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Optical lattices, NMR, Anyons

Quantum bit
(Qubit)

Design a quantum process to use quantum proper-
ties to get useful information for a given problem.

Choose a suitable quantum system to build the
hardware.

Prepare the initial (entangled) quantum states.

Create a suitable environment for the quantum sys-
tem to ewvolve according to quantum mechanical
rules.

Apply a suitable measurement to extract useful in-
formation.

Remarks

In physics labs, one would prepare quantum states,
manipulate them with quantum operations and
measure the output states, where measuring quan-
tum states is also a quantum operation.

Mathematical theory is needed to help model and
design the process.

Computer Science theory is needed to develop the
computation and communication algorithms.

Knowledge in engineering, material science, chem-
istry, etc. are needed to build the system.

We are interested in the mathematical theory.



2. Mathematical framework and notation

Quantum states with n measurable states are rep-
resented as complex unit vectors v € C".

One does not distinguish v and ev for any ¢ € R.

The conjugate transpose of v € C" and A € M,,,
are denoted by v and AT, where M,,,, is the set of
m X n complex matrices.

In physics literature, one uses the bracket notation
for v and v', namely, |v) and (v].

For example, a photon has two measurable states
so that it is represented by vectors in C2.

Upon measurement, one only sees |e;) or |es).
Sometimes, written as | T), | = ).

A general quantum state has the form aq|e;)+as|es)
with probability of |a;|? in |e;) and |as|? in |e).

We say that the quantum state is a superposition
of its measurable states.

Schrodinger cat interpretation of superposition...

One may have a different measuring “frame” or
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basis”, say, |f1) = \/% L} f2) = \/% [_1}7 and

the superposition has the form by|f;) + b2 f2).

Quantum operations on a closed system with vector
states in C" are unitary matrices U, i.e., UTU = I,.

Basic linear algebra [Nakahara and Ohmi, Chapter 1]

Complex vectors.

Inner product structure.

Orthogonal and orthonormal vecotrs.
Schur Triangularization Lemma.

Special class of matrices: Hermitian, positive
semidefinite, unitary, normal matrices.

Spectral theorem of diagonalizable and normal ma-
trices.



3. Quantum Mechanics

Here are the basic postulates of quantum mechanics in
terms of vector states.

Copenhagen interpretation

Al

A2

A3

A vector state |z) is a unit vector in a Hilbert space
‘H (usually C"). Linear combinations (superposi-
tion) of the physical states are allowed in the state
space.

Every physical quantity (observable) corresponds
to a Hermitian operator (matrix) A € M, such that
A has orthonormal eigenvectors |u;) and |ug). Sup-
pose a state |x) = ¢1]u1) + ¢a|ug). Then applying a
measurement of |z) corresponding to A will cause
the wave function (that describes the quantum
state) to collapse to |ui) or |uy) with probability
of |c1|* and |cy|?, respectively. Here ¢y, ¢y are called
the probability amplitude of the state |x).

The time dependence of a state is governed by the
Schrodinger equation
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where £ is the Planck constant with
h = 6.62607004 x 10~**m?kg/s,

and H is a Hermitian operator (matrix) corre-
sponding to the energy of the system known as the
Hamiltonian.



Multipartite systems

Suppose |v;) € C™, |vg) € C* are quantum state.
Then the |v) ® |vy) = |v1v9) is a composite state
(uncorrelated state) in the bipartite system.

For example, |v;) = Bj ,|ve) = {Zj, then

a1b1

B B lalve) | |aibe
1) @ v2) = |v1)|v2) = |v10a) = {aglvaj fa2b |
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A state |[v) € C™ ® C" is entangled if it is not a
composite state.

The orthonormal basis {]|00),]01),[10),|11)} for
C* = C? ® C? consists of decomposable states.

The orthonormal basis
{500} + 1)), Z5(100) — [11)),
L0001+ 10)), L5(lo1) — 10))}

consists of entangled states known as Bell states.

Suppose an observable corresponds to the Hermi-
tian matrix with eigenvectors |00),|01),]10), |11),
say, H = diag (3/2,1/2,—-1/2,-3/2).

Then the measurement of \%OOO) + |11)) will yield
|00) or |11) each with 50%.

In particular, the first Schrodinger cat is alive
(dead) if and only if the second one is alive (dead).

We can construct multipartite system from k&
systems to get C" @ - .- @ C™* = C™ ™k,

For example, C?> ® C? ® C? is a 3 qubit system.



