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Quantum Gates, Quantum Circuit and
Quantum Computation

5.1 Introduction

We have introduced qubits to store information, and used them for secure
communications. It is time to consider operations acting on them. These op-
erations are called gates, or more precisely quantum gates, in analogy with
those in classical logic circuits. We will first introduced some simple quantum
gates, and show that more complicated quantum circuits are composed of
these simple gates. A collection of quantum circuits for executing a compli-
cated algorithm, a quantum algorithm, is a part of a quantum computa-
tion. We have the following general description of quantum computing model
as mentioned in Chapter 3.

DEFINITION 5.1.1. (Quantum Computation) A quantum computation
is a collection of the following three elements:

(1) A register or a set of registers,

(2) A unitary matrix U , which is tailored to execute a given quantum algo-
rithm, and

(3) Measurements to extract information we need.

More formally, we say a quantum computation is the set {H, U, {Mm}},
where H = C2n is the Hilbert space of an n-qubit register, U ∈ U(2n) repre-
sents the quantum algorithm and {Mm} is the set of measurement operators.

The hardware (1) along with equipment to control the qubits to perform (2)
and (3) is called a quantum computer.

Suppose the register is set to a fiducial initial state, |ψin⟩ = |00 . . . 0⟩, for
example. A unitary matrix Ualg is designed to represent an algorithm which
we want to execute. Operation of Ualg on |ψin⟩ yields the output state |ψout⟩ =
Ualg|ψin⟩. Information is extracted from |ψout⟩ by appropriate measurements.

Actual quantum computation processes are very different from those of a
classical counterpart. In a classical computer, we input the data from a key-
board or other input devices and the signal is sent to the I/O port of the
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102 QUANTUM COMPUTING

computer, which is then stored in the memory, then fed into the micropro-
cessor, and the result is stored in the memory before it is printed or it is
displayed on the screen. Thus information travels around the circuit. In con-
trast, information in quantum computation is stored in a register, first of all,
and then external fields, such as oscillating magnetic fields, electric fields or
laser beams are applied to produce gate operations on the register. These
external fields are designed so that they produce desired gate operation, i.e.,
unitary matrix acting on a particular set of qubits. Therefore the information
sits in the register and they are updated each time the gate operation acts on
the register.

One of the other distinctions between classical computation and quantum
computation is that the former is based upon digital processing and the latter
upon hybrid (digital + analogue) processing. A qubit may take an arbitrary
superposition of |0⟩ and |1⟩, and hence their coefficients are continuous com-
plex numbers. A gate is also an element of a relevant unitary group, which
contains continuous parameters. An operation such as “rotate a specified
spin around the x-axis by an angle π” is implemented by applying a partic-
ular pulse of specified amplitude, angle and duration. These parameters are
continuous numbers and always contain errors. These aspects might cause
challenging difficulties in a physical realization of a quantum computer. We
will use the IBM Q quantum computers to illustrate some of these issues.

Parts of this chapter depend on [1, 2] and [3].

5.2 Quantum Gates

We have so far studied the change of a state upon measurements. When
measurements are not made, the time evolution of a state is described by
the Schrödinger equation. The system preserves the norm of the state vec-
tor during time evolution. Thus the time development is unitary. Let U be
such a time-evolution operator; UU† = U†U = I. We will be free from the
Schrödinger equation in the following and assume there exist unitary matrices
which we need. Physical implementation of these unitary matrices is another
important area of quantum information processing. We will use the IBM
Q quantum computers to illustrate the practical issues. One of the impor-
tant conclusions derived from the unitarity of gates is that the computational
process is reversible assuming that we are working on a closed system.

5.2.1 Simple Quantum Gates

Examples of quantum gates which transform a one-qubit state are given below.
We call them one-qubit gates in the following. Linearity guarantees that the
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action of a gate is completely specified as soon as its action on the basis
{|0⟩, |1⟩} is given. Let us consider the gate I whose action on the basis
vectors are defined by I : |0⟩ 7→ |0⟩, |1⟩ 7→ |1⟩. The matrix expression of this
gate is easily found as

I = |0⟩⟨0|+ |1⟩⟨1| =
(
1 0
0 1

)
. (5.1)

Similarly we introduce X : |0⟩ 7→ |1⟩, |1⟩ 7→ |0⟩, Y : |0⟩ 7→ −|1⟩, |1⟩ 7→ |0⟩,
and Z : |0⟩ 7→ |0⟩, |1⟩ 7→ −|1⟩, whose matrix representations are

X = |1⟩⟨0|+ |0⟩⟨1| =
(
0 1
1 0

)
= σx, (5.2)

Y = |0⟩⟨1| − |1⟩⟨0| =
(
0 −1
1 0

)
= −iσy, (5.3)

Z = |0⟩⟨0| − |1⟩⟨1| =
(
1 0
0 −1

)
= σz. (5.4)

The transformation I is the trivial (identity) transformation, while X is the
negation (NOT), Z the phase shift and Y = XZ the combination of them. It
is easily verified that these gates are unitary.

The CNOT (controlled-NOT) gate is a two-qubit gate, which plays
quite an important role in quantum computation. The gate flips the sec-
ond qubit (the target qubit) when the first qubit (the control qubit) is
|1⟩, while leaving the second bit unchanged when the first qubit state is |0⟩.
Let {|00⟩, |01⟩, |10⟩, |11⟩} be a basis for the two-qubit system. In the following,
we use the standard basis vectors with components

|00⟩ = (1, 0, 0, 0)
t
, |01⟩ = (0, 1, 0, 0)

t
, |10⟩ = (0, 0, 1, 0)

t
, |11⟩ = (0, 0, 0, 1)

t
.

The action of the CNOT gate, whose matrix expression will be written as
UCNOT, is

UCNOT : |00⟩ 7→ |00⟩, |01⟩ 7→ |01⟩, |10⟩ 7→ |11⟩, |11⟩ 7→ |10⟩.

It has two equivalent expressions

UCNOT = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|
= |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X, (5.5)

having a matrix form

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (5.6)

The second expression of the RHS in Eq. (5.5) shows that the action of UCNOT

on the target qubit is I when the control qubit is in the state |0⟩, while it is σx
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when the control qubit is in |1⟩. Verify that UCNOT is unitary and, moreover,
idempotent, i.e., U2

CNOT = I.
Let {|i⟩} be the basis vectors, where i ∈ {0, 1}. The action of CNOT on

the input state |i⟩|j⟩ is written as |i⟩|i⊕ j⟩, where i⊕ j is an addition mod 2,
that is, 0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1 and 1⊕ 1 = 0.

It is convenient to introduce graphical representations of quantum gates. A
one-qubit gate whose unitary matrix representation is U is depicted as

The left horizontal line is the input qubit state, while the right horizontal line
is the output qubit state. Therefore the time flows from the left to the right.

A CNOT gate is expressed as

where • denotes the control qubit, while
⊕

denotes the conditional negation.
There may be many control qubits (see CCNOT gate below).

