Mixed states and density matrices

A system is in a mixed state if there is a probability p_i that the system is in state $|x_i\rangle$ for $i=1,\ldots,N$.

If N = 1, then the system is in pure state.

Consider an observable corresponds to the Hermitian matrix A.

- The mean value of the quantum system with quantum state $|x\rangle$ is given by $\langle A \rangle = \langle x|A|x\rangle$.
- The mean value of the quantum system with a mixed state $\sum_{i=1}^{N} p_i |x_i\rangle$ is given by

is a density operator (matrix).

Description of quantum systems in mixed states.

- A1' A physical state is specified by a density matrix $\rho: \mathcal{H} \to \mathcal{H}$, which is positive semidefinite with trace equal to one.
- A2' The mean value of an observable associate with the Hermitian matrix A is $\langle A \rangle = \operatorname{tr}(\rho A)$.
- A3' The temporal evolution of the density matrix is given by the Liouville-von Neumann equation

$$i\hbar\frac{d}{dt}\rho = [H,\rho] = H\rho - \rho H,$$

where H is the system Hamiltonian.

Multipartitle systems

• Let $\rho_1 \in M_{n_1}, \rho_2 \in M_{n_2}$ be mixed states. Then

$$\rho_1 \otimes \rho_2 \in M_{n_1} \otimes M_{n_2} \equiv M_{n_1 n_2}$$

is a composite (uncorrelated) state in the bipartite system.

- General states ρ in $M_{n_1} \otimes M_{n_2}$ are density matrices in $M_{n_1n_2}$.
- Let ρ be a density matrix in the bipartite system $M_{n_1} \otimes M_{n_2}$. It is **separable** if it is a probabilistic (convex) combination of composite state, i.e.,

$$\rho = \sum_{j=1}^{N} p_j \sigma_j \otimes \tau_j$$

with quantum states $\sigma_j \in M_{n_1}, \tau_j \in M_{n_2}$

• Otherwise, it is **entangled**.

1423

- Note that ρ is always a linear combination of composite states.
- Checking whether a state is separable is an NP-hard problem.
- A common test is to use the **partial transposes** defined by

$$\int (\rho_1 \otimes \rho_2)^{pt_1} = \rho_1^t \otimes \rho_2, \quad (\rho_1 \otimes \rho_2)^{pt_2} = \rho_1 \otimes \rho_2^t.$$

- If ρ is separable, then the partial transposes are also quantum states, i.e., positive semi-definite.
- If ρ is a state such that ρ^{pt_1} is positive semidefinite, we say that ρ is a ppt (positive partial trace) state.
- One can extend the concepts to multipartite systems.

Partial traces

• If ρ is quantum state in the bipartite system $M_{n_1} \otimes M_{n_2}$, the partial traces of ρ are defined by

SEP

- One may regard ρ_1 lies in the principal system, and ρ_2 is the environment.
- There are many problems concerning partial traces.
 - * Given quantum states $\rho_1 \in M_m, \rho_2 \in M_n$, determine

$$S(\rho_1, \rho_2) = \{ \rho \in D_{n_1 n_2} : \operatorname{tr}_1(\rho) = \rho_2, \operatorname{tr}_2(\rho) \neq \rho_1 \}$$

- * Find a quantum state in $S(\rho_1, \rho_2)$ with lowest rank.
- * Find a quantum state in $\mathcal{S}(\rho_1, \rho_2)$ with the lowest von Neumann entropy

$$S(\rho) = -\operatorname{tr} \rho \log \rho.$$

- * Find all possible eigenvalues of $\rho \in \mathcal{S}(\rho_1, \rho_2)$.
- One can extend the concepts to multipartite systems.

= n & muesto

ln/p) = (1 (0.04)

Research questions about quantum states

Quantum State tomography Determine $\rho = (\rho_{ij})$.

• For a Hermitian matrix $A = (a_{ij})$, we can determine $\operatorname{tr}(a_{ij})X$ for $X \in \mathcal{B}$, where

$$\mathcal{B} = \{E_{rr} : 1 \le r \le n\} \cup \{E_{rs} + E_{sr} : 1 \le r < s \le n\}$$

$$\cup \{i(E_{rs} - E_{sr}) : 1 \le r < s \le n\}.$$

Then $A = (a_{ij})$ is completely determined.

• If we know that $\operatorname{tr} A = 1$, we may skip the checking of $\operatorname{tr} AE_{nn}$.

we only need to get information for $\rho_{12}, \ldots, \rho_{1n}$. If $x_1 > 0$, then we can solve x_2 in the equation

$$x_1 > 0$$
, then we can solve x_1 in the equation
$$x_1^2 + \sum_{j=2}^{n} |\rho_{1j}/t_j|^2 = 1.$$
 Thus, one only need to check (r, ρ)

 $X = E_{1j} + E_{j1}, X = i(E_{1j} - E_{j1}), j = 2, ..., h.$

- Can we write a computer program to do that? 9,-0
- Can we set up physical experiments to to that?

• Consider the Pauli matrices
$$r_0 = I_2$$
,

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

For an *n*-qubit states in M_{2^n} , the test set can be

$$T_0 \otimes T_0$$
 $\{T_1 \otimes \cdots \otimes T_n : T_j \in \{\sigma_0, \sigma_x, \sigma_y, \sigma_z\}\}.$

- Suppose $S \subseteq M_n$ is a special set of quantum states. Can we find a small test set S of observable to determine whether $\rho \in S$ or not?
- For example, determine all ρ with specific norm, eigenvalues, specific the Renyi entropy

$$H_{\alpha} = \frac{1}{1-\alpha} \log \operatorname{tr} \rho^{\alpha}$$
 for $\alpha \in (0,1) \cup (1,\infty)$.
For $\alpha = 2$, we get $H_2(\rho) = -\operatorname{tr} \log \rho^2$.
When $\alpha \to 1$, we get the

when $\alpha \to 1$, we get the von Neumann entropy

$$H(\rho) = -\operatorname{tr}(\rho \log \rho).$$

MII A12 A13
A13

Multipartite states

Determine multipartite states with special properties.

- Let $\rho_1 \in M_{n_1}, \rho_2 \in M_{n_2}$. Determine the set $S(\rho_1, \rho_2) = \{ \rho \in M_{n_1} \otimes M_{n_2} : \operatorname{tr}_1 \rho = \rho_2, \operatorname{tr}_1 \rho = \rho_2 \}.$
- One may consider the special case when $\rho_2 = I_{n_2}$.
- Determine all possible norms, eigenvalues, Renyi entropy of $\rho \in \mathcal{S}(\rho_1, \rho_2)$.

Use projection methods to find the elements.

- Extend the problems to multipatite systems.
- For example, determine the set of states $\rho \in M_{n_1} \otimes M_{n_2} \otimes M_{n_3}$ with specific $\operatorname{tr}_1(\rho) = \rho_{23} \in M_{n_2} \otimes M_{n_3}$, and $\operatorname{tr}_3(\rho) = \rho_{12} \in M_{n_1} \otimes M_{n_2}$.
- If the set is non-empty, determine all possible norms, eigenvalues, Renyi entropy of $\rho \in \mathcal{S}(\rho_1, \rho_2)$.