Quantum operations on multipartite systems

We focus on qubit systems.

e Local (unitary) operations. If Uy, Uy € My are uni-
tary, then U; ® U, is unitary

(Ul &® U2)|U1U2> = |U1U1>|UQU2>.

e General U € M, is a product of local unitary gates
U; ® Uy and controlled unitary gates of the form
IQ@V&HdV@IQ.

e Proof. Let U be unitary.

Find P, = U;®V; so that P,U has zero (4,1) entry.
Find P, = Uy & I, so that P,P,U has zero (4,1)
and (2, 1) entry.

Find P; = U3z ® I, so that the first column of
P3P2P1U is (1,0,0,0)t. Then P2P1 = [].] D B.
Find P, = I, &V, such that P P3P, P,U has zero
(3,2) entry.

Find P5 :U5®12 such that P5P1U:_[2®‘/6
If Po=1L,® V), then U= P} ---P].

e We can represent the operations on a circuit dia-
grams, and implement the operations using a quan-
tum computers.

See [Nakahara and Ohmi, Chapter 4].

e We only need to check the actions of the
quantum operations on measurable states, say,
|000), [001), ..., |111).

e The standard gates and basic gates might vary from
different quantum computer.

e We are working on a research project requiring a
decomposition of a unitary U € Mg into simple
unitary gates.



Mixed states and density matrices

A system is in a mixed state if there is a probability p;
that the system is in state |z;) fori=1,..., N.

If N =1, then the system is in pure state.

Consider an observable corresponds to the Hermitian ma-
trix A.

e The mean value of the quantum system with quan-
tum state |x) is given by (A) = (z|A|z).

e The mean value of the quantum system with a
mixed state Zjvzl p;lz;) is given by

(A) = pilaj|Aley) = tr (Ap) = tr (pA),

j=1
where
N
p=> pjle;) )l
j=1
is a density operator (matrix).

Description of quantum systems in mixed states.

A1 A physical state is specified by a density matrix
p : H — H, which is positive semidefinite with
trace equal to one.

A2’ The mean value of an observable associate with the
Hermitian matrix A is (A) = tr (pA).

A3’ The temporal evolution of the density matrix is
given by the Liouville-von Neumann equation
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where H is the system Hamiltonian.



Multipartitle systems
o Let p1 € M,,, ps € M, be mixed states. Then
p1 & p2 € My, & My, = My n,

is a composite (uncorrelated) state in the bipartite
system.

e General states p in M,,, ® M, are density matrices
in My, n,.

e Let p be a density matrix in the bipartite system
M,, ® M,,. It is separable if it is a probabilistic
(convex) combination of composite state, i.e.,

N
p=221Pj0i ®T;

with quantum states o; € M,,,, 7; € M,,.

e Otherwise, it is entangled.

e Note that p is always a linear combination of
composite states.

e Checking whether a state is separable is an NP-
hard problem.

e A common test is to use the partial transposes
defined by

(p1 @ p2)P"' = pf @ pa, (p1 @ p2)P? = p1 @ ph.

e If p is separable, then the partial transposes are
also quantum states, i.e., positive semi-definite.

e If pis a state such that pP" is positive semidefinite,
we say that p is a ppt (positive partial trace) state.

e One can extend the concepts to multipartite sys-
tems.



Partial traces

e If p is quantum state in the bipartite system M,,, ®
M, , the partial traces of p are defined by

tr1(p1 ® pa) = tr(p1)p2 = p2 € My,,

tro(pr @ pa) = pitr (p2) = p1 € M,,.

e One may regard p; lies in the principal system, and
p2 is the environment.

e There are many problems concerning partial traces.

* Given quantum states p; € M,,, po € M,

determine

S(p1,p2) = {p € Dnyny : tri(p) = pa, tra(p) = p1}.

* Find a quantum state in S(p1, pa) with lowest

rank.

* Find a quantum state in S(py, p2) with the

lowest von Neumann entropy

S(p) = —trplog p.

* Find all possible eigenvalues of p € S(p1, p2).

e One can extend the concepts to multipartite sys-
tems.