More generally, we consider a controlled-U gate,

V = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ U, (5.7)

in which the target bit is acted on by a unitary transformation U only when
the control qubit is |1⟩. This gate is denoted graphically as

The CCNOT (Controlled-Controlled-NOT) gate has three inputs, and
the third qubit flips when and only when the first two qubits are both in the
state |1⟩. The explicit form of the CCNOT gate is

UCCNOT = (|00⟩⟨00|+ |01⟩⟨01|+ |10⟩⟨10|)⊗ I + |11⟩⟨11| ⊗X. (5.8)

This gate is graphically expressed as
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The CCNOT gate is also known as the Toffoli gate.

5.2.2 Walsh-Hadamard Transformation

TheHadamard gate or theHadamard transformationH is an important
unitary transformation defined by

UH : |0⟩ 7→ 1√
2
(|0⟩+ |1⟩)

|1⟩ 7→ 1√
2
(|0⟩ − |1⟩).

(5.9)

It is used to generate a superposition state from |0⟩ or |1⟩. The matrix repre-
sentation of H is

UH =
1√
2
(|0⟩+ |1⟩)⟨0|+ 1√

2
(|0⟩ − |1⟩)⟨1| = 1√

2

(
1 1
1 −1

)
. (5.10)

A Hadamard gate is depicted as

There are numerous important applications of the Hadamard transforma-
tion. All possible 2n states are generated, when UH is applied on each qubit
of the state |00 . . . 0⟩:

(H ⊗H ⊗ . . .⊗H)|00 . . . 0⟩

=
1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩)⊗ . . .

1√
2
(|0⟩+ |1⟩)

=
1√
2n

2n−1∑
x=0

|x⟩. (5.11)

Therefore, we produce a superposition of all the states |x⟩ with 0 ≤ x ≤ 2n−1
simultaneously. This action of H on an n-qubit system is called the Walsh
transformation, or Walsh-Hadamard transformation, and denoted as
Wn. Note that

W1 = UH, Wn+1 = UH ⊗Wn. (5.12)

5.2.3 SWAP Gate and Fredkin Gate

The SWAP gate acts on a tensor product state as

USWAP|ψ1, ψ2⟩ = |ψ2, ψ1⟩. (5.13)
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The explict form of USWAP is given by

USWAP = |00⟩⟨00|+ |01⟩⟨10|+ |10⟩⟨01|+ |11⟩⟨11|

=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (5.14)

Needless to say, it works as a linear operator on a superposition of states. The
SWAP gate is expressed as

Note that the SWAP gate is a special gate which maps an arbitrary tensor
product state to a tensor product state. In contrast, most two-qubit gates
map a tensor product state to an entangled state.

The controlled-SWAP gate

is also called the Fredkin gate. It flips the second (middle) and the third
(bottom) qubits when and only when the first (top) qubit is in the state |1⟩.
Its explicit form is

UFredkin = |0⟩⟨0| ⊗ I4 + |1⟩⟨1| ⊗ USWAP. (5.15)

5.2.4 Universal Quantum Gates

It can be shown that any classical logic gate can be constructed by using a
small set of gates, AND, NOT and XOR, for example. Such a set of gates is
called the universal set of classical gates. Since the CCNOT gate can simulate
these classical gates, quantum circuits simulate any classical circuits. It should
be noted that the set of quantum gates is much larger than those classical gates
which can be simulated by quantum gates; see Section 5.5. Thus we want to
find a universal set of quantum gates from which any quantum circuits, i.e.,
any unitary matrix, can be constructed.

We will prove the following.
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THEOREM 5.2.1. (Barenco et al.) [14] The set of single qubit gates and
the CNOT gate are universal. Namely, any unitary gate acting on an n-qubit
register can be implemented with single qubit gates and CNOT gates.

We need several lemmas to prove the theorem.

LEMMA 5.2.2. Let U ∈ SU(2). Then there exist α, β, γ ∈ R such that
U = Rz(α)Ry(β)Rz(γ), where

Rz(α) = exp(iασz/2) =

(
eiα/2 0
0 e−iα/2

)
,

Ry(β) = exp(iβσy/2) =

(
cos(β/2) sin(β/2)
− sin(β/2) cos(β/2)

)
.

Proof. After some calculation, we obtain

Rz(α)Ry(β)Rz(γ) =

(
ei(α+γ)/2 cos(β/2) ei(α−γ)/2 sin(β/2)

−ei(−α+γ)/2 sin(β/2) e−i(α+γ)/2 cos(β/2)

)
. (5.16)

Any U ∈ SU(2) may be written in the form

U =

(
a b

−b∗ a∗
)

=

(
cos θeiλ sin θeiµ

− sin θe−iµ cos θe−iλ

)
, (5.17)

where we used the fact that detU = |a|2 + |b|2 = 1. Now we obtain U =
Rz(α)Ry(β)Rz(γ) by making identifications

θ =
β

2
, λ =

α+ γ

2
, µ =

α− γ

2
. (5.18)

LEMMA 5.2.3. Let U ∈ SU(2). Then there exist A,B,C ∈ SU(2) such that
U = AXBXC and ABC = I, where X = σx.

Proof. Lemma 5.2.2 states that U = Rz(α)Ry(β)Rz(γ) for some α, β, γ ∈ R.
Let

A = Rz(α)Ry

(
β

2

)
, B = Ry

(
−β
2

)
Rz

(
−α+ γ

2

)
, C = Rz

(
−α− γ

2

)
.

Then

AXBXC = Rz(α)Ry

(
β

2

)
XRy

(
−β
2

)
Rz

(
−α+ γ

2

)
XRz

(
−α− γ

2

)
= Rz(α)Ry

(
β

2

)[
XRy

(
−β
2

)
X

] [
XRz

(
−α+ γ

2

)
X

]
Rz

(
−α− γ

2

)
= Rz(α)Ry

(
β

2

)
Ry

(
β

2

)
Rz

(
α+ γ

2

)
Rz

(
−α− γ

2

)
= Rz(α)Ry(β)Rz(γ) = U,
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where use has been made of the identities X2 = I and Xσy,zX = −σy,z.
It is also verified that

ABC = Rz(α)Ry

(
β

2

)
Ry

(
−β
2

)
Rz

(
−α+ γ

2

)
Rz

(
−α− γ

2

)
= Rz(α)Ry(0)Rz(−α) = I.

This proves the Lemma.

FIGURE 5.1

Controlled-U gate is made of at most three single-qubit gates and two CNOT
gates for any U ∈ SU(2).

LEMMA 5.2.4. Let U ∈ SU(2) be factorized as U = AXBXC as in the
previous Lemma. Then the controlled-U gate can be implemented with at
most three single-qubit gates and two CNOT gates (see Fig. 5.1).

Proof. The proof is almost obvious. When the control bit is 0, the target bit
|ψ⟩ is operated by C,B and A in this order so that

|ψ⟩ 7→ ABC|ψ⟩ = |ψ⟩,

while when the control qubit is 1, we have

|ψ⟩ 7→ AXBXC|ψ⟩ = U |ψ⟩.

So far, we have worked with U ∈ SU(2). To implement a general U -gate
with U ∈ U(2), we have to deal with the phase. Let us first recall that any
U ∈ U(2) is decomposed as U = eiαV, V ∈ SU(2), α ∈ R.

