the matching number
f G . (For convenience, we adopt the convention that mk(G) = 0 for k < 0 or k > α′(G).)

We will need the following known result, which is a reformulation of the Sachs theorem for the
haracteristic polynomial of a graph (see [7] or [2]):

heorem 3.1. Let C be the set of subgraphs of G that are regular graphs of degree two. Then

P G(x) = MG(x) +
∑
C∈C

(−2)p(C)MG−C (x), (3.2)

here p(C) denotes the number of components in C ; hence, P G(x) = MG(x) if and only if G is a forest.

By (3.1) and (3.2) we obtain

orollary 3.2. If G ∈ Ug,n, then

pk(G) = mk
(

S(G)
) + (−1)g+12mk−g

(
S(G) − C2g

)
(3.3)

r k = 1,2, . . . ,n.

The following known (and pretty obvious) result on matchings (see [7] or [2]) will be used:

emma 3.3. If u, v are adjacent vertices of G, then

mk(G) = mk(G − uv) + mk−1(G − u − v)

r all nonnegative integers k.

We will also need the following formula, which expresses mk(Pn +̇ Pm) in terms of the binomial
oefficients:

emma 3.4. Let m,n be nonnegative integers with at least one positive. For any nonnegative integer k �
m + n)/2,

∑
i+ j=k

(
n − i

i

)(
m − j

j

)
= mk(Pn +̇ Pm) =

r∑
l=0

(−1)l
(

n + m − k − l

k − l

)
, (3.4)

here r = min{k,m,n}.

roof. First of all, note that

mi(Pn) =
(

n − i

i

)
, i = 1,2 . . . ,

⌊
n

2

⌋
,

s P Pn (x) = M Pn (x) and P Pn (x) = ∑� n
2 �

i=0(−1)i
(n−i

i

)
xn−2i (see [1, p. 73]). The first equality in (3.4)

learly follows because we have mk(G1 +̇ G2) = ∑
i+ j=k mi(G1)m j(G2) for any vertex-disjoint graphs

1, G2.
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We are going to establish the second equality by induction on r. The assertion holds when r = 0:
this is clear if k = 0; if k � 1 and one of n,m is 0, then it follows from the above-mentioned formula
for mi(Pn) (noting that P0 +̇ Pm = Pm). Now assume that r � 1. In view of Lemma 3.3, by considering
the path Pn+m with vertex-set {v1, v2, . . . , vn+m} and edge-set {vi vi+1 | i = 1,2, . . . ,n + m − 1}, for
any nonnegative integer k � (m + n)/2, we have

mk(Pn+m) = mk(Pn+m − vn vn+1) + mk−1(Pn+m − vn − vn+1)

= mk(Pn +̇ Pm) + mk−1(Pn−1 +̇ Pm−1);
hence

mk(Pn +̇ Pm) = mk(Pn+m) − mk−1(Pn−1 +̇ Pm−1) =
(

n + m − k

k

)
− mk−1(Pn−1 +̇ Pm−1).

On the other hand, by the induction assumption, we have

mk−1(Pn−1 +̇ Pm−1) =
r−1∑
l=0

(−1)l
(

(n − 1) + (m − 1) − (k − 1) − l

(k − 1) − l

)

=
r∑

l=1

(−1)l−1
(

n + m − k − l

k − l

)
.

So the second equality in (3.4) also follows. �
In the definition of a π -transform of a graph if we replace one of the two attached pendant paths

under consideration by a connected graph, we obtain the concept of a generalized π -transform. To
give the formal definition, we need the concept of a branch of a connected graph.

We say Q is a branch of a connected graph G with root u if Q is a connected induced subgraph
of G for which u is the only vertex in Q that has a neighbor not in Q .

Let P and Q be branches of a component of a graph G with a common root u0, which is also
their only common vertex. Assume that P is a path and u0 has at least one neighbor in G that does
not lie on P or Q . Form a graph from G by relocating the branch Q from u0 to v where v is the
other end vertex of the path P (by deleting edges u0 w and adding new edges v w for every vertex w
in Q adjacent to u0). We refer to the resulting graph as a generalized π -transform of G and denote it
by π(G, u0, P , Q ).

In the proof of our next result we elaborate an argument used in the proof of [12, Theorem 2.2].

Lemma 3.5. For any graph G, if G ′ = π(G, u0, P , Q ) is a generalized π -transform of G, then mk(G ′) � mk(G)

for every positive integer k, with strict inequality if and only if 2 � k � K , where

K = 2 +
⌊

p − 1

2

⌋
+ max

{
α′(Q − u0 − vi): 1 � i � t

}

+ max
{
α′(G − P − Q − w): w ∈ NG(u0) \ {u1, v1, . . . , vt}

}
,

p being the length of path P , u1 being the vertex in P adjacent to u0 , v1, . . . , vt being all the vertices in Q
adjacent to u0 , and α′(H) being the matching number of H.

Proof. Let P be the path u0u1 · · · up (p � 1). We first obtain an injective mapping from the set of al
matchings of G into the set of all matchings of G ′ .

For any matching M of G , if up−1up /∈ M or u0 vi /∈ M for each i = 1, . . . , t , then the set of edges in
G ′ corresponding to M , which we denote by M ′ , is clearly a matching of G ′ (with the same number of
edges as M). Let M1 denote the set of all matchings M ′ of G ′ obtained in this way. Note that for any
M ′ ∈ M1, exactly one of the following holds: vertex up is not covered by M ′ (which happens when
up−1up /∈ M and u0 vi /∈ M for each i = 1, . . . , t), or up−1up ∈ M ′ (which happens when up−1up ∈ M
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nd u0 vi /∈ M for each i = 1, . . . , t), or up vi ∈ M ′ for some i = 1, . . . , t and u0 is not covered by M ′
which happens when up−1up /∈ M and u0 vi ∈ M for some i = 1, . . . , t).

If up−1up ∈ M and u0 vi ∈ M for some i = 1, . . . , t , then we take M ′ to be the matching of G ′
hich equals {uiui+1: up−i−1up−i ∈ M} on E(P ) and agrees with M on E(G) \ E(P ) (but replacing

dge u0 vi by up vi ). Let M2 denote the set of all matchings M ′ of G ′ obtained in this way. Note that
r any M ′ ∈M2 we have up vi ∈ M ′ for some i = 1, . . . , t and u0u1 ∈ M ′ .

It is readily checked that M1 ∩ M2 = ∅ and M1 ∪ M2 consists of all matchings M ′ of G ′ that
atisfies (exactly) one of the following: up is not covered by M ′; up−1up ∈ M ′; up vi ∈ M ′ for some
= 1, . . . , t and either u0 is not covered by M ′ or u0u1 ∈ M ′ . Moreover, the correspondence M �→ M ′

a one-to-one mapping from the set of all matchings of G onto M1 ∪ M2. This establishes the
equality mk(G ′) � mk(G) for every positive integer k.

Note that a matching M ′ of G ′ is not in M1 ∪M2 if and only if up vi ∈ M ′ for some i = 1, . . . , t ,
0 is covered by M ′ but u0u1 /∈ M ′ . If w is a neighbor of u0 in G ′ other than u1 — which exists by
ur assumption on the neighbors of u0 in G — then clearly {up v1, u0 w} is a 2-matching of G ′ that
es outside M1 ∪M2; hence m2(G ′) > m2(G). So we have mk(G ′) > mk(G) if and only if 2 � k � K ,
here K is the size of the largest matching of G ′ that does not belong to M1 ∪M2. To determine K ,

onsider any matching M ′ of G ′ that does not belong to M1 ∪ M2. Then there exist i, 1 � i � t
nd a vertex w of G ′ , adjacent to u0 and different from u1, such that edges up vi and u0 w both
elong to M ′ . The remaining edges of M ′ must lie in the direct sum of the following three graphs:
p−1 : u1u2 · · · up−1, Q − u0 − vi , G − P − Q − w , noting that the last two graphs each may have
ore than one component. Now for the path Pr , α′(Pr) = � r

2 �. So the number of edges in M ′ is at

ost 2 + � p−1
2 � + α′(Q − u0 − vi) + α′(G − P − Q − w). A matching M ′ with maximum size that is

ot in M1 ∪M2 can be found by varying w and vi . So we have

K = 2 +
⌊

p − 1

2

⌋
+ max

{
α′(Q − u0 − vi): 1 � i � t

}

+ max
{
α′(G − P − Q − w): w ∈ NG(u0) \ {u1, v1, . . . , vt}

}
. �

It is not difficult to construct a graph G with a generalized π -transform (or even a π -transform)
′ such that the numerical quantity K that appears in Lemma 3.5 takes the smallest possible value 2.

