Multipartite systems

• Suppose $|v_1\rangle \in \mathbb{C}^m, |v_2\rangle \in \mathbb{C}^n$ are quantum state. Then the $|v_1\rangle \otimes |v_2\rangle = |v_1v_2\rangle$ is a **composite state** (**uncorrelated state**) in the bipartite system.

• For example,
$$|v_1\rangle = \begin{bmatrix} a_1\\a_2 \end{bmatrix}$$
, $|v_2\rangle = \begin{bmatrix} b_1\\b_2 \end{bmatrix}$, then
 $|v_1\rangle \otimes |v_2\rangle = |v_1\rangle |v_2\rangle = |v_1v_2\rangle = \begin{bmatrix} a_1|v_2\rangle\\a_2|v_2\rangle \end{bmatrix} = \begin{bmatrix} a_1b_1\\a_1b_2\\a_2b_1\\a_2b_2 \end{bmatrix}$.

- A state |v⟩ ∈ C^m ⊗ Cⁿ is entangled if it is not a composite state.
- The orthonormal basis $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ for $\mathbb{C}^4 = \mathbb{C}^2 \otimes \mathbb{C}^2$ consists of decomposable states.
- The orthonormal basis

$$\begin{cases} \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), \ \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle), \\ \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle), \ \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{cases}$$

consists of entangled states known as Bell states.

• Suppose an observable corresponds to the Hermitian matrix with eigenvectors $|00\rangle, |01\rangle, |10\rangle, |11\rangle$, say, H = diag (3/2, 1/2, -1/2, -3/2).

Then the measurement of $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ will yield $|00\rangle$ or $|11\rangle$ each with 50%.

In particular, the first Schrödinger cat is alive (dead) if and only if the second one is alive (dead).

- We can construct **multipartite system** from k systems to get $\mathbb{C}^{n_1} \otimes \cdots \otimes \mathbb{C}^{n_k} = \mathbb{C}^{n_1 \cdots n_k}$.
- For example, $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ is a 3 qubit system.

(V)_	V ₁ V ₂	3_	6	
	V2 V3	3	h	V1 V2

Quantum operations on multipartite systems

We focus on qubit systems.

• Local (unitary) operations. If $U_1, U_2 \in M_2$ are unitary, then $U_1 \otimes U_2$ is unitary

 $(U_1 \otimes U_2) |v_1 v_2\rangle = |U_1 v_1\rangle |U_2 v_2\rangle.$

- General $U \in M_4$ is a product of local unitary gates $U_1 \otimes U_2$ and controlled unitary gates of the form $I_2 \oplus V$ and $V \oplus I_2$.
- Proof. Let U be unitary.

Find $P_1 = U_1 \otimes V_1$ so that $P_1 U$ has zero (4, 1) entry. Find $P_2 = U_2 \oplus I_2$ so that $P_2 P_1 U$ has zero (4, 1)

and (2, 1) entry.

Find $P_3 = U_3 \otimes I_2$ so that the first column of $P_3P_2P_1U$ is $(1,0,0,0)^t$. Then $P_2P_1 = [1] \oplus B$.

Find $P_4 = I_2 \oplus V_4$ such that $P_4 P_3 P_2 P_1 U$ has zero (3, 2) entry.

Find $P_5 = U_5 \otimes I_2$ such that $P_5 \cdots P_1 U = I_2 \oplus V_6$. If $P_6 = I_2 \oplus V_6^{\dagger}$, then $U = P_1^{\dagger} \cdots P_6^{\dagger}$.

• We can represent the operations on a circuit diagrams, and implement the operations using a quantum computers.

See [Nakahara and Ohmi, Chapter 4].

- We only need to check the actions of the quantum operations on measurable states, say, $|000\rangle, |001\rangle, \dots, |111\rangle$.
- The standard gates and basic gates might vary from different quantum computer.
- We are working on a research project requiring a decomposition of a unitary $U \in M_8$ into simple unitary gates.

(4,6eh.) V, h,10

Mixed states and density matrices

A system is in a mixed state if there is a probability p_i that the system is in state $|x_i\rangle$ for $i = 1, \ldots, N$.

If N = 1, then the system is in pure state.

Consider an observable corresponds to the Hermitian matrix A.