LEMMA 5.2.5. Let

Φ(ϕ) = eiϕI =

(
eiϕ 0
0 eiϕ

)
and

D = Rz(−ϕ)Φ
(
ϕ

2

)
=

(
e−iϕ/2 0

0 eiϕ/2

)(
eiϕ/2 0
0 eiϕ/2

)
=

(
1 0
0 eiϕ

)
.
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Then the controlled-Φ(ϕ) gate is expressed as a tensor product of single qubit
gates as

UCΦ(ϕ) = D ⊗ I. (5.19)

.

Proof. The LHS is

UCΦ(ϕ) = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Φ(ϕ) = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ eiϕI

= |0⟩⟨0| ⊗ I + eiϕ|1⟩⟨1| ⊗ I,

while the RHS is

D ⊗ I =

(
1 0
0 eiϕ

)
⊗ I

=
[
|0⟩⟨0|+ eiϕ|1⟩⟨1|

]
⊗ I = UCΦ(ϕ),

which proves the lemma.

Figure 5.2 shows the statement of the above lemma.

FIGURE 5.2

Equality UCΦ(ϕ) = D ⊗ I.

Now we are ready to prove the main proposition.

PROPOSITION 5.2.6. Let U ∈ U(2). Then the controlled-U gate UCU can
be constructed by at most four single-qubit gates and two CNOT gates.

Proof. Let U = Φ(ϕ)AXBXC. According to the discussion above, the
controlled-U gate is written as a product of the controlled-Φ(ϕ) gate and the
controlled-AXBXC gate. Moreover, Lemma 5.2.5 states that the controlled-
Φ(ϕ) gate may be replaced by a single-qubit phase gate acting on the first
qubit. The rest of the gate, the controlled-AXBXC gate is implemented with
three SU(2) gates and two CNOT gates as proved in Lemma 5.2.3. Therefore
we have the following decomposition:

UCU = (D ⊗A)UCNOT(I ⊗B)UCNOT(I ⊗ C), (5.20)
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where
D = Rz(−ϕ)Φ(ϕ/2)

and use has been made of the identity (D ⊗ I)(I ⊗A) = D ⊗A.

Figure 5.3 shows the statement of the proposition.

FIGURE 5.3

Controlled-U gate is implemented with at most four single-qubit gates and
two CNOT gates.

STEP 3: CCNOT gate and its variants are implemented with CNOT gates
and their variants.

Now our final task is to prove that controlled-U gates with n − 1 control
bits are also constructed using single-qubit gates and CNOT gates. Let us
start with the simplest case, in which n = 3.



FIGURE 5.4

Controlled-controlled-U gate is equivalent to the gate made of controlled-V
gates with U = V 2 and CNOT gates.

LEMMA 5.2.7. The two quantum circuits in Fig. 5.4 are equivalent, where
U = V 2.

Proof. If both the first and the second qubits are 0 in the RHS, all the gates
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FIGURE 5.5

Decomposition of the C3U gate.

are ineffective and the third qubit is unchanged; the gate in this subspace
acts as |00⟩⟨00| ⊗ I. In case the first qubit is 0 and the second is 1, the
third qubit is mapped as |ψ⟩ 7→ V †V |ψ⟩ = |ψ⟩; the gate is then |01⟩⟨01| ⊗ I.
When the first qubit is 1 and the second is 0, the third qubit is mapped as
|ψ⟩ 7→ V V †|ψ⟩ = |ψ⟩; hence the gate in this subspace is |10⟩⟨10| ⊗ I. Finally
let both the first and the second qubits be 1. Then the action of the gate on
the third qubit is |ψ⟩ 7→ V V |ψ⟩ = U |ψ⟩; namely the gate in this subspace is
|11⟩⟨11| ⊗ U . Thus it has been proved that the RHS of Fig. 5.4 is

(|00⟩⟨00|+ |01⟩⟨01|+ |10⟩⟨10|)⊗ I + |11⟩⟨11| ⊗ U, (5.21)

namely the controlled-controlled-U gate.

This decomposition is explained intuitively as follows. The first V operates
on the third qubit |ψ⟩ if and only if the second qubit is 1. V † is in action
if and only if x1 ⊕ x2 = 1, where xk is the input bit of the kth qubit. The
second V operation is applied if and only if the first qubit is 1. Thus the
action of this gate on the third qubit is V 2 = U only when x1 ∧ x2 = 1 and
I otherwise. This intuitive picture is of help when we implement the U gate
with more control qubits.

A simple generalization of the above construction is applied to a controlled-
U gate with three control bits as Exercise 5.15 shows.

Now it should be clear how these examples are generalized to gates with
more control qubits.

PROPOSITION 5.2.8. The quantum circuit in Fig. 5.6 with U = V 2 is a
decomposition of the controlled-U gate with n− 1 control qubits.

The proof of the above proposition is very similar to that of Lemma 5.2.7
and Exercise 5.15 and is left as an exercise to the readers.

Proof of Theorem 5.2.1. Let U ∈ U(N) with N = 2n. We prove by induction
on n that there are elementary gates. The result trivially holds if n = 1.
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FIGURE 5.6

Decomposition of the C(n−1)U gate. The number on the top denotes the layer
refered to in the text.

Suppose the result holds for matrices in SU(N) with N = 2n. Let U =(
U11 U12

U21 U22

)
, where U11, U12, U21, U22 ∈ MN . There are R1, S1 ∈ U(N) such

that R1U11S1 = diag(c1, . . . , cN ) = D11 with 0 ≤ c1 ≤ · · · ≤ cN ≤ 1. Let

Ũ = (I2⊗R1)U(I2⊗S1) =

(
Ũ11 Ũ12

Ũ21 Ũ22

)
. Note that the firstN rows of Ũ form an

orthonormal set. So, Ũ12 also has orthogonal rows, and there is S2 ∈ U(N)
such that Ũ12S2 = diag(s1, . . . , sN ) = D12 with s1, . . . , sN ≥ 0. Similarly,
the first N columns form an orthonormal set. So, Ũ21 also has orthogonal
columns, and there is R2 ∈ U(N) such that R2Ũ21 = diag(s̃1, . . . , s̃N ) = D21

with s̃1, . . . , s̃N ≤ 0. Since the first N rows and the first N columns of Ũ has

unit lengths, we see that sj = −s̃j =
√
1− c2j for j = 1, . . . , N . Hence,

Û = (IN ⊕R2)(I2 ⊗R1)U(I2 ⊗ S1)(In ⊕ S2) =

(
D11 D12

D21 D22

)
with D22 = (dij). Note that the jth row and the (N + j)th row of Û form an
orthnormal set. For j = 1, . . . , N , cjsj − sjdjj = 0. If sj ̸= 0, then djj = cj .