Note that for a bipartite graph G with bipartition (V 1, V 2), α′(G) � min{|V 1|, |V 2|}. Our next result
ays that the preceding inequality becomes an equality if G is a subdivision graph.

emma 3.6. If G is a connected graph of order n � 2, then α′(S(G)) equals n − 1 if G is a tree and equals n,
therwise. In any case, there is a maximum matching in S(G) that covers any given vertex in V (G).

roof. Since the subdivision graph S(G) is a bipartite graph with bipartition (V (G), E(G)), clearly
′(S(G)) � min{|V (G)|, |E(G)|}.

First, consider the case when G is a tree. We are going to show that for any given vertex v of G ,
here is a unique (n − 1)-matching of S(G) that misses vertex v . [This fact is undoubtedly known (see
15, Lemma 3.1]) and was quoted (without proof) in the proof of [12, Theorem 2.2] — note, however,
hat the first sentence in the last paragraph of [12, p. 738], as stated, is incorrect. For completeness,
e indicate a proof.] For any edge e of G , let ve denote the vertex inserted into the edge e in the

ubdivision graph S(G). To give the desired (n − 1)-matching of S(G), it suffices to specify, for any
dge e ∈ E(G), the edge in the matching that covers vertex ve . For e = uw , we take the desired
dge to be ve w , with dG (v, w) > dG(v, u). It is readily checked that the collection of edges obtained

this way forms an (n − 1)-matching of S(G) that misses vertex v and furthermore it is the only
n − 1)-matching of S(G) with such property. If u is a given vertex of S(G) that belongs to V (G), take

vertex v of G different from u. By the above, S(G) has an (n − 1)-matching, and hence a maximum
atching, that misses v . This matching clearly covers u.

Now consider the case when G is not a tree. We want to show that S(G) has an n-matching. Note
hat any n-matching of S(G ′), where G ′ is a unicyclic spanning subgraph of G , is also an n-matching
f S(G). By removing edges from G , if necessary, hereafter we assume that G is unicyclic. Take any

Original text:
Inserted Text:
Theoem
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f
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,

,

.

,

edge e′ = uv of E(G) that belongs to the cycle of G . Since G − e′ is a tree, by what we have done
S(G − e′) has an (n − 1)-matching M ′ that misses vertex u. Then M ′ ∪ {ve′ u} is an n-matching of
S(G). This proves that a maximum matching of S(G) has size n. Clearly, in this case, every maximum
matching covers every vertex of S(G) that belongs to V (G). �
Lemma 3.7. Let G be a connected graph of order n. If G ′ is a generalized π -transform of G, then mk(S(G)) �
mk(S(G ′)) for every positive integer k, with strict inequality if and only if 2 � k � K , where K equals n − 2 i
G is a tree and equals n − 1 if G is a unicyclic graph.

Proof. Let G ′ = π(G, u0, P , Q ). As can be readily checked, S(G ′) is a generalized π -transform of
S(G) and S(G ′) = π(S(G), u0, S(P ), S(Q )). To be specific, let the paths P and S(P ) be given by:
P : u0u1 · · · up (p � 1) and S(P ) : u0û1u1û2u2 · · · ûpup . Let v1, . . . , vr be the vertices in Q adjacent
to u0 and for i = 1, . . . , r, let v̂ i denote the vertex inserted into the edge u0 vi (respectively, up vi ) in
S(G) (respectively, S(G ′)).

By Lemma 3.5 and its proof we have mk(S(G ′)) � mk(S(G)) for every positive integer k and with
strict inequality if and only if 2 � k � K where K is the size of the largest matching M ′ in S(G ′) with
the property that up v̂i ∈ M ′ for some i = 1, . . . , r, u0 is covered by M ′ but u0û1 /∈ M ′ .

Let R denote the subgraph of G induced by [V (G)\ (V (P )∪ V (Q ))]∪ {u0}. (G can be thought of as
a coalescence of its branches P , Q , R at u0.) Let q = |V (Q )| and let r = n − p −q. Then |V (R)| = r + 1

A matching in S(G ′) with the said property and with the largest possible size can be formed by
taking the union of a maximum matching in the path û1u1û2u2 · · · up−1ûp , a maximum matching in
S(Q ) that covers vertex u0 (but with vertex u0 replaced by vertex up ), and a maximum matching in
S(R) that covers vertex u0.

Now a maximum matching in the path û1u1û2u2 · · · up−1ûp has size p − 1. According to
Lemma 3.6, there is a maximum matching in S(Q ) (with size q − 1 if Q is a tree and with size q
otherwise) that covers any given vertex of Q , and a similar statement also holds for S(R).

If G is a tree, then Q and R are also trees. In this case, K = (p − 1) + (q − 1) + r = n − 2. If G
is unicyclic, then either Q is unicyclic and R is a tree or Q is a tree and R is unicyclic. In any case
K = p + q + r − 1 = n − 1. �

Following the notation of [11], we use C g(Pr1+1, . . . , Prg+1) to denote the sun graph obtained from
the cycle C g = v1 v2 . . . v g v1 by identifying one end of the path Pri+1 with vertex vi for i = 1, . . . , g
Note that the lollipop graph E g,n is equal to C g(Pn−g+1, P1, . . . , P1).

Lemma 3.8. Let n, g be positive integers, n > g � 3. For any G ∈ Ug,n, mk(E g,n) � mk(G) for all positive
integers k.

Proof. If G is not a sun graph, by applying a sequence of π -transformations, we obtain a sun graph
H which, by Lemma 3.5, satisfies mk(H)� mk(G) for all positive integers k. Hereafter, we assume that
G is a sun graph.

Let G = C g(Pr1+1, . . . , Prg+1). We proceed by induction on t , where t = |{i | ri > 0}|, i.e., the num-
ber of nontrivial pendant paths of G . Since n > g , clearly t � 1. If t = 1, then G = E g,n and there is
nothing to show. So suppose that t > 1 and assume that the result is valid for a sun graph with less
than t nontrivial pendant paths. Without loss of generality, assume that r1 > 0 and let u0u1u2 · · · ur1

be a pendant path of G of length r1, with u0 lying on the cycle of G . By Lemma 3.3, for any 1 � k � n
we have

mk(G) = mk(G − u0u1) + mk−1(G − u0 − u1)

= mk
(
C g(P1, Pr2+1, . . . , Prg+1) +̇ Pr1

)
+ mk−1

((
C g(P1, Pr2+1, . . . , Prg+1)−u0

) +̇ Pr1−1
)
.

Now let w and w ′ denote respectively the unique vertices lying on the pendant path of E g,n that are
at distance r1 and r1 − 1 from the unique pendant vertex of E g,n . By Lemma 3.3 again, we have
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mk(E g,n) = mk
(

E g,n − w w ′) + mk−1
(

E g,n − w − w ′)
= mk(E g,n−r1 +̇ Pr1) + mk−1(E g,n−r1−1 +̇ Pr1−1).

ince C g(P1, Pr2+1, . . . , Prg+1), E g,n−n1 ∈ Ug,n−n1 and C g(P1, Pr2+1, . . . , Prg+1) has one fewer nontriv-
l pendant paths than C g(Pr1+1, . . . , Prg+1), by the induction hypothesis,

mk(E g,n−r1)� mk
(
C g(P1, Pr2+1, . . . , Prg+1)

)
for every positive integer k.

ut mk(G1 +̇ G2) = ∑
i+ j=k mi(G1)m j(G2) for any vertex-disjoint graphs G1, G2, so we have

k(E g,n−r1 +̇ Pr1) � mk(C g(P1, Pr2+1, . . . , Prg+1) +̇ Pr1 ) for every positive integer k. On the other
and, by applying Lemma 3.3 to E g,n−r1−1 (by taking uv to be one of the two edges in the cycle
cident with the vertex at which the pendant path is attached), we obtain

mk(E g,n−r1−1) = mk(Pn−r1−1) + mk−1(Pn−r1−1−g +̇ P g−2) � mk(Pn−r1−1).