- The mean value of the quantum system with quantum state $|x\rangle$ is given by $\langle A \rangle = \langle x | A | x \rangle$.
- The mean value of the quantum system with a mixed state $\sum_{j=1}^{N} p_j |x_j\rangle$ is given by

Description of quantum systems in mixed states.

- A1' A physical state is specified by a density matrix $\rho : \mathcal{H} \to \mathcal{H}$, which is positive semidefinite with trace equal to one.
- A2' The mean value of an observable associate with the Hermitian matrix A is $\langle A \rangle = \operatorname{tr}(\rho A)$.
- A3' The temporal evolution of the density matrix is given by the Liouville-von Neumann equation

$$i\hbar \frac{d}{dt}\rho = [H,\rho] = H\rho - \rho H,$$

where H is the system Hamiltonian.

Multipartitle systems

• Let $\rho_1 \in M_{n_1}, \rho_2 \in M_{n_2}$ be mixed states. Then

$$\rho_1 \otimes \rho_2 \in M_{n_1} \otimes M_{n_2} \equiv M_{n_1 n_2}$$

is a composite (uncorrelated) state in the bipartite system.

- General states ρ in $M_{n_1} \otimes M_{n_2}$ are density matrices in $M_{n_1n_2}$.
- Let ρ be a density matrix in the bipartite system $M_{n_1} \otimes M_{n_2}$. It is **separable** if it is a probabilistic (convex) combination of composite state, i.e.,

$$\rho = \sum_{j=1}^{N} p_j \sigma_j \otimes \tau_j$$

with quantum states $\sigma_j \in M_{n_1}, \tau_j \in M_{n_2}$.

- Otherwise, it is **entangled**.
- Note that ρ is always a **linear combination** of composite states.
- Checking whether a state is separable is an NP-hard problem.
- A common test is to use the **partial transposes** defined by

 $(\rho_1 \otimes \rho_2)^{pt_1} = \rho_1^t \otimes \rho_2, \ (\rho_1 \otimes \rho_2)^{pt_2} = \rho_1 \otimes \rho_2^t.$

- If ρ is separable, then the partial transposes are also quantum states, i.e., positive semi-definite.
- If ρ is a state such that ρ^{pt_1} is positive semidefinite, we say that ρ is a ppt (positive partial trace) state.
- One can extend the concepts to multipartite systems.

 G_{12} B D \wedge R A 5 0-, 6-, 6-(

Partial traces

• If ρ is quantum state in the bipartite system $M_{n_1} \otimes M_{n_2}$, the partial traces of ρ are defined by

$$\operatorname{tr}_{2}(\rho_{1} \otimes \rho_{2}) = \operatorname{tr}(\rho_{1})\rho_{2} = \rho_{2} \in M_{n_{2}}, \quad \text{for information}$$
$$\operatorname{tr}_{2}(\rho_{1} \otimes \rho_{2}) = \rho_{1} \operatorname{tr}(\rho_{2}) = \rho_{1} \in M_{n_{1}}.$$

- One may regard ρ_1 lies in the principal system, and ρ_2 is the environment.
- There are many problems concerning partial traces.
 - * Given quantum states $\rho_1 \in M_m, \rho_2 \in M_n$, determine

$$\mathcal{S}(\rho_1, \rho_2) = \{ \rho \in D_{n_1 n_2} : \operatorname{tr}_1(\rho) = \rho_2, \operatorname{tr}_2(\rho) = \rho_1 \}.$$

- * Find a quantum state in $\mathcal{S}(\rho_1, \rho_2)$ with lowest rank.
- * Find a quantum state in $\mathcal{S}(\rho_1, \rho_2)$ with the lowest von Neumann entropy

$$S(\rho) = -\mathrm{tr}\,\rho\log\rho.$$

- * Find all possible eigenvalues of $\rho \in \mathcal{S}(\rho_1, \rho_2)$.
- One can extend the concepts to multipartite systems.

Research questions about quantum states

Quantum State tomography

Determine $\rho = (\rho_{ij})$.

• For a Hermitian matrix $A = (a_{ij})$, we can determine tr $(a_{ij})X$ for $X \in \mathcal{B}$, where

$$\mathcal{B} = \{ E_{rr} : 1 \le r \le n \} \cup \{ E_{rs} + E_{sr} : 1 \le r < s \le n \}$$
$$\cup \{ i(E_{rs} - E_{sr}) : 1 \le r < s \le n \}.$$

Then $A = (a_{ij})$ is completely determined.