Since the rows and columns of Û have unit lengths, we see that djj = cj is

the only nonzero entry in the jth row and jth column of Û . Consequently,
if s1 ≥ · · · ≥ sk ̸= 0 = sk+1 = · · · = sN , then D̂22 = diag(c1, . . . , ck) ⊕W
with W ∈ U(N − k). We may adjust R2 and assume that W = IN−k. As a
result, Û can be written as a product of k-controlled-U gates. By induction
assumption, IN ⊕R2, I2 ⊗R1, I2 ⊗ S1, IN ⊕ S2 can be written as the product
of elementary gates. So, U = (I2 ⊗ R1)

†(IN ⊕ R2)
†Û(IN ⊕ S2)

†(I2 ⊗ S1)
† is

a product of elementary gates.
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Note that in the last step of the proof, we can let U1 =

(
c1 −s1
s1 c1

)
⊗ IN so

that the submatrix of U1Û in rows and columns 1, N + 1 is identity matrix
I2. Then we can apply a 1-controlled-U unitary matrix U2 ∈ U(2N) with so
that the submatrix of U2U1Û in rows and columns 1, 2, N + 1, N + 2 is the
identity matrix I4. Continue this process, we can write Û as the product of
k-controlled-U matrix for k = 0, . . . , n.

Denote by γn,k be the number of k-controlled-U gates used in the decom-
position of a unitary in SU(2n), where k = 0, . . . , n − 1. We can determine
γn,k recursively.

For n = 1, we need 1 0-controlled U gate. So, γ1,0 = 1.

For n = 2, for R1, S1, we need 2 0-controlled-U gates; for R2, S2, we need
2 1-controlled-U gates. Then we get

Û =


c1 0 s1 0
0 c2 0 s2

−s1 0 c1 0
0 s̃2 0 δ2

 =

((
c1 s1
−s1 c1

)
⊗ I2

)
1 0 0 0
0 w11 0 w12

0 0 1 0
0 w21 0 w22

 ,

which is a product of a 0-control-U gate and a 1-controlled-U gate. Thus, we
need 3 0-controlled-U gates, and 3 1-controlled-U gates. Thus, γ2,1 = γ2,0 = 3.

For n = 3, for R1, S1, we need 2 times the gates in the previous steps, i.e.,
adding 2γ2,1 and 2γ2,0 for γ3,1 and γ3,0. For R2, S2, we need 2 times the gates
in the previous steps with 1 additional control for each gates, i.e., adding
2γ2,1 and 2γ2,0 to γ3,2 andγ3,1. Finally, Û is a product of a 2-controlled-U , a
1-controlled-U and a 0-controlled-U . Thus,

γ3,2 = 2γ2,1 + 1, γ3,1 = 2(γ2,1 + γ2,0) + 1, γ3,0 = 2γ2,0 + 1.

In general, we have

γn,n−1 = 2γn−1,n−2 + 1, γn,0 = 2γn−1,0 + 1,

γn,j = 2(γn−1,j + γn−1,j−1) + 1, j = 1, . . . , n− 2.

Other types of gates are also implemented with single-qubit gates and the
CNOT gates. See Barenco et al. [14] for further details. A few remarks are in
order. The above controlled-U gate with (n − 1) control bits requires Θ(n2)
elementary gates.∗† Let us write the number of the elementary gates required

∗We call single-qubit gates and the CNOT gates elementary gates from now on.
†We will be less strict in the definition of “the order of.” In the theory of computational
complexity, people use three types of “order of magnitude.” One writes “f(n) is O(g(n))”
if there exist n0 ∈ N and c ∈ R such that f(n) ≤ cg(n) for n ≥ n0. In other words, O sets
the asymptotic upper bound of f(n). A function f(n) is said to be Ω(g(n)) if there exist
n0 ∈ N and c ∈ R such that f(n) ≥ cg(n) for n ≥ n0. In other words, Ω sets the asymptotic
lower bound of f(n). Finally f(n) is said to be Θ(f(n)) if f(n) behaves asymptotically as
g(n), namely if f(n) is both O(g(n)) and Ω(g(n)).
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to construct the gate in Fig. 5.6 by C(n). Construction of layers I and III
requires elementary gates whose number is independent of n. It can be shown
that the number of the elementary gates required to construct the controlled
NOT gate with (n− 2) control qubits is Θ(n) [14]. Therefore layers II and IV
require Θ(n) elementary gates. Finally the layer V, a controlled-V gate with
(n − 2) control qubits, requires C(n − 1) basic gates by definition. Thus we
obtain a recursion relation

C(n)− C(n− 1) = Θ(n). (5.22)

The solution to this recursion relation is

C(n) = Θ(n2). (5.23)

Therefore, implementation of a controlled-U gate with U ∈ U(2) and (n− 1)
control qubits requires Θ(n2) elementary gates.

5.3 Some applications of Quantum gates

Now we are ready to introduce three simple applications of qubits and quan-
tum gates: dense coding, quantum teleportation, and quantum state
tomography.

The Bell state has been delivered beforehand, and one of the qubits carries
two classical bits of information in the dense coding system. In the quantum
teleportation, on the other hand, two classical bits are used to transmit a
single qubit. At first glance, the quantum teleportation may seem to be in
contradiction with the no-cloning theorem. However, this is not the case since
the original state is destroyed.

Entanglement is the keyword in the first two applications. The setting is
common for both cases. Suppose Alice wants to send Bob information. Each
of them has been sent each of the qubits of the Bell state

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) (5.24)

in advance. Suppose Alice has the first qubit and Bob has the second.

5.3.1 Dense Coding

Alice: Alice wants to send Bob a binary number x ∈ {00, 01, 10, 11}. She
picks up one of {I,X, Y, Z} according to x she has chosen and applies the
transformation on her qubit (the first qubit of the Bell state). Applying the
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FIGURE 5.7

Communication from Alice to Bob using dense coding. Each qubit of the Bell
state |Φ+⟩ has been distributed to each of them beforehand. Then two bits
of classical information can be transmitted by sending a single qubit through
the quantum channel.

transformation to only her qubit means she applies an identity transformation
to the second qubit which Bob keeps with him. This results in

x transformation U state after transformation

0 = 00 I ⊗ I |ψ0⟩ =
1√
2
(|00⟩+ |11⟩)

1 = 01 X ⊗ I |ψ1⟩ =
1√
2
(|10⟩+ |01⟩)

2 = 10 Y ⊗ I |ψ2⟩ =
1√
2
(|10⟩ − |01⟩)

3 = 11 Z ⊗ I |ψ3⟩ =
1√
2
(|00⟩ − |11⟩).

(5.25)

Alice sends Bob her qubit after the transformation given above is applied.
Note that the set of four states in the rightmost column is nothing but the
four Bell basis vectors.

Bob: Bob applies CNOT to the entangled pair in which the first qubit, the
received qubit, is the control qubit, while the second one, which Bob keeps,
is the target bit. This results in a tensor-product state:

Received state Output of CNOT 1st qubit 2nd qubit

|ψ0⟩
1√
2
(|00⟩+ |10⟩) 1√

2
(|0⟩+ |1⟩) |0⟩

|ψ1⟩
1√
2
(|11⟩+ |01⟩) 1√

2
(|1⟩+ |0⟩) |1⟩

|ψ2⟩
1√
2
(|11⟩ − |01⟩) 1√

2
(|1⟩ − |0⟩) |1⟩

|ψ3⟩
1√
2
(|00⟩ − |10⟩) 1√

2
(|0⟩ − |1⟩) |0⟩

(5.26)
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FIGURE 5.8

Quantum circuit implementation of the dense coding system. The leftmost
Hadamard gate and the next CNOT gate generate the Bell state. Then a
unitary gate U , depending on the bits Alice wants to send, is applied to the
first qubit. Bob applies the rightmost CNOT gate and the Hadamard gate to
decode Alice’s message.