ince C g(P1, Pr2+1, . . . , Prg+1)−u0 is a tree of order n−n1 −1 and every such tree can be transformed
to the path Pn−n1−1 by a sequence of π -transformations, by Lemma 3.5, for every positive integer k,
e have mk(Pn−n1−1) � mk(C g(P1, Pr2+1, . . . , Prg+1) − u0) and so mk(E g,n−r1−1) � mk(Pn−r1−1) �
k(C g(P1, Pr2+1, . . . , Prg+1) − u0). Hence

mk−1(E g,n−r1−1 +̇ Pr1−1) � mk−1
((

C g(P1, Pr2+1, . . . , Prg+1) − u0
) +̇ Pr1−1

)
.

e can now conclude that mk(E g,n) � mk(G) for every positive integer k. �
emma 3.9. Let n, g be positive integers, n > g � 3. For any G ∈ Ug,n, G �= E g,n, we have mk(S(E g,n)) >

k(S(G)) for k = 2, . . . ,n − 1.

roof. In view of Lemma 3.7, it suffices to consider the case when G is a sun graph. Since S(E g,n) =
2g,2n , by Lemma 3.8 we have the weak inequalities mk(S(G)) � mk(S(E g,n)) for k = 2, . . . ,n − 1. To
btain the strict inequalities, we need to elaborate the argument given in the proof of Lemma 3.8.

Let G = C g(Pr1+1, . . . , Prg+1). Then S(G) = C2g(P2r1+1, P1, P2r2+1, P1, . . . , P2rg+1, P1). Since G is
ot a lollipop graph, G has at least two nontrivial pendant paths. Say, r1 � 1, and let the pendant
ath of S(G) of length 2r1 be attached to the cycle of S(G) at vertex u0. By the argument given in
he proof of Lemma 3.8 one can show that for every positive integer k,

mk
(

S(G)
) = mk

(
C2g(P1, P1, P2r2+1, P1, . . . , P2rg+1, P1) +̇ P2r1

)
+ mk−1

((
C2g(P1, P1, P2r2+1, P1, . . . , P2rg+1, P1) − u0

) +̇ P2r1−1
)
,

mk
(

S(E g,n)
) = mk(E2g,2n) = mk(E2g,2n−2r1 +̇ P2r1) + mk−1(E2g,2n−2r1−1 +̇ P2r1−1).

nd

mk(E2g,2n−2r1 +̇ P2r1) � mk
(
C2g(P1, P1, P2r2+1, P1, . . . , P2rg+1, P1) +̇ P2r1

)
.

o complete the proof, we are going to show that

mk−1(E2g,2n−2r1−1 +̇ P2r1−1)

> mk−1
((

C2g(P1, P1, P2r2+1, P1, . . . , P2rg+1, P1) − u0
) +̇ P2r1−1

)
r 2 � k � n − 1.

For any positive integer i, we have

mi(E2g,2n−2r1−1) = mi(P2n−2r1−1) + mi−1(P2n−2r1−2g−1 +̇ P2g−2) � mi(P2n−2r1−1),

here the inequality is strict if and only if mi−1(P2n−2r1−2g−1 +̇ P2g−2) > 0. As α′(P2n−2r1−2g−1 +̇
2g−2) = α′(P2n−2r1−2g−1) + α′(P2g−2) = n − r1 − 2, so the said inequality is strict if and only if
� n − r1 − 1. Now for any positive integer k � n − 1, there is at least one pair of nonnegative integers
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,

l

,
l

i, j with i + j = k − 1 such that mi(E2g,2n−2r1−1)m j(P2r1−1) > mi(P2n−2r1−1)m j(P2r1−1). For instance
(i, j) = (k − r1, r1 − 1) is one such pair. Note also that for every positive integer i, we have

mi(P2n−2r1−1) � mi
(
C2g(P1, P1, P2r2+1, P1, . . . , P2rg+1, P1) − u0

)
,

because the tree C2g(P1, P1, P2r2+1, P1, . . . , P2rg+1, P1) − u0 can be transformed into the path
P2n−2r1−1 by a sequence of π -transformations, if it is not already a path.

So for every positive integer k,2 � k � n − 1, we have

mk−1(E2g,2n−2r1−1 +̇ P2r1−1)

=
∑

i+ j=k−1

mi(E2g,2n−2r1−1)m j(P2r1−1)

>
∑

i+ j=k−1

mi(P2n−2r1−1)m j(P2r1−1)

�
∑

i+ j=k−1

mi
(
C2g(P1, P1, P2r2+1, P1, . . . , P2rg+1, P1) − u0

)
m j(P2r1−1)

= mk−1
(
C2g(P1, P1, P2r2+1, P1, . . . , P2rg+1, P1) +̇ P2r1−1

)
. �

Recently, Gutman and Wagner [9] defined the matching energy ME(G) of a graph G to be the sum
of the absolute values of the zeros of its matching polynomial. As a digression, we would like to
point out that the results obtained in this section can be applied to the study of matching energy
of a graph. For instance, in view of Lemma 3.5 and the equivalent definition for ME(G) given by the
following integral formula:

ME(G) = 2

π

∞∫
0

1

x2
ln

[∑
k�0

mk(G)x2k
]

dx, (3.5)

it is clear that we have the following result, which contains [9, Lemma 9] as a special case:

Theorem 3.10. If G ′ is a generalized π -transform of G, then ME(G ′) > ME(G).

4. Proof of Theorem 1.1

We begin with a result which says that the signless Laplacian coefficients pk(G) are monotone
under generalized π -transformations.

Theorem 4.1. Let G be a graph of order n. For any generalized π -transform G ′ of G, we have pk(G) � pk(G ′)
for k = 0, . . . ,n. When G is connected, we have pk(G) < pk(G ′) if and only if either k = 2, . . . ,n − 1 and G is
nonbipartite, or k = 2, . . . ,n − 2 and G is bipartite.

Proof. Let G ′ = π(G, u0, P , Q ). Let P be the path u0u1 · · · up and let R be the subgraph of G induced
by vertices not in P or Q , together with vertex u0. Note that G is a coalescence of the nontrivia
connected graphs P , Q and R at u0.

For any T U -subgraph H of G , we denote by H ′ the corresponding T U -subgraph of G ′ . In view
of the graph-theoretic interpretation of the signless Laplacian coefficients in terms of T U -subgraphs
it suffices to show that for any k = 1, . . . ,n, the sum

∑
H (W (H ′) − W (H)), where H runs over al

T U -subgraphs of G with k edges, is always nonnegative and when G is connected, the sum is positive
if and only if k is in certain range.

Consider an arbitrary T U -subgraph H of G with k edges. If H does not contain any of the edges
in Q that are incident with u0, then H ′ = H and the contribution of W (H ′) − W (H) to the required
sum is zero. So hereafter we assume that H contains at least one of those edges. There are two

Original text:
Inserted Text:
Wagner\cite {GuWag12}
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ossible cases: (i) u0 and up , and hence all vertices of P , belong to the same component of H ;
ii) u0 and up belong to different components of H .

When (i) happens, clearly the component of H ′ and that of H containing u0 have the same number
f vertices, and they are both odd-unicyclic or trees. Furthermore, the remaining components are
hared by H and H ′ . So we have W (H ′) = W (H).

Now we treat Case (ii). Let U denote the component of H that contains vertex u0. Let a denote
he number of vertices in U , other than u0, that are in Q , let b denote the number of vertices in U
hat are in P , counting u0, and let d denote the number of vertices in U , other than u0, that are in R .
lso assume that the component of H that contains up has c vertices. (We will use the notations
(H),a(H),b(H), c(H) and d(H) when we need to emphasize the dependence on H .) By the given

ssumptions, we have a,b, c � 1 and d � 0. In this case, all components of H are also components
f H ′ , except for the components U and the path up−c+1 · · · up .

