1. Quantum Information Science Research

Basic model

% 8 N Quantum Computing Unit % 8

Optical lattices, NMR, Anyons

Quantum bit
(Qubit)

Design a quantum process to use quantum proper-
ties to get useful information for a given problem.

Choose a suitable quantum system to build the
hardware.

Prepare the initial (entangled) quantum states.

Create a suitable environment for the quantum sys-
tem to evolve according to quantum mechanical
rules.

Apply a suitable measurement to extract useful in-
formation.

Remarks

In physics labs, one would prepare quantum states,
manipulate them with quantum operations and
measure the output states, where measuring quan-
tum states is also a quantum operation.

Mathematical theory is needed to help model and
design the process.

Computer Science theory is needed to develop the
computation and communication algorithms.

Knowledge in engineering, material science, chem-
istry, etc. are needed to build the system.

We are interested in the mathematical theory.
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2. Mathematical framework and notation

Quantum states with n measurable states are rep-
resented as complex unit vectors v € C".

One does not distinguish v and ev for any ¢ € R.

The conjugate transpose of v € C" and A € M,,,
are denoted by v and AT, where M,,,, is the set of
m X n complex matrices.

In physics literature, one uses the bracket notation
for v and o', namely, |v) and (v].

For example, a photon has two measurable states
so that it is represented by vectors in C2.

Upon measurement, one only sees |e;) or |es).
Sometimes, written as | T), | = ).

A general quantum state has the form aq|e;)+as|es)
with probability of |a;|? in |e;) and |as|? in |e3).

We say that the quantum state is a superposition
of its measurable states.

Schrodinger cat interpretation of superposition...

One may have a different measuring “frame” or

14 o) 1 1
basis”, say, |f1) = \/% L} f2) = \/% [_1}7 and

the superposition has the form by|f;) + ba|f2).

Quantum operations on a closed system with vector
states in C" are unitary matrices U, i.e., UTU = I,.

Basic linear algebra [Nakahara and Ohmi, Chapter 1]

Complex vectors.

Inner product structure.

Orthogonal and orthonormal vecotrs.
Schur Triangularization Lemma.

Special class of matrices: Hermitian, positive
semidefinite, unitary, normal matrices.

Spectral theorem of diagonalizable and normal ma-
trices.



3. Quantum Mechanics

Here are the basic postulates of quantum mechanics in
terms of vector states.

Copenhagen interpretation

A1 A vector state |z) is a unit vector in a Hilbert space
H (usually C"). Linear combinations (superposi-
tion) of the physical states are allowed in the state
space.

Every physical quantity (observable) corresponds
to a Hermitian operator (matrix) A € M, such that
A has orthonormal eigenvectors |u1) and |ug). Sup-
pose a state |r) = c1|u1) + co|up). Then applying a
measurement of |z) corresponding to A will cause
the wave function (that describes the quantum
st to collapse to |u;) or |ug) with probability

an respectlvely Here ¢y, ¢ are called

robab y amphtude of the state |z).

A3 The time dependence of a state is governed by the
Schrodinger equation
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H
T |z),

where £ is the Planck constant with

h = 6.62607004 x 10~**m?kg/s,

and H is a Hermitian operator (matrix) corre-
sponding to the energy of the system known as the
Hamﬂtoman




Multipartite systems
v

e Suppose |v;) € C™, |vy) € C" are quantum state.
Then the [v1) ® [v2) = [viv2) is a composite state
(uncorrelated state) in the bipartite system.
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e For example, |v;) = ,|ve) = , then
(05} b2
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V1) @ [v2) = |v1)|v2) = |v1va) =
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e A state [v) € C™ ® C" is entangled if it is not a

composite state. -

e The orthonormal basis {]|00),]01),[10),|11)} for
C* = C? ® C? consists of decomposable states.

\
e The orthonormal basis L b |\ :7
100y — 2lo|F]o
{{7(100) +[11)),)55(]00) — [11}), [T
2(lo1) + 10y, (ory —poyyy LT[

consists of entangled states known as Bell states.

e Suppose an observable corresponds to the Hermi- E_
tian matrix with eigenvectors |00) |01) 110), |11),
say, H = diag (3/2,1/2, 1/2 -

Then the measuremen

|00) or |11) each with

In particular, the first chrodlnger cat is alive
(dead) if and only if the second one is alive (dead).

e We can construct multipartite system from k&
systems to get C" @ - - - @ C™" = C™ "k,
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KQuantum operations on multipartite systems

We focus on qubit systems.
|

e Local (unitary) operations. If U;,U; € M, are \V >='

unitary, then U; ® Us is unitary [Jl ® Us)|vive) = ;—"
|U11)1>|U2’UQ>. L’XU — C‘?
e General U € M, is a product of logdl unitary gates
U ® olled unitary/gates of the form /M l V >
IQ@VandVEBIQ. \ )\_f_—_‘
) \V4 ‘ !
e Proof. Let U be unitary. _}@ ﬂ
Fmd Plﬁ CK ®@V; so that P,U has zero ,(\ 1) éntry. lz >
Fmd P =U; @ I so that P,P,U has zero\4,1) [ Ff L) W
‘ -"'ﬂ
and (2, l) entry. lj‘l Y r K \ )

Fl}‘dij:UgggIzsothatte X~ or—

P3P2P 1s (1,070 Th%Pz = (0 » R (y KL

Find P, = I, &V, stich that PPV, \

3,2) entry.

(3,2) entry O v . | —\ (ﬁp»
= Us ® [, such that P5--- P,

Find P5
If Pl =1, & Vg, then U = P} - PT\/

Q/ S e We afh eMpresent “The operath

grams, and implement the operations using a quan-

tum computers. \/ O (

See [Nakahara and Ohmi, Chapter 4].
e We only need to check the actions of the - » (\

quantum operations on measurable states, say, \/

’CQ

1000), [001), . .., |111).

l
e The standard gates and basic gates might vary from\é’
different quantum computer. (

e We are working on a research project requiring a
decomposition of a unitary U € Mg into simple
unitary gates.
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