Note that Bob can measure the first and second qubits independently since
the output is a tensor-product state. The number x is either 00 or 11 if the
measurement outcome of the second qubit is |0⟩, while it is either 01 or 10 if
the meansurement outcome is |1⟩.

Finally, a Hadamard transformation H is applied on the first qubit. Bob
obtains

Received state 1st qubit UH|1st qubit⟩

|ψ0⟩
1√
2
(|0⟩+ |1⟩) |0⟩

|ψ1⟩
1√
2
(|1⟩+ |0⟩) |0⟩

|ψ2⟩
1√
2
(|1⟩ − |0⟩) −|1⟩

|ψ3⟩
1√
2
(|0⟩ − |1⟩) |1⟩

(5.27)

The number x is either 00 or 01 if the measurement of the first qubit results
in |0⟩, while it is either 10 or 11 if it is |1⟩. Therefore, Bob can tell what x is
in every case.

Quantum circuit implementation for the dense coding is given in Fig. 5.8

5.3.2 Quantum Teleportation

The purpose of quantum teleportation is to transmit an unknown quan-
tum state of a qubit using two classical bits such that the recipient reproduces
exactly the same state as the original qubit state. Note that the qubit itself is
not transported but the information required to reproduce the quantum state
is transmitted. The original state is destroyed such that quantum teleporta-
tion should not be in contradiction with the no-cloning theorem. Quantum
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teleportation has already been realized under laboratory conditions using pho-
tons [6, 7, 8, 9], coherent light field [10], NMR [11], and trapped ions [12, 13].
The teleportation scheme introduced in this section is due to [11]. Figure

FIGURE 5.9

In quantum teleportation, Alice sends Bob two classical bits so that Bob
reproduces a qubit state Alice used to have.

5.9 shows the schematic diagram of quantum teleportation, which will be
described in detail below.

Alice: Alice has a qubit, whose state she does not know. She wishes to
send Bob the quantum state of this qubit through a classical communication
channel. Let

|ϕ⟩ = a|0⟩+ b|1⟩ (5.28)

be the state of the qubit. Both of them have been given one of the qubits of
the entangled pair

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

as in the case of the dense coding.

Alice applies the decoding step in the dense coding to the qubit |ϕ⟩ =
a|0⟩+ b|1⟩ to be sent and her qubit of the entangled pair. They start with the
state

|ϕ⟩ ⊗ |Φ+⟩ = 1√
2

[
a|0⟩ ⊗ (|00⟩+ |11⟩) + b|1⟩ ⊗ (|00⟩+ |11⟩)

]
=

1√
2
(a|000⟩+ a|011⟩+ b|100⟩+ b|111⟩) , (5.29)

where Alice has the first two qubits while Bob has the third. Alice applies
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UCNOT ⊗ I followed by UH ⊗ I ⊗ I to this state, which results in

(UH ⊗ I ⊗ I)(UCNOT ⊗ I)(|ϕ⟩ ⊗ |Φ+⟩)

= (UH ⊗ I ⊗ I)(UCNOT ⊗ I)
1√
2
(a|000⟩+ a|011⟩+ b|100⟩+ b|111⟩)

=
1

2
[a(|000⟩+ |011⟩+ |100⟩+ |111⟩) + b(|010⟩+ |001⟩ − |110⟩ − |101⟩)]

=
1

2
[|00⟩(a|0⟩+ b|1⟩) + |01⟩(a|1⟩+ b|0⟩)

+|10⟩(a|0⟩ − b|1⟩) + |11⟩(a|1⟩ − b|0⟩)]. (5.30)

If Alice measures the two qubits in her hand, she will obtain one of the states
|00⟩, |01⟩, |10⟩ or |11⟩ with equal probability 1/4. Bob’s qubit (a qubit from the
Bell state initially) collapses to a|0⟩+b|1⟩, a|1⟩+b|0⟩, a|0⟩−b|1⟩ or a|1⟩−b|0⟩,
respectively, depending on the result of Alice’s measurement. Alice then sends
Bob her result of the measurement using two classical bits.

Notice that Alice has totally destroyed the initial qubit |ϕ⟩ upon her mea-
surement. This makes quantum teleportation consistent with the no-cloning
theorem.

Bob: After receiving two classical bits, Bob knows the state of the qubit in
his hand;

Received bits Bob’s state Decoding
00 a|0⟩+ b|1⟩ I
01 a|1⟩+ b|0⟩ X
10 a|0⟩ − b|1⟩ Z
11 a|1⟩ − b|0⟩ Y

(5.31)

Bob reconstructs the intial state |ϕ⟩ by applying the decoding process shown
above. Suppose Alice sends Bob the classical bits 10, for example. Then Bob
applies Z to his state to reconstruct |ϕ⟩ as follows:

Z : (a|0⟩ − b|1⟩) 7→ (a|0⟩+ b|1⟩) = |ϕ⟩.

Figure 5.10 shows the actual quantum circuit for quantum teleportation.

5.3.3 Quantum State Tomography

Quantum tomography or quantum state tomography is the process by which
a quantum state is reconstructed using measurements on an ensemble of iden-
tical quantum states. Note that every measurement will collapse the given
quantum state ρ into the eigenprojections of the measurement operator. So,
we need an ensemble of identical quantum states to extract information of the
quantum state ρ. Suppose we have an ensemble of identical qubit states

ρ =
1

2

(
1 + a b− ic
b+ ic 1− a

)
with a, b, c ∈ R, a2 + b2 + c2 ≤ 1.
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FIGURE 5.10

Quantum circuit implementation of quantum teleportation. Alice operates
gates in the left side. The first Hadamard gate and the next CNOT gates
generate the Bell state |Φ+⟩ from |00⟩. The bottom qubit is sent to Bob
through a quantum channel while the first and the second qubits are measured
after applying the second set of the CNOT gate and the Hadamard gate on
them. The measurement outcome x is sent to Bob through a classical channel.
Bob operates a unitary operation Ux, which depends on the received message
x, on his qubit.

If we use a fixed measurement operator, say, corresponding to σz, hen the
measurements will give us information about a, but no information about
b, c. In order to get information on b and c, we will apply a rotation to ρ by
U1, U2 ∈ U(2) with

U1 =
1√
2

(
1 1
i −i

)
and U2 =

1√
2

(
1 −i
1 i

)
. (5.32)

Then

U1ρU
†
1 =

1

2

(
1 + b c− ia
c+ ia 1− b

)
and U2ρU

†
2 =

1

2

(
1 + c a− ib
a+ ib 1− c

)
.

In the above process, one may assume that we apply the same measurement
operator associated with A to the quantum states ρ, U1ρU

†
1 , U2ρU

†
2 . Alterna-

tively, one may assume that we are applying measurement operators associ-
ated with A,U†

1AU1, U
†
2AU2 to the ensemble of identical states ρ.‡

One can extend this idea to do the quantum state tomography to ρ ∈ Dd.