First, consider the subcase when U is odd-unicyclic. Clearly, W (H) = 4cN , where N is the product
f the weights of the common components of H and H ′ . (If there is no such component, set N = 1.)
lso, W (H ′) equals 4(a+c)N or 4(b+d)N , depending on whether the cycle of U is in R or in Q . If the
ycle of U is in R , then W (H ′)−W (H) equals 4aN and is always positive. If the cycle is in Q , then the
ifference W (H ′)− W (H) equals 4(b +d − c)N , which can be positive, negative or zero, depending on
he values of b, c,d. We are going to group such differences into partial sums in an appropriate way so
hat each partial sum is nonnegative. Let H denote the set of all T U -subgraphs H of G with k edges
hat possess the following properties: u0 and up belong to different components of H ; the component
(H) is odd-unicyclic; the subgraph of U (H) induced by vertices that are in Q is odd-unicyclic and
xed (so that a(H) is equal to a fixed positive integer a); the subgraph of U (H) induced by vertices

hat are in R is a fixed tree (so that d(H) is equal to a fixed nonnegative integer d); b(H), c(H) are
ositive integers such that b(H) + c(H) equals a fixed positive integer M,2 � M � p + 1; and lastly,
he components of H other than U (H) and the one containing up , if any, are also fixed (so that N(H)

equal to a fixed positive integer N). Noting that there is a one-to-one correspondence between H
nd the set of ordered pairs (b, c) of positive integers with b + c = M , we have

∑
H∈H

(
W

(
H ′) − W (H)

) =
M−1∑
b=1

4(b + d − c)N = 4dN(M − 1),

here the second equality follows from
∑M−1

b=1 b = ∑M−1
b=1 c, as b + c = M . Clearly, the sum is zero if

= 0 and is positive if d � 1.
Now we consider the subcase when U is a tree. We have W (H) = (a + b + d)cN and W (H ′) =

a + c)(b + d)N for some positive integer N , and so W (H ′)− W (H) = a(b + d − c)N . Let H̃ denote the
et of all T U -subgraphs H of G with k edges, defined in a way similar to that for H, except that now
e require U (H) to be a tree instead of being odd-unicyclic. Then we have

∑
H∈H̃

(
W

(
H ′) − W (H)

) = aN
M−1∑
b=1

(b + d − c) = aN
M−1∑
b=1

(2b + d − M) = adN(M − 1).

ince M � 2, the sum is zero for d = 0 and is positive for d � 1.
Now it should be clear that we have the weak inequalities pk(G ′)� pk(G) for k = 1, . . . ,n.
A careful examination of the above argument shows that for a fixed k, the strict inequality pk(G ′) >

k(G) holds if and only if G has a T U -subgraph H with k edges such that u0 and up belong to
ifferent components of H and a(H),d(H) are both positive integers (equivalently, the component
(H) contains a vertex in Q and a vertex in R , both different from u0).

Hereafter, we assume, in addition, that G is connected.
Take any spanning tree F of G . Clearly F − u0u1 is a T U -subgraph of G with n − 2 edges

hich has the following properties: the vertices u0, up lie in different components and we have
(F − u0u1),d(F − u0u1) � 1. For each k = 2, . . . ,n − 3, by removing edges from F − u0u1 appro-
riately, we obtain a T U -subgraph H of G with k edges that satisfies a(H),d(H)� 1. This establishes
he strict inequality pk(G) < pk(G ′) for k = 2, . . . ,n − 2. On the other hand, it is readily seen that
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,

,

there is no T U -subgraph of G with one edge or with n edges that has the desired properties. So we
always have p1(G) = p1(G ′) and pn(G) = pn(G ′).

When G is nonbipartite, we can find an odd-unicyclic spanning subgraph E of G . Then E − u0u1 is
a T U -subgraph with n − 1 edges that has the desired properties. So in this case we have pn−1(G) <

pn−1(G ′).
On the other hand, when G is bipartite, every T U -subgraph with n − 1 edges must be a spanning

tree and hence contains P as a subgraph. In this case there is no T U -subgraph of G with n − 1 edges
that has the desired properties. Thus, we have pn−1(G) = pn−1(G ′). �

If the connectedness assumption on G is dropped, then the last part of the preceding theorem no
longer holds. This is because, if G is disconnected and if G has too many components that are trees
then G and any generalized π -transform G ′ cannot have a T U -subgraph with n − 2 edges, and so we
have pn−2(G) = pn−2(G ′) = 0.

In Theorem 4.1, if the generalized π -transform G ′ = π(G, u0, P , Q ) is such that P , Q are paths
then we recover [11, Lemma 2.5]. Our above proof is an elaboration (and correction) of the argument
given in [11]. As another immediate corollary of the theorem we have the following:

Corollary 4.2. Let G be a unicyclic graph of order n and let G ′ = π(G, u0, P , T ) be a generalized π -transform
of G, where P is a path and T is a tree. If G is odd-unicyclic then

pk(G) < pk
(
G ′) for k = 2, . . . ,n − 1.

If G is even-unicyclic, then

pk(G) < pk
(
G ′) for k = 2, . . . ,n − 2.

Lemma 4.3. Let G ∈ Ug,n be an odd-unicyclic graph. If G �= E g,n, then

pk(G) < pk(E g,n), k = 2, . . . ,n − 1.

Proof. In view of Corollary 4.2, we may assume that G = C g(Pr1+1, . . . , Prg+1). By (3.3) we need only
show that

mk
(

S(G)
) + 2mk−g

(
S(G) − C2g

)
< mk

(
S(E g,n)

) + 2mk−g
(

S(E g,n) − C2g
)

for k = 2, . . . ,n − 1. For every such k, by Lemma 3.9 we have mk(S(E g,n)) > mk(S(G)). On the other
hand, we also have mk−g(S(E g,n) − C2g)� mk−g(S(G) − C2g), because

S(G) − C2g = P2r1 +̇ P2r2 +̇ · · · +̇ P2rg , S(E g,n) − C2g = P2n−2g,

2n − 2g = 2r1 + 2r2 + · · · + 2rg,

and in general, it is true that m j(Pn1+n2 ) � m j(Pn1 +̇ Pn2). So we are done. �
To compare the values pk(E g,n) (when n,k are fixed and g varies), we will need the following

explicit expression for pk(E g,n).

Lemma 4.4. For any positive integers g,n,3 � g � n and any integer k = 1, . . . ,n, we have

pk(E g,n) =
(

2n − k

k

)
+

r∑
l=0

(−1)l
(

2n − 1 − k − l

k − 1 − l

)
+ (−1)g+12

(
2n − g − k

k − g

)
, (4.1)

where r = min{k − 1,2(n − g),2(g − 1)}.

Original text:
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roof. Let E g,n consist of the cycle C g = v1 v2 · · · v g v1 together with the pendant path P =
g u1u2 · · · ung (where ng = n − g) attached at v g . We denote by v̂ i (1 � i � g) the vertex in S(E g,n)

hat subdivides the edge vi vi+1 (where v g+1 is taken to be v1) and by ûi (1 � i � n − g) the ver-
ex that subdivides the edge ui−1ui (where u0 is taken to be v g ). By applying Lemma 3.3 (with
= S(E g,n), u = v g and v = v̂ g ) and Lemma 3.4, we have

mk
(

S(E g,n)
) = mk(P2n) + mk−1(P2(n−g) +̇ P2g−2)

=
(

2n − k

k

)
+

r∑
l=0

(−1)l
(

2n − 1 − k − l

k − 1 − l

)
,

here r = min{k − 1,2(n − g),2(g − 1)}. On the other hand, since S(E g,n) − C2g = P2(n−g) , we also

ave mk−g(S(E g,n) − C2g) = (2n−g−k
k−g

)
. So, in view of (3.3), our assertion follows. �

emma 4.5. Let n � 5 be a positive integer. Let αn be the (unique) real root of the cubic polynomial fn(x) given
y:

fn(x) = 3x3 + (7 − 10n)x2 + 2
(
6n2 − 11n + 8

)
x − (

4n3 − 6n2 − 10n + 24
)
.

or any positive integer k = 2, . . . ,n − 1, the maximum value of pk(E g,n), as g runs through all integers
etween 3 and n (inclusive), is attained at g = n if k � αn and at g = 3 if αn � k � n − 1. Moreover, the
aximum is always attained uniquely except when k = αn.

roof. By Remark 2.3 we have pn−1(E3,n) > pn−1(E g,n) for g = 4,5, . . . ,n. Hereafter, we assume that
� k � n − 2.

