A short tutorial for MATLAB beginners!

Download MATLAB from W&M website:

https://www.wm.edu/offices/it/services/software/licensedsoftware/mathstats/matlabstud/index.php

Departments & Offices > IT > Services > Software > Licensed Software > Math & Statistics > MATLAB for Students

MATLAB for Students

- Version: MATLAB r2017b
- Operating System: Windows, Macs, Linux
- Users: William & Mary Students (also available for Faculty)
- Installation: Send a request to support@wm.edu including your name and W&M email
 address. We will create a Mathworks account that will allow you to download the latest
 version and authorize your software.

You will need to contact the Technology Support Center to request a Mathworks account. Please see the **Install Notes** below.

- Online Help
- Technical Literature
- Books
- Software Updates

Calculating eigenvalues & eigenvectors:

- e = eig(A) returns a column vector containing the eigenvalues of square matrix A.
- [V,D] = eig(A) returns diagonal matrix D of eigenvalues and matrix V whose columns are the corresponding right eigenvectors, so that AV = VD.

```
Command Window

>> A = [1 2 3;
    4 5 6;
    7 8 9]

A =

    1 2 3
    4 5 6
    7 8 9

>> e = eig(A)

e =

    16.1168
    -1.1168
    -0.0000
```

Matrix Multiplication:

- A*B
- mtimes(A,B)

Tensor Product:

- Tensor product is also known as Kronecker product.
- K = kron(A,B)

Vector norm / matrix norm:

- n = norm(v) returns the Euclidean norm of vector v.
- n = norm(v,p) returns the generalized vector p-norm.

Singular Value Decomposition

- s = svd(A) returns the singular values of matrix A in descending order.
- [U,S,V] = svd(A) performs a singular value decomposition of matrix A, such that A = U*S*V'.

```
Command Window
 >> A
 A =
                 3
      1
      4
            5
 >> svd(A)
               Singular values in
  ans =
               descending order
    16.8481
     1.0684
     0.0000
 >> [U,S,V] = svd(A)
 U =
                                    Give three
                                matrices for
    -0.2148
               0.8872
                        0.4082
    -0.5206
               0.2496
                       -0.8165
                                SVD: USV = A
                        0.4082
    -0.8263
              -0.3879
 S =
    16.8481
          0
               1.0684
                        0.0000
 V =
    -0.4797
              -0.7767
                       -0.4082
                        0.8165
    -0.5724
              -0.0757
    -0.6651
               0.6253
                       -0.4082
```

More Information: MATLAB Documentation

https://www.mathworks.com/help/index.html?s_tid=CRUX_Iftnav

