
1. Quantum Information Science Research

Basic model

−→ Quantum Computing Unit
Optical lattices, NMR, Anyons

−→

Quantum bit
(Qubit)

• Design a quantum process to use quantum proper-
ties to get useful information for a given problem.

• Choose a suitable quantum system to build the
hardware.

• Prepare the initial (entangled) quantum states.

• Create a suitable environment for the quantum sys-
tem to evolve according to quantum mechanical
rules.

• Apply a suitable measurement to extract useful in-
formation.

Remarks

• In physics labs, one would prepare quantum states,
manipulate them with quantum operations and
measure the output states, where measuring quan-
tum states is also a quantum operation.

• Mathematical theory is needed to help model and
design the process.

• Computer Science theory is needed to develop the
computation and communication algorithms.

• Knowledge in engineering, material science, chem-
istry, etc. are needed to build the system.

• We are interested in the mathematical theory.



2. Mathematical framework and notation

• Quantum states with n measurable states are rep-
resented as complex unit vectors v ∈ Cn.

• One does not distinguish v and eitv for any t ∈ R.

• The conjugate transpose of v ∈ Cn and A ∈ Mm,n

are denoted by v† and A†, where Mm,n is the set of
m× n complex matrices.

• In physics literature, one uses the bracket notation
for v and v†, namely, |v〉 and 〈v|.

• For example, a photon has two measurable states
so that it is represented by vectors in C2.

• Upon measurement, one only sees |e1〉 or |e2〉.
Sometimes, written as | ↑ 〉, | → 〉.

• A general quantum state has the form a1|e1〉+a2|e2〉
with probability of |a1|2 in |e1〉 and |a2|2 in |e2〉.

• We say that the quantum state is a superposition
of its measurable states.

• Schrödinger cat interpretation of superposition...

• One may have a different measuring “frame” or

“basis”, say, |f1〉 = 1√
2

[
1
1

]
, |f2〉 = 1√

2

[
1
−1

]
, and

the superposition has the form b1|f1〉+ b2|f2〉.

• Quantum operations on a closed system with vector
states in Cn are unitary matrices U , i.e., U †U = In.

Basic linear algebra [Nakahara and Ohmi, Chapter 1]

• Complex vectors.

• Inner product structure.

• Orthogonal and orthonormal vecotrs.

• Schur Triangularization Lemma.

• Special class of matrices: Hermitian, positive
semidefinite, unitary, normal matrices.

• Spectral theorem of diagonalizable and normal ma-
trices.



3. Quantum Mechanics

Here are the basic postulates of quantum mechanics in
terms of vector states.

Copenhagen interpretation

A1 A vector state |x〉 is a unit vector in a Hilbert space
H (usually Cn). Linear combinations (superposi-
tion) of the physical states are allowed in the state
space.

A2 Every physical quantity (observable) corresponds
to a Hermitian operator (matrix) A ∈M2 such that
A has orthonormal eigenvectors |u1〉 and |u2〉. Sup-
pose a state |x〉 = c1|u1〉+ c2|u2〉. Then applying a
measurement of |x〉 corresponding to A will cause
the wave function (that describes the quantum
state) to collapse to |u1〉 or |u2〉 with probability
of |c1|2 and |c2|2, respectively. Here c1, c2 are called
the probability amplitude of the state |x〉.

A3 The time dependence of a state is governed by the
Schrödinger equation

ih̄
∂|x〉
∂t

= H|x〉,

where h̄ is the Planck constant with

h̄ = 6.62607004× 10−34m2kg/s,

and H is a Hermitian operator (matrix) corre-
sponding to the energy of the system known as the
Hamiltonian.



Multipartite systems

• Suppose |v1〉 ∈ Cm, |v2〉 ∈ Cn are quantum state.
Then the |v1〉⊗ |v2〉 = |v1v2〉 is a composite state
(uncorrelated state) in the bipartite system.

• For example, |v1〉 =

[
a1
a2

]
, |v2〉 =

[
b1
b2

]
, then

|v1〉⊗|v2〉 = |v1〉|v2〉 = |v1v2〉 =

[
a1|v2〉
a2|v2〉

]
=


a1b1
a1b2
a2b1
a2b2

.

• A state |v〉 ∈ Cm ⊗ Cn is entangled if it is not a
composite state.

• The orthonormal basis {|00〉, |01〉, |10〉, |11〉} for
C4 = C2 ⊗ C2 consists of decomposable states.

• The orthonormal basis

{ 1√
2
(|00〉+ |11〉), 1√

2
(|00〉 − |11〉),

1√
2
(|01〉+ |10〉), 1√

2
(|01〉 − |10〉)}

consists of entangled states known as Bell states.

• Suppose an observable corresponds to the Hermi-
tian matrix with eigenvectors |00〉, |01〉, |10〉, |11〉,
say, H = diag (3/2, 1/2,−1/2,−3/2).

Then the measurement of 1√
2
(|00〉+ |11〉) will yield

|00〉 or |11〉 each with 50%.

In particular, the first Schrödinger cat is alive
(dead) if and only if the second one is alive (dead).

• We can construct multipartite system from k
systems to get Cn1 ⊗ · · · ⊗ Cnk = Cn1···nk .

• For example, C2 ⊗ C2 ⊗ C2 is a 3 qubit system.



Quantum operations on multipartite systems

We focus on qubit systems.

• Local (unitary) operations. If U1, U2 ∈ M2 are
unitary, then U1 ⊗ U2 is unitary U1 ⊗ U2)|v1v2〉 =
|U1v1〉|U2v2〉.

• General U ∈M4 is a product of local unitary gates
U1 ⊗ U2 and controlled unitary gates of the form
I2 ⊕ V and V ⊕ I2.

• Proof. Let U be unitary.

Find P1 = U1⊗V1 so that P1U has zero (4, 1) entry.

Find P2 = U2 ⊕ I2 so that P2P1U has zero (4, 1)
and (2, 1) entry.

Find P3 = U3 ⊗ I2 so that the first column of
P3P2P1U is (1, 0, 0, 0)t. Then P2P1 = [1]⊕B.

Find P4 = I2 ⊕ V4 such that P4P3P2P1U has zero
(3, 2) entry.

Find P5 = U5 ⊗ I2 such that P5 · · ·P1U = I2 ⊕ V6.

If P †6 = I2 ⊕ V6, then U = P †1 · · ·P
†
6 .

• We can represent the operations on a circuit dia-
grams, and implement the operations using a quan-
tum computers.

See [Nakahara and Ohmi, Chapter 4].

• We only need to check the actions of the
quantum operations on measurable states, say,
|000〉, |001〉, . . . , |111〉.

• The standard gates and basic gates might vary from
different quantum computer.

• We are working on a research project requiring a
decomposition of a unitary U ∈ M8 into simple
unitary gates.