According to (4.1), pk(E g,n) is the sum of three parts, namely,

(
2n − k

k

)
,

r(g)∑
l=0

(−1)l
(

2n − 1 − k − l

2(n − k)

)
and (−1)g+12

(
2n − g − k

2(n − k)

)
,

here r(g) = min{k − 1,2(n − g),2(g − 1)}. (We have deliberately rewritten the binomial coefficients
2n−1−k−l

k−1−l

)
and

(2n−g−k
k−g

)
as

(2n−1−k−l
2(n−k)

)
and

(2n−g−k
2(n−k)

)
respectively.) Note that the first part is indepen-

ent of G . The second part is a partial sum of the finite alternating series
∑k−1

l=0 (−1)l
(2n−1−k−l

2(n−k)

)
, and

learly the partial sums Si := ∑i
l=0(−1)l

(2n−1−k−l
2(n−k)

)
(i = 0, . . . ,k − 1) of this alternating series satisfy

S1 < S3 < S5 < · · · < Sk−1 < · · · < S4 < S2 < S0,

s its terms have decreasing magnitude. The third part is a term of the finite sequence
−1)g+12

(2n−g−k
2(n−k)

)
, g = 3, . . . ,n, and it is readily seen that the first term of this sequence is strictly

reater than the remaining terms, provided that k � 3 (when k = 1 or 2, all terms in the sequence
re zero). So the inequality pk(E g,n) > pk(E3,n) holds only if r(g) < r(3). The value of r(3) varies with
and k. For technical reasons, we deal with the cases k = 2,3,4 separately first.

The contribution of the last term on the right side of (4.1) is zero if k < g and, in particular, if
= 2. So it is obvious that the maximum value of p2(E g,n), as g varies, is attained uniquely at g = n.
hen E g,n = Cn .

When k = 3, r(g) equals 2 if 3 � g � n − 1 and equals 0 if g = n. So the maximum value of
3(E g,n) is attained at g = 3 or g = n. Now we have

p3(E3,n) − p3(En,n) =
2∑

l=1

(−1)l
(

2n − 4 − l

2 − l

)
+ 2

(
2n − 6

0

)
= 8 − 2n < 0

s n � 5. So the maximum value of p3(E g,n) is attained uniquely at g = n.



JID:LAA AID:12225 /FLA [m1G; v 1.101; Prn:5/06/2013; 9:57] P.15 (1-21)

H.-H. Li et al. / Linear Algebra and its Applications ••• (••••) •••–••• 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

,

When k = 4, r(g) equals 0 if g = n, equals 2 if g = n − 1 and equals 3 if 3 � g � n − 2. So the
maximum value of p4(E g,n) as g varies between 3 and n is attained at g = 3,n − 1 or n. In view of
Lemma 2.2, by calculations we have

p4(E3,5) = 27, p4(E4,5) = 20 and p4(E5,5) = 25.

Hence the maximum value of p4(E g,5) is attained uniquely at g = 3.
When n � 6, the last term in the expression for p4(En,n) (also, p4(En−1,n)) as given by (4.1) is

equal to zero. So, in this case, we clearly have p4(En−1,n) < p4(En,n), and the maximum value of
p4(E g,n) must be attained at g = 3 or g = n. By calculation we have

p4(E3,n) − p4(En,n) = −2n2 + 19n − 43 < 0.

Hence, for n � 6, the maximum value of p4(E g,n) is attained uniquely at g = n.
Summarizing what we have done so far, for k = 2,3,4, maxg pk(E g,n) is attained uniquely at g = n

except that maxg p4(E g,5) is attained uniquely at g = 3.
When k � 5, we have r(3) = 4 = r(n − 2) < r(g) for 4 � g � n − 3, r(n − 1) = 2 and r(n) = 0. Note

that
(2n−g−k

2(n−k)

) = 0. Since k � n − 2,
(2n−g−k

2(n−k)

) = 0 for g = n − 1,n − 2. In other words, the last term in
the expression for pk(En−1,n) (also, for pk(En,n)) is equal to zero. Hence pk(En,n) > pk(En−1,n) and
the maximum value of pk(E g,n) is attained only at g = 3 or g = n. Now pk(E3,n) − pk(En,n) equals

2

(
2n − 3 − k

k − 3

)
+

4∑
l=1

(−1)l
(

2n − 1 − k − l

k − 1 − l

)
,

and after some calculations it becomes

fn(k)

(2n−k−4
k−3

)
(n − k)(2n − k − 4)(k − 2)

,

where fn(x) is the given cubic polynomial. As 5 � k � n−2, it is readily checked that
(2n−k−4

k−3

)
(n−k)(2n−k−4)(k−2)

> 0. So pk(E3,n) is greater than, equal to, or less than pk(En,n), depending on whether fn(k) is greater
than, equal to, or less than 0. Note that for n � 5, fn(x) is a strictly increasing cubic polynomial func-
tion, as the discriminant of the derivative of fn(x), which equals −4(8n2 − 58n + 95), is negative. It
follows that when n � 6, for 5 � k � n − 1, maxg pk(E g,n) is attained at g = n if k � αn and at g = 3
if k � αn , and, moreover, the maximum is always attained uniquely except when k = αn . By what we
have done at the beginning, the preceding conclusion also holds for k = 2,3,4, because for n � 6 we
have αn > 4 as fn(4) < 0.

At the beginning we have also proved that maxg pk(E g,5) is attained uniquely at g = 5 if k = 2,3
and at g = 3 if k = 4. Since 3 < α5 < 4 (as f5(3) < 0 and f5(4) > 0), our result also holds for n = 5. �
Proof of Theorem 1.1. By Lemma 4.3 if G ∈ Ug,n is odd-unicyclic and if G �= E g,n , then pk(G) <

pk(E g,n) for k = 2, . . . ,n − 1. So, among all odd-unicyclic graphs G of order n, the maximum value of
pk(G) is attained only when G is a lollipop graph.

Note that for 1 � k � n − 1, every T U -subgraph of Cn with k edges is a spanning forest. So by (2.1)
and (2.2) we have pk(Cn) = ck(Cn) for k = 1, . . . ,n − 1.

If G ∈ Ug,n is even-unicyclic, then G is bipartite and for k = 2, . . . ,n − 2 by Stevanović and Ilić [14]
we have

pk(G) = ck(G) � ck(Cn) = pk(Cn),

where the inequality becomes equality if and only if G = Cn .
Thus, the maximum value of pk(G) as G varies over all unicyclic graphs of order n is always

attained among lollipop graphs and by Lemma 4.5 our result follows. �
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. Proof of Theorem 1.2

First, we recall the definition of a σ -transformation, as introduced by Mohar [12] for trees and
xtended to general graphs by Stevanović and Ilić [14].

Let w be a vertex of degree p + 1 in a graph G , which is not a star, such that w v1, . . . , w v p are
endant edges incident with w and v0 is the neighbor of w distinct from v1, . . . , v p . We call the
raph G ′ obtained from G by removing edges w v1, . . . , w v p and adding new edges v0 v1, . . . , v0 v p a
-transform of G and we write G ′ = σ(G, w). It is easy to see if G ′ is a σ -transform of G then G is
generalized π -transform of G ′; indeed, we have, G = π(G ′, v0, P , Q ), where P is the path P2: v0 w

nd Q is the star on vertices v0, v1, . . . , v p with center v0.
The following is an immediate consequence of Corollary 4.2.

heorem 5.1. Let G ∈ Ug,n be a unicyclic graph and let G ′ = σ(G, w) be a σ -transform of G. If G is odd-
nicyclic, then

pk(G) > pk
(
G ′) for k = 2, . . . ,n − 1.

G is even-unicyclic, then

pk(G) > pk
(
G ′) for k = 2, . . . ,n − 2.