THEOREM 5.3.1. Let ρ ∈ Dd. There exist U0, . . . , Ud ∈ U(d) with U0 = Id
such that ρ can be determined by the diagonal entries of U0ρU

†
0 , . . . , UdρU

†
d .

‡This is nothing but Shrödinger picture and Heisenberg picture of a quantum system.
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Note that every ρ = (ρij) ∈ Dd has trace 1, and is determined by d2 − 1
real entries; ρrr for r = 1, . . . , d − 1, and the real parts and imaginary parts
of ρrs for 1 ≤ r < j ≤ d. For every UjρU

†
j , its diagonal entries can provide

d− 1 pieces of (real data) information of ρ. So, the diagonal entries of k such
matrices can provide k(d− 1) piece of information of ρ. So, using d+ 1 such
matrices is minimum.

Because of measurement errors, one may not be able to find a quantum
state which fits all the measurement. In such a case, one may either get more
measurements, or find the quantum state which best fits the measurements.

In applications, one often considers qubit state ρ ∈ Dd with d = 2n. Of
course, the above theorem applies to this case as well. For easy implemen-
tation, one may want to use special types of unitary U ∈ U(d) and do the
measurements of UAU†. Recall that a unitary V ∈ U(2n) is a local unitary
if V = R1 ⊗ · · · ⊗ Rn with R1, . . . , Rn ∈ U(2). Physically, it means that the
quantum gate V is acting on n-qubits individually. We have the following.

THEOREM 5.3.2. Let ρ ∈ Dd with d = 2n. Let S be the set of local unitary
matrices of the form V1⊗· · ·⊗Vd ∈ U(2d) with Vj ∈ {I2, U1, U2}, where U1, U2

are defined as in (5.32). Then ρ can be determined by the diagonal entries of
V ρV † for V ∈ S.

Proof. The proof can be done by induction on n. For n = 1, the result
follows from Theorem 5.3.1. Assume that the result is true for n-qubit states.
We will show that there cannot be two (n + 1)-qubit states ρ1, ρ2 such that
V ρ1V

† and V ρ2V
† have the same diagonal entries for all V ∈ S. We will

show that for any A with TrA = 0 and V AV † has zero diagonal entries for all

V ∈ S, then A is zero. Let A =

(
A11 A12

A21 A22

)
Now, consider V ∈ S of the form

I2⊗V0 with V0 = V1⊗· · ·⊗Vn. Since V AV † =

(
V0A11V0† V0A12V

†
0

V0A21V
†
0 V0A22V

†
0

)
always

has diagonal zero diagonal entries, we see that V0A11V
†
0 and V0A22V

†
0 have

zero diagonal entries for any V0 = V1 ⊗ · · · ⊗ Vn. By induction assumption,
A11 = A22 = 0. Next, let A12 = B + iC with B = (A12 + A†

21)/2 and
consider V ∈ S of the form U1 ⊗ V0 with V0 = V1 ⊗ · · · ⊗ Vn. We see that

V AV † =

(
V0BV0† V0CV

†
0

V0CV
†
0 −V0BV †

0

)
always has zero diagonal entries, and hence

B = 0. Finally, consider V ∈ S of the form U2 ⊗ V0 with V0 = V1 ⊗ · · · ⊗ Vn,

we see that V AV †
(
V0CV0† 0

0 −V0CV †
0

)
always have zero diagonal entries will

imply C = 0.

5.3.4 Implementations using IBM Q computers

IBM Q provides a wonderful platform for testing quantum algorithms.
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For general introduction, see
https://qiskit.org/textbook/preface.html

For teleportation, see
https://qiskit.org/textbook/ch-algorithms/teleportation.html

For Superdense coding, see
https://qiskit.org/textbook/ch-algorithms/superdense-coding.html

For Quantum tomography, see
https://qiskit.org/documentation/tutorials/noise/8 tomography.html

5.4 Quantum Parallelism and Entanglement

Given an input x, a typical quantum computer computes f(x) in such a way
as

Uf : |x⟩|0⟩ 7→ |x⟩|f(x)⟩, (5.33)

where Uf is a unitary matrix that implements the function f .
Suppose Uf acts on the input which is a superposition of many states. Since

Uf is a linear operator, it acts simultaneously on all the vectors that constitute
the superposition. Thus the output is also a superposition of all the results;

Uf :
∑
x

|x⟩|0⟩ 7→
∑
x

|x⟩|f(x)⟩. (5.34)

Namely, when the input is a superposition of n states, Uf computes n values
f(xk) (1 ≤ k ≤ n) simultaneously. This feature, called the quantum paral-
lelism, gives a quantum computer an enormous power. A quantum computer
is advantageous compared to a classical counterpart in that it makes use of
this quantum parallelism and also entanglement.

A unitary transformation acts on a superposition of all possible states in
most quantum algorithms. This superposition is prepared by the action
of the Walsh-Hadamard transformation on an n-qubit register in the state
|00 . . . 0⟩ = |0⟩ ⊗ |0⟩ ⊗ . . .⊗ |0⟩ resulting in

1√
2n

(|00 . . . 0⟩+ |00 . . . 1⟩+ . . . |11 . . . 1⟩) = 1√
2n

2n−1∑
x=0

|x⟩. (5.35)

This state is a superposition of vectors encoding all the integers between 0
and 2n − 1. Then the linearity of Uf leads to

Uf

(
1√
2n

2n−1∑
x=0

|x⟩|0⟩

)
=

1√
2n

2n−1∑
x=0

Uf |x⟩|0⟩ =
1√
2n

2n−1∑
x=0

|x⟩|f(x)⟩. (5.36)
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Note that the superposition is made of 2n = en ln 2 states, which makes quan-
tum computation exponentially faster than the classical counterpart in a cer-
tain kind of computation.

What about the limitation of a quantum computer? Let us consider the
CCNOT gate, for example. This gate flips the third qubit if and only if the
first and the second qubits are both in the state |1⟩, while it leaves the third
qubit unchanged otherwise. Let us fix the third input qubit to |0⟩. It was
shown in §5.5.3 that the third output is |x∧ y⟩, where |x⟩ and |y⟩ are the first
and the second input qubit states, respectively. Suppose the input state is a
superposition of all possible states while the third qubit is fixed to |0⟩. This
can be achieved by the Walsh-Hadamard transformation as

UH|0⟩ ⊗ UH|0⟩ ⊗ |0⟩ = 1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩)⊗ |0⟩

=
1

2
(|000⟩+ |010⟩+ |100⟩+ |110⟩). (5.37)

By operating CCNOT on this state, we obtain

UCCNOT(UH|0⟩ ⊗ UH|0⟩ ⊗ |0⟩) = 1

2
(|000⟩+ |010⟩+ |100⟩+ |111⟩). (5.38)

This output may be thought of as the truth table of AND: |x, y, x ∧ y⟩. It
is extremely important to note that the output is an entangled state and the
measurement projects the state to one line of the truth table, i.e., a single
term in the RHS of Eq. (5.38). The order of the measurements of the three
qubits does not matter at all. The measurement of the third qubit projects
the state to the superposition of the states with the given value of the third
qubit. Repeating the measurements on the rest of the qubits leads to the
collapse of the output state to one of |x, y, x ∧ y⟩.

