Research questions about quantum states

Quantum State tomography Determine $\rho = (\rho_{ij})$.

• For a Hermitian matrix $A = (a_{ij})$, we can determine tr $(a_{ij})X$ for $X \in \mathcal{B}$, where

$$\mathcal{B} = \{ E_{rr} : 1 \le r \le n \} \cup \{ E_{rs} + E_{sr} : 1 \le r < s \le n \}$$
$$\cup \{ i(E_{rs} - E_{sr}) : 1 \le r < s \le n \}.$$

Then $A = (a_{ij})$ is completely determined.

• If we know that $\operatorname{tr} A = 1$, we may skip the checking of $\operatorname{tr} AE_{nn}$.

• If
$$\rho = (\rho_{ij}) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} (\bar{x}_1, \dots, \bar{x}_n)$$
 is a pure state,

we only need to get information for $\rho_{12}, \ldots, \rho_{1n}$. If $x_1 > 0$, then we can solve x_1 in the equation

$$x_1^2 + \sum_{j=2}^n |\rho_{1j}/x_1|^2 = 1$$

Thus, one only need to check $\operatorname{tr} \rho X$ for

$$X = E_{1j} + E_{j1}, X = i(E_{1j} - E_{j1}), j = 2, \dots, n$$

- Can we write a computer program to do that?
- Can we set up physical experiments to to that?
- Consider the Pauli matrices: $\sigma_0 = I_2$,

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

For an *n*-qubit states in M_{2^n} , the test set can be

$$\{T_1 \otimes \cdots \otimes T_n : T_j \in \{\sigma_0, \sigma_x, \sigma_y, \sigma_z\}\}.$$

- Suppose $S \subseteq M_n$ is a special set of quantum states. Can we find a small test set S of observable to determine whether $\rho \in S$ or not?
- For example, determine all ρ with specific norm eigenvalues, specific the Renyi entropy $H_{\alpha} = \frac{1}{1-\alpha} \log \operatorname{tr} \rho^{\alpha} \text{ for } \alpha \in (0,1) \cup (1,\infty).$

 $H_2(\rho) = -\mathrm{tr} \log$

 $H(\rho) = -\mathrm{tr}\left(\rho \log \rho\right)$

For $\alpha = 2$, we get When $\alpha \to 1$, we get the

von Neumann entropy

Multipartite states Determine multipartite states with special properties. • Let $\rho_1 \in M_{n_1}, \rho_2 \in M_{n_2}$. Determine the set $\gamma \succeq$ $\mathcal{S}(\rho_1,\rho_2) = \{\rho \in M_{n_1} \otimes M_{n_2} : \operatorname{tr}_1 \rho = \rho_2, \operatorname{tr}_1 \rho = \rho_2 \}.$ To • One may consider the special case when $\rho_2 = I_{n_2}$. • Determine all possible norms, eigenvalues, Renyi +RI12 entropy of $\rho \in \mathcal{S}(\rho_1, \rho_2)$. (-Relis Use projection methods to find the elements. • Extend the problems to multipatite systems. 1) (1119.2 • For example, determine the set of states 21/2/ $\rho \in M_{n_1} \otimes M_{n_2} \otimes M_{n_3}$ $\left(P_{ii} + \int_{Z_{i}} \right)$ with specific tr $_1(\rho) = \rho_{23} \in M_{n_2} \otimes M_{n_3}$, 7 $\operatorname{tr}_{3}(\rho) = \rho_{12} \in M_{n_1} \otimes M_{n_2}.$ and • If the set is non-empty, determine all possible norms, eigenvalues, Renyi entropy of $\rho \in \mathcal{S}(\rho_1, \rho_2)$. Putl2, +P, +h2 XIM メ $\lambda^{*}(\varsigma)$ - ot my . E 1,2,7 (III) 101)

Quantum Operations/channels
• Quantum operations
$$\mathcal{E} : M_n \to M_n$$
 of a close system with density matrices in M_n is a unitary similarity transform
 $\mathcal{E}(A) = UAU^{\dagger}, \quad A \in M_n, \quad Where \ U \in M_n$ is unitary.
• Here $U = U_t$ may be a function of t : time.
• A mixed unitary channel \mathcal{E} has the form
 $\mathcal{E}(A) = \frac{1}{r} \frac{1}{r} \frac{1}{r} \frac{1}{r} \frac{1}{r} \frac{1}{r} A \in M_n, \quad Where \ U_1, \dots, U_r \in M_n$ are unitary, and p_1, \dots, p_r are positive numbers summing up to 1.
• For an open system (with may interact with the environment, $\mathcal{E} : M_n \otimes M_n$ has the form
 $\mathcal{E}(A) = \operatorname{tr}_2(U(A \otimes B)U^{\dagger}) = \sum_{j=1}^r F_j \rho F_j^{\dagger}, \quad A \in M_n, \quad Where \ F_1, \dots, F_r \in M_n$ satisfy $\sum_{j=1}^r F_j^{\dagger} F_j = I_n$.

6

()

7

D.

5

513

(.)

• More generally, a quantum operations $\mathcal{E} : M_n \to M_m$ has the operator sum representation

$$\mathcal{E}(A) = \operatorname{tr}_2(U(A \otimes B)U^{\dagger}) = \sum_{j=1}^r F_j \rho F_j^{\dagger}, \quad A \in M_n,$$

where $F_1, \ldots, F_r \in M_{m,n}$ satisfy $\sum_{j=1}^r F_j^{\dagger} F_j = I_n$.

• System tomography can be done by determining the states

$$\mathcal{E}(E_{kk}), \ \mathcal{E}(E_{ii} + E_{jj} + E_{ij} + E_{ji})/2,$$

and $\mathcal{E}(E_{ii} + E_{jj} + iE_{ij} - iE_{ji})/2$

for $k = 1, ..., n, 1 \le i < j \le n$.