Let C g(Sr1+1, . . . , Srg+1) denote the unicyclic graph which consists of the cycle C g = v1 v2 · · · v g v1
ogether with ri pendant edges attached at vertex vi for i = 1, . . . , g , where r1, . . . , rg are nonnegative

tegers. We write C g(Sn−g+1, S1, . . . , S1) simply as C g(Sn−g+1).
It is known that every tree which is not a star can be transformed into a star by a se-

uence of σ -transformations (see [12, Proposition 3.1]). Likewise, every unicyclic graph with cycle
ngth g can be transformed into a graph of the form C g(Sr1+1, . . . , Srg+1) by applying a sequence of
-transformations, if the graph is not already of such form.

By Theorem 5.1 if G ∈ Ug,n is an odd-unicyclic (respectively, even-unicyclic) graph and if G is not
f the form C g(Sr1+1, . . . , Srg+1) then there exists a graph G ′ ∈ Ug,n of such form such that pk(G) >

k(G ′) for k = 2, . . . ,n − 1 (respectively, for k = 2, . . . ,n − 2). To compare the values of pk(G) between
dd-unicyclic (or even-unicyclic) graphs G of the form C g(Sr1+1, . . . , Srg+1) we need the concept of a
ouble τ -transform of a unicyclic graph. Before giving the definition, we first recall the definition of
τ -transform of a unicyclic graph, as introduced by Stevanović and Ilić [14].

An edge e of a graph G is said to be contracted if it is deleted and its ends are identified.
Let v and w be two neighboring vertices on the cycle of a unicyclic graph G with degrees p + 2

nd q + 2 respectively such that there are p pendant edges incident with v and q pendant edges
cident with w (where p,q are nonnegative integers). The graph G ′ obtained from G by contracting

dge v w and adding a new pendant edge to vertex v is called a τ -transform of G and is denoted by
(G, v, w).

Let u, v and w be three consecutive vertices on the cycle of a unicyclic graph G with degrees
+ 2, q + 2 and r + 2 respectively such that there are p (respectively, q, r) pendant edges incident
ith u (respectively, v , w). The graph G ′ obtained from G by contracting edges uv and v w and

dding two new pendant edges uv and uw to vertex u is called a double τ -transform of G and is
enoted by τ (G, u, v, w).

heorem 5.2. If G ∈ Ug,n (g � 5) is an odd-unicyclic graph of the form C g(Sr1+1, . . . , Srg+1) and G ′ ∈ Ug−2,n

a double τ -transform of G, then

pk(G) > pk
(
G ′) for k = 2, . . . ,n − 1.

roof. Let C = v1 v2 · · · v g v1 be the cycle of G . Without loss of generality, assume that G ′ =
(G, v1, v2, v3). There is a natural one-to-one correspondence between the edges of G and those
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of G ′ . (Under this correspondence, the edges v2 v3, v2u, v3 v of G , where u, v do not lie on C , corre-
spond respectively to the edges v1 v3, v1u and v1 v of G ′ .) This correspondence between edges induces
a one-to-one correspondence between T U -subgraphs of G with k edges and T U -subgraphs of G ′ with
k edges. Note that, since G (also, G ′) is odd-unicyclic, every spanning subgraph of G (respectively, G ′)
is a T U -subgraph of G (respectively, G ′). We first show that if H is a T U -subgraph of G and H ′ is the
corresponding T U -subgraph of G ′ then W (H) � W (H ′). We also examine when the strict inequality
holds.

Let H be a T U -subgraph of G with k edges, and let H ′ be the corresponding T U -subgraph of G ′
We divide our discussion into cases.

1◦ . Suppose that H contains every edge of the cycle C . Then the edges removed from G (respec-
tively, G ′) to obtain H (respectively, H ′) are all pendant edges. So in this case H (respectively, H ′) has
precisely one nontrivial component, which is unicyclic. Hence we have W (H) = W (H ′) = 4.

2◦ . Suppose that v1 v2 /∈ E(H) or v2 v3 /∈ E(H) but all other edges of C are in H . Then H has
precisely one or two nontrivial components, each of which is a tree: the component containing v1
must be nontrivial, and the one containing v2 can be nontrivial when v1 v2, v2 v3 /∈ E(H). When H
has one nontrivial component, the component must be a tree with k edges. In this case W (H) = k+1
When H has two nontrivial components, let r, s be the number of edges in these tree components
Then r + s = k and we have W (H) = (r + 1)(s + 1) = k + 1 + rs > k + 1. On the other hand, the only
nontrivial component of H ′ is unicyclic; hence W (H ′) = 4. Since H contains every edge of C other
than v1 v2, v2 v3, k � g − 2 � 5 − 2 = 3. It follows that we have W (H) � W (H ′). Indeed, in this case
the inequality is always strict, except when g = 5 and k = 3.

3◦ . Suppose that v1 v2, v2 v3 are both edges of H and at least one edge of C does not belong to H
In this case, the components of H (also, of H ′) are all trees. Also, the component of H containing v1
has the same number of vertices as the component of H ′ containing v1. The other components are
shared by H and H ′ . So we have W (H) = W (H ′).

4◦ . Suppose that v1 v2 /∈ E(H), v2 v3 ∈ E(H) and at least one other edge of C does not belong to H
In this case the components of H (also, of H ′) are trees. Let T1 (respectively, T2) denote the compo-
nent of H that contains v1 (respectively, v2 and hence also v3). Also, let T3 denote the component
of H ′ that contains v1 (and v3 but not v2 as v1 v2 /∈ E(H) and v1 v3 ∈ E(H ′)). Note that T3 is the
subgraph in G ′ corresponding to the edge-induced subgraph of G formed by the edges E(T1)∪ E(T2);
so we have

W (T3) = ∣∣V (T3)
∣∣ = ∣∣E(T3)

∣∣ + 1 = ∣∣E(T1)
∣∣ + ∣∣E(T2)

∣∣ + 1

= ∣∣V (T1)
∣∣ + ∣∣V (T1)

∣∣ − 1 �
∣∣V (T1)

∣∣∣∣V (T2)
∣∣ = W (T1)W (T2),

where the inequality follows from the elementary fact that for any real numbers x, y � 1, we have
xy � x + y − 1 with equality if and only if x = 1 or y = 1. The remaining nontrivial components of H
and H ′ (if any) being common, we have W (H ′) � W (H), with strict inequality if and only if T1 has
order at least 2.

5◦ . Suppose that v1 v2 ∈ H, v2 v3 /∈ H and at least one other edge of C is not in H . The argument
is similar to that for 4◦ .

6◦ . Suppose that v1 v2 /∈ E(H), v2 v3 /∈ E(H) and at least one other edge of C does not belong to
E(H). Let T1 (respectively, T2, T3) denote the component of H containing v1 (respectively, v2, v3)
Also, let T4 denote the component of H ′ that contains v1. Then

W (T4) = ∣∣V (T4)
∣∣ = ∣∣V (T1)

∣∣ + ∣∣V (T2)
∣∣ + ∣∣V (T3)

∣∣ − 2

�
∣∣V (T1)

∣∣∣∣V (T2)
∣∣∣∣V (T3)

∣∣ = W (T1)W (T2)W (T3).

The remaining nontrivial components of H and H ′ (if any) being common, we have W (H) � W (H ′).
In view of (2.2) we have the inequalities pk(G) � pk(G ′) for k = 1,2, . . . ,n.
Take H = G − v1 v2. Then H is a T U -subgraph of G with n − 1 edges. By 2◦ we have W (H) >

W (H ′) and so the strict inequality pn−1(G) > pn−1(G ′) holds.
For any given positive integer k = 2, . . . ,n − 2, let H be any T U -subgraph of G with k edges that

contains, in particular, the edges v2 v3 and v g v1, but does not contain the edge v1 v2 and v g−1 v g
Then by 4◦ we have W (H) > W (H ′) and so the strict inequality pk(G) > pk(G ′) holds. �
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With slight modifications, the proof for Theorem 5.2 also yields the following corresponding result
r even-unicyclic graphs.

heorem 5.3. If G ∈ Ug,n (g � 6) is an even-unicyclic graph of the form C g(Sr1+1, . . . , Srg+1) and G ′ ∈ Ug−2,n
a double τ -transform of G, then

pk(G) > pk
(
G ′) for k = 2, . . . ,n − 1.