There is no advantage of quantum computation over classical at this stage.
This is because only one result may be obtained by a single set of measure-
ments. What is worse, we cannot choose a specific vector |x, y, x ∧ y⟩ at our
will! Thus any quantum algorithm should be programmed so that the partic-
ular vector we want to observe should have larger probability to be measured
compared to other vectors. This step has no classical analogy and is very
special in quantum computation. The programming strategies to deal with
this feature are [2]

1. to amplify the amplitude, and hence the probability, of the vector that
we want to observe. This strategy is employed in the Grover’s database
search algorithm.

2. to find a common property of all the f(x). This idea was employed
in the quantum Fourier transform to find the order§ of f in the Shor’s
factoring algorithm.

§Let m,N ∈ N (m < N) be numbers coprime to each other. Then there exists P ∈ N such
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Now we consider the power of entanglement. Suppose we have an n-qubit
register, whose Hilbert space is 2n-dimensional. Since each qubit has two basis
vectors |0⟩ and |1⟩, there are 2n basis vectors (n |0⟩’s and n |1⟩’s) involved
to span this 2n-dimensional Hilbert space. Imagine that we have a single
quantum system, instead, which has the same Hilbert space. One might think
that the system may do the same quantum computation as the n-qubit register
does. One possible problem is that one cannot measure the “kth digit”. Even
worse, consider how many different basis vectors are required for this system.
This single system must have an enormous number, 2n, of basis vectors! Let us
consider 20 spin-1/2 particles in a magnetic field. We can employ the spin-up
and spin-down energy eigenstates of each particle as the qubit basis vectors.
Then there are merely 40 energy eigenvectors involved. Suppose we use energy
eigenstates of a certain molecule to replace this register. Then we have to use
220 ∼ 106 eigenstates. Separation and control of so many eigenstates are
certainly beyond current technology. These simple consideration shows that
multipartite implementation of a quantum algorithm requires an exponentially
smaller number of basis vectors than monopartite implementation since the
former makes use of entanglement as a computational resource.

Note that a quantum computer can simulate arbitrary classical logic cir-
cuits. Then how about copying data? It should be kept in mind that the no-
cloning theorem states that we cannot copy an arbitrary state |ψ⟩ = a|0⟩+b|1⟩.
The loophole is that the theorem does not apply if the states to be cloned are
limited to |0⟩ and |1⟩. For these cases, the copying operator U should work as

U : |00⟩ 7→ |00⟩, : |10⟩ 7→ |11⟩.

We can assign arbitrary action of U on a state whose second input is |1⟩ since
this case does not happen. What we have to keep in our mind is only that U
be unitary. An example of such U is

U = (|00⟩⟨00|+ |11⟩⟨10|) + (|01⟩⟨01|+ |10⟩⟨11|), (5.39)

where the first set of operators renders U the cloning operator and the second
set is added just to make U unitary. We immediately notice that U is nothing
but the CNOT gate introduced in §5.2.

Therefore, if the data under consideration are limited within |0⟩ and |1⟩, we
can copy the qubit states even with a quantum computer. This fact is used
to construct quantum error correcting codes.

that mP ≡ 1 (mod N). The smallest such number P is called the period or the order. It
is easily seen that mx+P ≡ mx (mod N), ∀x ∈ N.
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5.5 Correspondence with Classical Logic Gates

Before we proceed further, it is instructive to show that all the elementary
logic gates, NOT, AND, XOR, OR and NAND, in classical logic circuits can
be implemented with quantum gates. In this sense, quantum information
processing contains the classical one.

5.5.1 NOT Gate

Let us consider the NOT gate first. It is defined by the following logic
function,

NOT(x) = ¬x =

{
0 x = 1
1 x = 0

(5.40)

where ¬x stands for the negation of x. Under the correspondence 0 ↔
|0⟩, 1 ↔ |1⟩, we have already seen in Eq. (5.2) that the gate X negates the
basis vectors as

X|x⟩ = |¬x⟩ = |NOT(x)⟩, (x = 0, 1). (5.41)

Now let us measure the output state. We employ the following measurement
operator:

M1 = |1⟩⟨1|. (5.42)

M1 has eigenvalues 0 and 1 with the eigenvectors |0⟩ and |1⟩, respectively.
When the input is |0⟩, the output is |1⟩ and the measurement gives the value
1 with the probability 1. If, on the other hand, the input is |1⟩, the output
is |0⟩ and the measurement yields 1 with probability 0, or in other words, it
yields 0 with probability 1. It should be kept in mind that the operator X
acts on an arbitrary linear combination |ψ⟩ = a|0⟩+ b|1⟩, which is classically
impossible. The output state is then X|ψ⟩ = a|1⟩+ b|0⟩.

We show in the following that the CCNOT gate implements all classical
logic gates. The first and the second input qubits are set to |1⟩ to obtain the
NOT gate as

UCCNOT|1, 1, x⟩ = |1, 1,¬x⟩. (5.43)

5.5.2 XOR Gate

Since a quantum gate has to be reversible, we cannot construct a unitary gate
corresponding to the classcialXOR gate whose function is x, y 7→ x⊕y (x, y ∈
{0, 1}), where x⊕y is an addition mod 2. Clearly this operation has no inverse.
This operation may be made reversible if we keep the first bit x during the
gate operation, namely, if we define

f(x, y) = (x, x⊕ y), x, y ∈ {0, 1}. (5.44)
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We call this function f , also the XOR gate. The quantum gate that does this
operation is nothing but the CNOT gate defined by Eq. (5.5),

UXOR = UCNOT = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X. (5.45)

Note that the XOR gate may be also obtained from the CCNOT gate.
Suppose the first qubit of the CCNOT gate is fixed to |1⟩. Then it is easy to
verify that

UCCNOT|1, x, y⟩ = |1, x, x⊕ y⟩. (5.46)

Thus the CCNOT gate can be used to construct the XOR gate.

5.5.3 AND Gate

The logical AND gate is defined by

AND(x, y) ≡ x ∧ y ≡
{
1 x = y = 1
0 otherwise

x, y ∈ {0, 1}. (5.47)

Clearly this operation is not reversible and we have to introduce the same sort
of prescription which we employed in the XOR gate.