- If we know that $\operatorname{tr} A = 1$, we may skip the checking of $\operatorname{tr} AE_{nn}$.
- If $\rho = (\rho_{ij}) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} (\bar{x}_1, \dots, \bar{x}_n)$ is a pure state,

we only need to get information for $\rho_{12}, \ldots, \rho_{1n}$. If $x_1 > 0$, then we can solve x_1 in the equation

$$x_1^2 + \sum_{j=2}^n |\rho_{1j}/x_1|^2 = 1.$$

Thus, one only need to check $\operatorname{tr} \rho X$ for

$$X = E_{1j} + E_{j1}, X = i(E_{1j} - E_{j1}), j = 2, \dots, n.$$

- Can we write a computer program to do that?
- Can we set up physical experiments to to that?
- Consider the Pauli matrices: $\sigma_0 = I_2$,

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

For an *n*-qubit states in M_{2^n} , the test set can be

$$\{T_1 \otimes \cdots \otimes T_n : T_j \in \{\sigma_0, \sigma_x, \sigma_y, \sigma_z\}\}.$$

- Suppose $S \subseteq M_n$ is a special set of quantum states. Can we find a small test set S of observable to determine whether $\rho \in S$ or not?
- For example, determine all ρ with specific norm, eigenvalues, specific the Renyi entropy

$$H_{\alpha} = \frac{1}{1-\alpha} \log \operatorname{tr} \rho^{\alpha} \text{ for } \alpha \in (0,1) \cup (1,\infty).$$

For $\alpha = 2$, we get $H_2(\rho) = -\operatorname{tr} \log \rho^2$.
When $\alpha \to 1$, we get the

von Neumann entropy $H(\rho) = -\operatorname{tr}(\rho \log \rho).$

Multipartite states

Determine multipartite states with special properties

• Let $\rho_1 \in M_{n_1}, \rho_2 \in M_{n_2}$. Determine the set $\mathcal{S}(\rho_1,\rho_2) = \{\rho \in M_{n_1} \otimes M_{n_2} : \operatorname{tr}_1 \rho = \rho_2, \operatorname{tr}_1 \rho = \rho_2\}.$

0

- One may consider the special case when $\rho_2 = I_{n_2}$
- Determine all possible norms, eigenvalues, Renyi entropy of $\rho \in \mathcal{S}(\rho_1, \rho_2)$.

Use projection methods to find the elements.

- Extend the problems to multipatite systems.
- For example, determine the set of states 60 0 $\rho \in M_{n_1} \otimes M_{n_2} \otimes M_{n_3}$ with specific tr $_1(\rho) = \rho_{23} \in M_{n_2} \otimes M_{n_3}$,
- $\rho_{12} \in M_{n_1} \otimes M_{n_2}.$ • If the set is non-empty, determine all possible norms, eigenvalues, Renyi entropy of $\rho \in \mathcal{S}(\rho_1, \rho_2)$.

 $\operatorname{tr}_3(\rho) =$

and

Projection methods and gradient methods

- It is difficult to construct multipartite states with prescribed reduced states with overlapped subsystems. For example, construct $\rho \in M_{n_1} \otimes M_{n_2} \otimes M_{n_3}$ with prescribed ρ_{12} and ρ_{23} .
- One may construct a tripartite state ρ with prescribed $\rho \in M_{n_1} \bigotimes M_{n_2} \bigotimes M_{n_2}$ using alternating projection methods between the two convex sets:

1,0

nh.

n

HIX)

アメンチ

$$S_{1} = \{ \rho \notin D_{n_{1}n_{2}n_{3}} : \operatorname{tr}_{3}(\rho) = \rho_{12} \},$$

$$S_{2} = \{ \rho \notin D_{n_{1}n_{2}n_{3}} : \operatorname{tr}_{1}(\rho) = \rho_{23} \}.$$

• We know that set

$$S(\rho_1, \rho_2) = \{ \rho \in D_{n_1 n_2} : \operatorname{tr}_1(\rho) = \rho_2, \operatorname{tr}_2(\rho) = \rho_1 \}$$

is non-empty. One may determine $\rho \in \mathcal{S}(\rho_1, \rho_2)$ with the maximum / minimum entropy $H(\rho)$, say, using gradient method, i.e., find the steepest descent direction $\nabla H(\rho)$ and charge ρ to

for some suitable step size f(X)