Theorem 5.2 (also, Theorem 5.3) no longer holds if we replace “double τ -transform” by
τ -transform”. For a counter-example, see [11, the paragraph following Theorem 3.2].

emma 5.4. Let G = C4(Sr1+1, Sr2+1, Sr3+1, Sr4+1). Let G ′ be the graph obtained from G by relocating
he r j pendant edges at vertex v j to vertex vi , where 1 � i, j � 4, i �= j. Assume that ri, r j � 1. Then for
= 2, . . . ,n − 2, pk(G) � pk(G ′) + 3rir j when vi and v j are adjacent and pk(G) � pk(G ′) + 4rir j when vi
nd v j are nonadjacent; and pk(G) = pk(G ′) for k = 1,n − 1 or n.

roof. Let v1 v2 v3 v4 v1 be the cycle of G .
First, we consider the case when vi, v j are adjacent vertices of G . Without loss of general-

y, let i = 1 and j = 2. Let v1u1, . . . , v1ur1 denote the pendant edges of G attached to v1 and
2 w1, . . . , v2 wr2 be the pendant edges attached to v2. We denote by ûi (1 � i � r1) and ŵ j

1 � j � r2) the vertices of S(G) (hence, also of S(G ′)) that subdivide edges v1ui and v2 w j of G
or v1ui and v1 w j of G ′) respectively. Also, denote by v̂ i,1 � i � 4, the vertex of S(G) (also, of S(G ′))
hat subdivides edges vi vi+1, where v5 is taken to be v1.

Let M ′ be a matching in S(G ′). By modifying the set of edges in S(G) corresponding to M ′ , we
ill construct a matching in S(G). There are six subcases to be considered:

1◦ . If v1 ŵ j /∈ M ′ for j = 1, . . . , r2 then the set of edges M in S(G) corresponding to M ′ is clearly a
atching in S(G) such that v2 ŵ j /∈ M for j = 1, . . . , r2.

2◦ . If v1 ŵ j ∈ M ′ for some j = 1, . . . , r2 and v2 is not covered by M ′ , then the set of edges M in
(G) corresponding to M ′ is a matching in S(G) for which v2 ŵ j ∈ M for some j = 1, . . . , r2, and v1
not covered by M .
3◦ . If v1 ŵ j ∈ M ′ for some j = 1, . . . , r2 and v2 v̂1 ∈ M ′ , then we obtain a matching M in S(G) from

′ by replacing v1 ŵ j by v2 ŵ j and v2 v̂1 by v1 v̂1.
4◦ . If v1 ŵ j ∈ M ′ for some j = 1, . . . , r2, v2 v̂2 ∈ M ′ and v4 v̂4 /∈ M ′ , then we obtain a matching M
S(G) from M ′ by replacing v1 ŵ j by v2 ŵ j and v2 v̂2 by v1 v̂4.
5◦ . If v1 ŵ j ∈ M ′ for some j = 1, . . . , r2, v2 v̂2 ∈ M ′ , v4 v̂4 ∈ M ′ and v3 v̂3 /∈ M ′ , then we obtain a

atching M in S(G) from M ′ by replacing v1 ŵ j by v2 ŵ j , v2 v̂2 by v1 v̂4 and v4 v̂4 by v4 v̂3.
6◦ . If v1 ŵ j ∈ M ′ for some j = 1, . . . , r2, v2 v̂2 ∈ M ′ , v4 v̂4 ∈ M ′ and v3 v̂3 ∈ M ′ , then we obtain a

atching M in S(G) from M ′ by replacing v1 ŵ j by v2 ŵ j , v2 v̂2 by v1 v̂4, v4 v̂4 by v4 v̂3 and v3 v̂3 by
3 v̂2.

It is readily checked that the mapping M ′ �→ M constructed in the above manner is a one-to-one
ap from the set of all matchings in S(G ′) into the set of all matchings M in S(G) with the following

roperty: if v2 ŵ j ∈ M for some j = 1, . . . , r2 and if v1 is covered by M then v1 v̂1 ∈ M or v1 v̂4 ∈ M .
o a matching M in S(G) is not in the range of this map if and only if v2 ŵ j ∈ M for some j = 1, . . . , r2
nd v1ûi ∈ M for some i = 1, . . . , r1. Any such matching M must have at least two edges and contains
t most n − 2 edges as it must miss vertex v̂1 and one of the vertices v̂2, v̂3 or v̂4. Indeed, it is not
ifficult to show that for any pair i, j,1 � i � r1,1 � j � r2, there are precisely three (n−2)-matchings

S(G) that contain both of the edges v1ûi, v2 ŵ j . This shows that for k = 2, . . . ,n − 2,mk(S(G)) −
k(S(G ′)) � 3r1r2 and mk(S(G)) = mk(S(G ′)) for k = 1,n − 1 or n.

On the other hand, S(G)− C8 and S(G ′)− C8 are both equal to (n −4)K2. So we have mk−4(S(G)−
8) = mk−4(S(G ′) − C8) for every nonnegative integer k. In view of (3.3) the desired inequalities
etween pk(G) and pk(G ′) are satisfied.

Now we consider the case when vi, v j are not adjacent vertices of G . Without loss of generality,
ake i = 1 and j = 3. Let ui, ûi, i = 1, . . . , r1, w j, ŵ j, j = 1, . . . , r3 and v̂ i, i = 1,2,3,4 have the obvious

eanings.
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For any matching M ′ in S(G ′), by modifying the set of edges in S(G) corresponding to M ′ , we wil
construct a matching in S(G). There are six subcases to be considered:

1◦ . If v1 ŵ j /∈ M ′ for j = 1, . . . , r3, then the set of edges M in S(G) corresponding to M ′ is clearly
a matching in S(G) such that v3 ŵ j /∈ M for j = 1, . . . , r2.

2◦ . If v1 ŵ j ∈ M ′ for some j = 1, . . . , r3 and v3 is not covered by M ′ , then the set of edges M in
S(G) corresponding to M ′ is a matching in S(G) for which v3 ŵ j ∈ M for some j = 1, . . . , r3, and v1 is
not covered by M .

3◦ . If v1 ŵ j ∈ M ′ for some j = 1, . . . , r3, v3 v̂2 ∈ M ′ and v2 v̂1 /∈ M ′ , then we obtain a matching M
in S(G) from M ′ by replacing v1 ŵ j by v3 ŵ j and v3 v̂2 by v1 v̂1.

4◦ . If v1 ŵ j ∈ M ′ for some j = 1, . . . , r3, v3 v̂2 ∈ M ′ and v2 v̂1 ∈ M ′ , to obtain M from M ′ we replace
v1 ŵ j by v3 ŵ j , v3 v̂2 by v1 v̂1 and v2 v̂1 by v2 v̂2.

5◦ . If v1 ŵ j ∈ M ′ for some j = 1, . . . , r3, v3 v̂3 ∈ M ′ and v4 v̂4 /∈ M ′ , then we obtain M from M ′ by
replacing v1 ŵ j by v3 ŵ j and v3 v̂3 by v1 v̂4.

6◦ . If v1 ŵ j ∈ M ′ for some j = 1, . . . , r3, v3 v̂3 ∈ M ′ and v4 v̂4 ∈ M ′ , then we obtain M from M ′ by
replacing v1 ŵ j by v3 ŵ j , v3 v̂3 by v1 v̂4 and v4 v̂4 by v4 v̂3.

It is readily checked that the mapping M ′ �→ M constructed in the above manner is a one-to-one
map from the set of all matchings in S(G ′) into the set of all matchings M in S(G) with the following
property: if v3 ŵ j ∈ M for some j = 1, . . . , r3 and if v1 is covered by M then v1 v̂1 ∈ M or v1 v̂4 ∈ M
Then we can show that for any i, j,1 � i � r1,1 � j � r3, there are precisely four (n − 2)-matchings in
S(G) that contain both of the edges v1ûi, v3 ŵ j and miss exactly one of the following pairs of vertices:
v̂1 and v̂3, v̂1 and v̂4, v̂2 and v̂3, or v̂2 and v̂4. So for 2 � k � n − 2, mk(S(G)) − mk(S(G ′)) � 4r1r3
On the other hand, we also have mk−4(S(G)− C8) = mk−4(S(G ′)− C8) for every nonnegative integer k
So the desired inequalities between pk(G) and pk(G ′) follow. �

By a similar (but less involved) argument, one can also establish the following:

Lemma 5.5. Let G = C3(Sr1+1, Sr2+1, Sr3+1) and G ′ = C3(Sr1+r2+1, S1, Sr3+1) (r1, r2 � 1). Then pk(G) �
pk(G ′) + 2r1r2 for k = 2, . . . ,n − 2 and pk(G) = pk(G ′) for k = 1,n − 1 or n.