Research questions about quantum states
Quantum State tomography
Determine p = (p;;).

e For a Hermitian matrix A = (a;;), we can deter-
mine tr (a;;) X for X € B, where

B={E,:1<r<n}U{Es+FE,:1<r<s<n}

U{i(Ers — Eg) 1 1 <71 <s<n}.
Then A = (a;;) is completely determined.

e [f we know that tr A = 1, we may skip the checking

of tr AE,,,.
Ty
e If p=1(py) =1\ | (Z1,...,%,) is a pure state,
Tn
we only need to get information for pyo, ..., p1,. If

x1 > 0, then we can solve z; in the equation
n
r]+ Z |p1;/1]* = 1.
j=2

Thus, one only need to check tr pX for
X = E1j+Ej1, X :Z'(Elj _Ej1)7 ] = 2,...,71.

e Can we write a computer program to do that?
e Can we set up physical experiments to to that?

e Consider the Pauli matrices: o9 = I,

(01 (0 —i /1 0
2=\10)% i 0) %" \o -1/

For an n-qubit states in Msn, the test set can be

{Tl ® e ® Tn : Tj S {0070'x7(7y70z}}’

e Suppose S C M, is a special set of quantum states.
Can we find a small test set S of observable to
determine whether p € § or not?

e For example, determine all p with specific norm,
eigenvalues, specific the Renyi entropy
H, = 1= log tr p* for o € (0,1) U (1, 00).
For a = 2, we get Hy(p) = —tr log p?.
When a — 1, we get the
von Neumann entropy H(p) = —tr(plogp).



Multipartite states

Determine multipartite states with special properties.
o Let p1 € M,,, p2 € M,,. Determine the set

S(p1,p2) ={p € My, @My, : trip = py,tr1p = pa}.

e One may consider the special case when p; =
In2/n2.

e Determine all possible norms, eigenvalues, Renyi
entropy of p € S(p1, ps).

Use projection methods to find the elements.
e Extend the problems to multipatite systems.

e For example, determine the set of states
pE My @My, ® M,

with specific tr(p) = pas € My, ® My,
and tr3(p) = pr2 € My, @ My,.

e If the set is non-empty, determine all possible
norms, eigenvalues, Renyi entropy of p € S(p1, p2).



Projection methods and gradient methods

e It is difficult to construct mutlipartite states with
prescribed reduced states with overlapped subsys-
tems. For example, construct p € M,,, ® M,,, ® M,
with prescribed pi2 and pog.

e One may construct a tripartite state p with pre-
scribed p € M,, ® M,, ® M,, using alternating
projection methods between the two convex sets:

Sy = {P € Diynong tr3(p) = pl?}v
Sy = {P € Dmnzn:s : trl(p) = p23}'
e We know that set

S(p1,p2) ={p € Duyny s tr1(p) = pa,tra(p) = p1}

is non-empty. One may determine p € S(p1, p2)
with the maximum / minimum entropy H(p), say,
using gradient method, i.e., find the steepest de-
scent direction VH (p) and change p to

p+tVH(p)

for some suitable step size t > 0.



Quantum Operations/channels

Quantum operations £ : M,, — M, of a close sys-
tem with density matrices in M, is a unitary simi-
larity transform

E(A)=UAU', AecM,,
where U € M, is unitary.
Here U = U; may be a function of ¢: time.

A mixed unitary channel £ has the form
E(A) =) pUAUl, A€M,
j=1
where Uy, ..., U, € M, are unitary, and py,...,p,

are positive numbers summing up to 1.

For an open system which may interact with the
environment, £ : M, ® M, has the form

E(A) =tro(U(A®@B)UT) = Y F;AF], A€M,
j=1

where Fi, ..., F, € M, satisfy Z;Zl FjTFj =1,.
More generally, a quantum operations & : M, —

M, has the operator sum representation

E(A) =try(UA®B)UT) =Y FAF], Aec M,
j=1

where Fi, ..., F,. € M,,, satisfy Z;Zl FJTFJ- =1,.

By a result of Choi, ® : M,, — M,, is a quantum
channel if the Choi matrix of ®

C(®) = [®(Ey)] = [Py] € My (M)

is positive semidefinite, tr Pj; = 1 for all j =
I,...,n,and tr P =0 forall 1 <¢ < j <n.

System tomography can be done by determining
the states

E(Ewk), E(Ei + Ejj + Eij + Ej) /2,
and E(Ey; + Ejj + il —iEj;)/2

fork=1,....,n,1 <1< j5<n.



Additional open problems

e Determine the existence and construct quantum
operations ® : M,, — M,, sending quantum states
Ply-y P € Dy to ..., 7 € Dp,.

e If such quantum operation exists, construct one
with minimum/maximum channel entropy.

e Determine whether a given channel has special
properties, say, a mixed unitary channel.

e Construct quantum error correction codes and
schemes for a quantum channel.

e Determine the quantum complexity, capacity, etc.
of a quantum channel.