Let us define the logic function

f(x, y, 0) ≡ (x, y, x ∧ y), (5.48)

which we also call AND. Note that we have to keep both x and y for f to be
reversible since x = x ∧ y = 0 implies both x = y = 0 and x = 0, y = 1. The
unitary matrix that computes f is

UAND = (|00⟩⟨00|+ |01⟩⟨01|+ |10⟩⟨10|)⊗ I

+|11⟩⟨11| ⊗X. (5.49)

It is readily verified that

UAND|x, y, 0⟩ = |x, y, x ∧ y⟩, x, y ∈ {0, 1}. (5.50)

Observe that the third qubit in the RHS is 1 if and only if x = y = 1 and 0
otherwise. Thus the CCNOT gate may be employed to implement the AND
gate. It follows from Eq. (5.50) that the AND gate is denoted graphically as
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5.5.4 OR Gate

The OR gate represents the logical function

OR(x, y) = x ∨ y =

{
0 x = y = 0
1 otherwise

x, y ∈ {0, 1}. (5.51)

This function OR is not reversible either and special care must be taken.
Let us define

f(x, y, 0) ≡ (¬x,¬y, x ∨ y), x, y ∈ {0, 1}, (5.52)

which we also call OR. Although the first and the second bits are negated, it
is not essential in the construction of the OR gate. These negations appear
due to our construction of the OR gate based on the de Morgan theorem

x ∨ y = ¬(¬x ∧ ¬y). (5.53)

They may be removed by adding extra NOT gates if necessary.
Let |x, y, 0⟩ be the input state. The unitary matrix that represents f is

UOR = |00⟩⟨11| ⊗X + |01⟩⟨10| ⊗X + |10⟩⟨01| ⊗X + |11⟩⟨00| ⊗ I. (5.54)

Now it is obvious why negations in the first and the second qubits appear in
the OR gate. Since we have already constructed the NOT gate and AND gate,
we take advantage of this in the construction of the OR gate. The equality
(5.53) leads us to the following diagram:

Accordingly, the first and the second qubits are negated. The unitary matrix
obtained from this diagram is

UOR = (I ⊗ I ⊗X)

·(|00⟩⟨00| ⊗ I + |01⟩⟨01| ⊗ I + |10⟩⟨10| ⊗ I + |11⟩⟨11| ⊗X)

·(X ⊗X ⊗ I). (5.55)

The matrix products are readily evaluated to yield

UOR = (|00⟩⟨00| ⊗X + |01⟩⟨01| ⊗X + |10⟩⟨10| ⊗X + |11⟩⟨11| ⊗ I)

·(X ⊗X ⊗ I)

= |00⟩⟨11| ⊗X + |01⟩⟨10| ⊗X + |10⟩⟨01| ⊗X + |11⟩⟨00| ⊗ I,
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which verifies Eq. (5.54).

Observe that the OR gate is implemented with theX and the CCNOT gates
and, moreover, the X gate is obtained from the CCNOT gate by putting the
first and the second bits to |1⟩.

If we want to have a gate VOR|x, y, 0⟩ = |x, y, x ∨ y⟩, we may multiply
X ⊗X ⊗ I to UOR from the left so that VOR = (X ⊗X ⊗ I)UOR.

In summary, we have shown that all the classical logic gates, NOT, AND,
OR, XOR and NAND gates, may be obtained from the CCNOT gate. Thus
all the classical computation may be carried out with a quantum computor.
Note, however, that these gates belong to a tiny subset of the set of unitary
matrices.

5.6 Notes and Open problems

In the construction of quantum operations for open system, we need to con-
struct U such that the partial trace of U(E11 ⊗ ρ)U† provide us useful infor-
mation. In particular, we need the first 2m columns of U and the result of the
columns are flexible. So, we consider [U1|U2], where U1 ∈M2n,2m and U2 is ar-

bitrary, and find elementary matrices V1, . . . , Vk such that V1 · · ·Vk = [U1|Û2]
for whatever Û2 would be. So, it is desirable to find elementary matrices

V †
k · · ·V †

1 U1 =

(
I2m

0

)
.

Note that if m = 0, we are initialing the pure state |0 · · · 0⟩ to a state equal
to U1; see [15, 16].

Quantum state tomography is an actively research area. Here are some
open problems.

1. For an n-qubit state ρ, prove or disprove that k = 3n is the minimum
number of local unitary gates such that the measurements of the diag-
onal entries of U†

j ρUj for j = 1, . . . , k, will determine ρ.

2. Determine a general quantum state tomography schemes using other
quantum computers such as NMR or linear optics based.

3. Quantum process tomography is the procedure to determine/estimate a
given quantum operation system assuming that one can use many quan-
tum states ρ to test Φ(ρ). Design effective quantum process tomography
schemes using different quantum computing platforms.
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Exercises for Chapter 5

EXERCISE 5.1. Show that the UCNOT cannot be written as a tensor product
of two one-qubit gates.

EXERCISE 5.2. Let (a|0⟩+ b|1⟩)⊗ |0⟩ be an input state to a CNOT gate.
What is the output state?

EXERCISE 5.3. (1) Find the matrix representation of the “upside down”
CNOT gate (a) in the basis {|00⟩, |01⟩, |10⟩, |11⟩}.

(2) Find the matrix representation of the circuit (b).
(3) Find the matrix representation of the circuit (c). Find the action of the
circuit on a tensor product state |ψ1⟩ ⊗ |ψ2⟩.

EXERCISE 5.4. Show that Wn is unitary.

EXERCISE 5.5. Show that the two circuits below are equivalent:

This exercise shows that the control qubit and the target qubit in a CNOT gate
are interchangeable by introducing four Hadamard gates.

EXERCISE 5.6. Let us consider the following quantum circuit

(5.56)

where q1 denotes the first qubit, while q2 denotes the second. What are the
outputs for the inputs |00⟩, |01⟩, |10⟩ and |11⟩?
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EXERCISE 5.7. Show that the above USWAP is written as

USWAP = (|0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X)(I ⊗ |0⟩⟨0|+X ⊗ |1⟩⟨1|)
(|0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X). (5.57)

This shows that the SWAP gate is implemented with three CNOT gates as
given in Exercise 5.3 (3).

EXERCISE 5.8. Verify that the above matrix UOR indeed satisfies

UOR|x, y, 0⟩ = |¬x,¬y, x ∨ y⟩, x, y ∈ {0, 1}. (5.58)

EXERCISE 5.9. Show that the NAND gate can be obtained from the CC-
NOT gate. Here NAND is defined by the function

NAND(x, y) = ¬(x ∧ y) =
{
0 x = y = 1
1 otherwise

x, y ∈ {0, 1}. (5.59)

EXERCISE 5.10. Let |ψ⟩ = a|00⟩ + b|11⟩ be a two-qubit state. Apply a
Hadamard gate to the first qubit and then measure the first qubit. Find the
second qubit state after the measurement corresponding to the outcome of the
first qubit measurement.

EXERCISE 5.11. Let U be a general 4× 4 unitary matrix. Find two-level
unitary matrices U1, U2 and U3 such that

U3U2U1U =


1 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 .

EXERCISE 5.12. Let

U =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 . (5.60)

Decompose U into a product of two-level unitary matrices.

EXERCISE 5.13. Let us consider the controlled-V1 gate UCV1 and the
controlled-V2 gate UCV2

. Show that the controlled-V1 gate followed by the
controlled-V2 gate is the controlled-V2V1 gate UC(V2V1) as shown in Fig. 5.11.

EXERCISE 5.14. Prove Lemma 5.2.7 by writing down the action of each
gate in the RHS of Fig. 5.4 explicitly using bras, kets and I, U, V, V †. (For
example, UCNOT = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X for a two-qubit system.)

EXERCISE 5.15. Show that the circuit in Fig. 5.5 is a controlled-U gate
with three control qubits, where U = V 2.
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FIGURE 5.11

Equality UCV2
UCV1

= UC(V2V1).
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