1. Quantum Information Science Research

Basic model Quantum Computing Unit Optical lattices, NMR, Anyons

Quantum bit

(Qubit)

- Design a quantum process to use quantum proper*ties* to get useful information for a given problem.
- Choose a *suitable* quantum system to build the hardware.
- Prepare the initial (*entangled*) quantum states.
- Create a suitable environment for the quantum system to evolve according to quantum mechanical rules.
- Apply a suitable *measurement* to extract useful information.

Remarks

- In physics labs, one would prepare quantum states, manipulate them with quantum operations and measure the output states, where measuring quantum states is also a quantum operation.
- Mathematical theory is needed to help model and design the process.
- Computer Science theory is needed to develop the computation and communication algorithms.
- Knowledge in engineering, material science, chemistry, etc. are needed to build the system.
- We are interested in the mathematical theory.

Quentum states Quentum Channels

implicated processed

Matin Theory

2. Mathematical framework and notation

• Quantum states with n measurable states are represented as complex unit vectors $v \in \mathbb{C}^n$.

 $\mathcal{L}_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} Q_{2} \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathcal{L}_{1}$

VEETEN

W1

A 7

(2+i)e,

) || = (12, 1+12,

- One does not distinguish v and $e^{it}v$ for any $t \in \mathbb{R}$.
- The conjugate transpose of $v \in \mathbb{C}^n$ and $A \in M_{m,n}$ are denoted by v^{\dagger} and A^{\dagger} , where $M_{m,n}$ is the set of $m \times n$ complex matrices. $\swarrow \lor = \checkmark = (-1, 2)$
- In physics literature, one uses the bracket notation for v and v^{\dagger} , namely, $|v\rangle$ and |v|
- For example, a photon has two measurable states so that it is represented by vectors in \mathbb{C}^2 .
- Upon measurement, one only sees $|e_1\rangle$ or $|e_2\rangle$. Sometimes, written as $|\uparrow\rangle$, $|\rightarrow\rangle$.
- A general quantum state has the form $a_1|e_1\rangle + a_2|e_2\rangle$ with probability of $|a_1|^2$ in $|e_1\rangle$ and $|a_2|^2$ in $|e_2\rangle$.
 - We say that the quantum state is a *superposition* of its measurable states.
 - Schrödinger cat interpretation of superposition...
 - One may have a different measuring "frame" or "basis", say, $|f_1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$, $|f_2\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix}$, and the superposition has the form $b_1|f_1\rangle + b_2|f_2\rangle$.
 - Quantum operations on a closed system with vector states in \mathbb{C}^n are unitary matrices U, i.e., $U^{\dagger}U = I_n$.

Basic linear algebra [Nakahara and Ohmi, Chapter 1]

• Complex vectors.

trice

- Inner product structure.
- Orthogonal and orthonormal vecotrs.
- Schur Triangularization Lemma.
- Special class of matrices: Hermitian, positive semidefinite, unitary, normal matrices.

Spectral theorem of diagonalizable and normal ma-