Lemma 5.6. For any positive integer n � 5, we have

(i) pk(C4(Sn−3)) > pk(C3(Sn−2)) for k = 2, . . . ,n − 4;
(ii) pn−3(C4(Sn−3)) > pn−3(C3(Sn−2)) for n = 5, . . . ,24 and pn−3(C4(Sn−3)) < pn−3(C3(Sn−2)) for

n � 25;
(iii) pn−2(C4(Sn−3)) > pn−2(C3(Sn−2)) for n = 5,6,7,8 and pn−2(C4(Sn−3)) < pn−2(C3(Sn−2)) for n � 9;

and
(iv) pn−1(C4(Sn−3)) < pn−1(C3(Sn−2)).

Proof. By Lemma 2.2(i) p2(C4(Sn−3)) = 2n − 6 + 3
2 n(n − 1) > n − 3 + 3

2 n(n − 1) = p2(C3(Sn−2)).
By Lemma 2.2(ii), we also have

pn−1
(
C3(Sn−2)

) = 3n + 4(n − 3) = 7n − 12 > 4n = pn−1
(
C4(Sn−3)

)
,

as n � 5.
Hereafter, for convenience, we denote C4(Sn−3) and C3(Sn−2) by G and G ′ respectively. It is clear

that G ′ is a τ -transform of G . To be specific, let C = v1 v2 v3 v4 v1 be the cycle of G and assume
that G ′ = τ (G, v1, v2). There is a natural one-to-one correspondence between the edges of G and
those of G ′ . Since G ′ is odd-unicyclic, every spanning subgraph of G ′ is a T U -subgraph. But for G
a spanning subgraph is a T U -subgraph if and only if it does not contain the cycle of G as a subgraph

Let H be a spanning subgraph of G with k edges, and let H ′ be the corresponding spanning
subgraph of G ′ , certainly also with k edges.

1◦ . If H contains every edge of the cycle C , then H is not a T U -subgraph of G . On the other hand
H ′ is a T U -subgraph with exactly one nontrivial component, which is odd-unicyclic. So W (H ′) = 4



JID:LAA AID:12225 /FLA [m1G; v 1.101; Prn:5/06/2013; 9:57] P.20 (1-21)

20 H.-H. Li et al. / Linear Algebra and its Applications ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

A

t

w
h
W

p
n
a

fo

t
b

a

c
h
n

a
h

a

S

W

t
in
W
a
a

is
w
p

P
t

ltogether there are
(n−4

k−4

)
such subgraph H of G . Their contribution to pk(G) is zero, whereas the

otal contribution of the corresponding subgraphs H ′ of G ′ to pk(G ′) is 4
(n−4

k−4

)
.

2◦ . Suppose that v1 v2 /∈ H but all other edges of C belong to H . Then H is a T U -subgraph of G
ith precisely one nontrivial component, which is a tree with k edges; so W (H) = k +1. On the other

and, H ′ is a T U -subgraph of G ′ with precisely one nontrivial component, which is odd-unicyclic; so
(H ′) = 4. Altogether there are

(n−4
k−3

)
such subgraph H of G .

3◦ . Suppose that v1 v2 ∈ H but there is at least one edge of C not in H . In this case, the com-
onents of H (also, of H ′) are trees. Furthermore, the component of H containing v1 has the same
umber of vertices as the component of H ′ containing v1, and the other components of H and H ′ (if
ny) are the same. So in this case we have W (H) = W (H ′).

4◦ . Suppose that v1 v2 /∈ H and there is at least one other edge of C not in H . We have the
llowing subcases, depending on which edges of C do not lie on H :

(1) the edges of C that do not lie on H are v1 v2, v2 v3; or v1 v2, v2 v3, v3 v4; or all edges of C :
hen H and H ′ each have exactly one nontrivial component, which is a tree. So W (H) and W (H ′) are
oth equal to k + 1.

(2) the edges of C not in H are v1 v2, v2 v3 and v1 v4: then H and H ′ share the same components
nd we have W (H) = W (H ′).

(3) the edges of C not in H are v1 v2 and v3 v4 or v1 v2, v3 v4 and v4 v1: then H has two nontrivial
omponents, namely, a tree with one edge and a tree with k − 1 edges; so W (H) = 2k. On the other
and, H ′ has only one nontrivial component, which is a tree with k edges. So W (H ′) = k + 1. The
umber of such H is

(n−4
k−2

) + (n−4
k−1

) = (n−3
k−1

)
.

(4) the edges of C not in H are v1 v2 and v1 v4: then H has two nontrivial components, namely,
tree with two edges and a tree with k − 2 edges, and H ′ has only one nontrivial component. So we

ave W (H) = 3(k − 1) and W (H ′) = k + 1. The number of such H is
(n−4

k−2

)
.

From the above we find that pk(G) − pk(G ′) equals

−
(

n − 4

k − 4

)
(4) +

(
n − 4

k − 3

)
(k + 1 − 4) +

(
n − 3

k − 1

)(
2k − (k + 1)

)
( )
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+ n − 4

k − 2

(
3(k − 1) − (k + 1)

)
,

nd after further calculations it becomes

(n − 4)!
(k − 4)!(n − k − 2)!

[
n − k − 4

(n − k)(n − k − 1)
+ n − 3

(k − 2)(k − 3)
+ 2

k − 3

]
.

o pk(G) > pk(G ′) for 3 < k � n − 4. Note that we also have p3(G) > p3(G ′) as

p3(G) − p3
(
G ′) = 2

(
n − 3

2

)
+ 2

(
n − 4

1

)
> 0.

hen k = n − 3, the expression inside the square bracket is − (n − 29
2 )2 − 409

4

6(n − 5)(n − 6)
. It is readily checked

hat the latter expression is positive for integers n between 7 and 24 (inclusive) but is negative for
tegers n � 25. So we have pn−3(G) > pn−3(G ′) for n = 7, . . . ,24 and pn−3(G) < pn−3(G ′) for n � 25.
hen n = 5, the inequality pn−2(G) > pn−2(G ′) becomes p3(G) > p3(G ′), which holds as we have

lready shown that pk(G) > pk(G ′) for k = 2, . . . ,n − 4. Similarly, the inequality pn−3(G) > pn−3(G ′)
lso holds for n = 6.

When k = n − 2, the expression inside the square bracket can be written as − (n − 6)2 − 5

(n − 4)(n − 5)
. It

readily checked that the latter expression is positive for n = 6,7,8 and is negative for n � 9. So
e have pn−2(G) > pn−2(G ′) for n = 6,7,8 (and also for n = 5, which has already been done), and
n−2(G) < pn−2(G ′) for n � 9. �
roof of Theorem 1.2. By Theorem 5.1 among odd-unicyclic (respectively, even-unicyclic) graphs G ,

he minimum value of pk(G) for k = 2, . . . ,n − 1 (respectively, k = 2, . . . ,n − 2) is attained only

Original text:
Inserted Text:
non-trivial

Original text:
Inserted Text:
non-trivial
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if G is of the form C g(Sr1+1, . . . , Srg+1). By Theorem 5.2 (respectively, Theorem 5.3) for odd (re-
spectively, even) g , among graphs of the form C g(Sr1+1, . . . , Srg+1), the minimum value of pk(G) is
attained only if g = 3 (respectively, g = 4). Then by Lemma 5.5 (respectively, Lemma 5.4) the min-
imum value of pk(G) when G varies over graphs of the form C3(Sr1+1, Sr2+1, Sr3+1) (respectively,
C4(Sr1+1, Sr2+1, Sr3+1, Sr4+1)) is attained at G = C3(Sn−2) (respectively, C4(Sn−3)). So the minimum
value of pk(G) as G varies over all unicyclic graphs of order n is attained at either C3(Sn−2) or
C4(Sn−3), and our result follows from Lemma 5.6. �
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