Gram-Schmidt orthonormalization process

Let $\{|x_1\rangle, \ldots, |x_m\rangle\}$ be linearly independent.

We can use the following Gram-Schmidt process to construct an ortheorem set $\{|e_i\rangle_{i=1}^{i}|e_i\rangle$ such that

thonormal set $\{|e_1\rangle, \dots, |e_m\rangle\}$ such that $\operatorname{span}\{|x_1\rangle, \dots, |x_\ell\rangle\} = \operatorname{span}\{|e_1\rangle, \dots, |e_\ell\rangle\},$

for all $\ell = 1, \ldots, m$.

Set $|e_1\rangle = |x_1\rangle/||x_1\rangle||$.

For k > 1, set $|f_k\rangle / ||f_k\rangle||$, where

$$|f_k\rangle = |x_k\rangle - a_1|e_1\rangle - \dots - a_{k-1}|e_{k-1}\rangle$$

with $a_j = \langle e_j | x_k \rangle$.

We can further extend the set to an o.n. basis

Let $\{|y_1\rangle, \ldots, |y_n\rangle\} \subseteq \mathbb{C}^n$ be a basis.

Find linearly independent columns of the matrix

 $[|e_1\rangle\cdots|e_m\rangle|y_1\rangle\cdots|y_n\rangle]$

including the first m columns.

Then apply Gram-Schmidt process.

Example Apply Gram-Schmidt to $\{|x_1\rangle, |x_2\rangle\}$ with

$$|x_1\rangle = \begin{pmatrix} 1\\1\\i \end{pmatrix}, |x_2\rangle = \begin{pmatrix} -1\\1\\0 \end{pmatrix}.$$

Then extend the resulting set to an orthnormal basis.

Basics of Matrices

- Mixed quantum states are represented by density matrices i.e., positive semi-definite matrices with trace 1.
- Observable / measurement operators correspond to Hermitian matrices.

• Quantum operations corresponds to unitary matrices.

• So, we need basic knowledge of matrices (relevant to quantum mechanics).

Let $\mathbf{M}_{m,n}$ be the set (vector space/algebra) of $m \times n$ complex matrices. If m = n, we let $\mathbf{M}_n = \mathbf{M}_{m,n}$.

- The set $\mathbf{M}_{m,n}$ is a vector space under addition and scalar multiplication.
- We can multiply $A = (a_{ij}) \in \mathbf{M}_{m,n}$ and $B = (b_{rs}) \in \mathbf{M}_{n,k}$ such that $C = AB = (c_{pq}) \in \mathbf{M}_{m,k}$ with

$$c_{pq} = (a_{p1}, \dots, a_{pn}) \begin{pmatrix} b_{1q} \\ \vdots \\ b_{nq} \end{pmatrix} = \sum_{\ell=1}^{n} a_{p\ell} b_{\ell q}.$$

• If A has rows $\langle A_1 |, \ldots, \langle A_m |$ and B has columns $|B_1 \rangle, \cdots, |B_p \rangle$, then

If A has rows
$$\langle A_1 |, \dots, \langle A_m |$$
 and B has columns $|B_1 \rangle, \dots, |B_p \rangle$,
then

$$AB = [A|B_1 \rangle \cdots A|B_p \rangle] = \begin{pmatrix} \langle A_1 | B \\ \vdots \\ \langle A_m | B \end{pmatrix}$$

$$A|B\rangle$$

$$A|B\rangle$$

$$A|B\rangle$$

$$A|B\rangle$$

$$A|B\rangle$$

$$A|B\rangle$$

 $M_{2,3}$ $a_{1}a_{2}a_{2}a_{3}$ $a_{21}a_{22}a_{3}$

N

Block matrix multiplication.

- If $A = (A_{ij}), B = (B_{rs})$ such that $A_{p\ell}B_{\ell q}$ is defined. That is, the number of columns of $A_{p\ell}$ equals the number of rows of $B_{\ell q}$.
- If $D = \text{diag}(d_1, \dots, d_n)$, A has columns $|x_1\rangle, \dots, |x_n\rangle$, and B has rows $\langle y_1|, \dots, \langle y_n|$, then

Ŋ

 $|x\rangle$

d'

1×~]

0

Ζ,

117

$$AD = [d_1|x_1\rangle \cdots d_n|x_n\rangle], \quad DB = \begin{pmatrix} d_1\langle y_1| \\ \vdots \\ d_n\langle y_n| \end{pmatrix},$$
$$AB = \sum_{j=1}^n |x_j\rangle\langle y_j|, \quad ADB = \sum_{j=1}^n d_j|x_j\rangle\langle y_j|.$$

• If $A \in \mathbf{M}_{m,n}, B \in \mathbf{M}_{n,k}, D = D_1 \oplus \mathbf{0}_{n-\ell}$, then

$$ADB = A \begin{pmatrix} D_1 & 0\\ 0 & 0 \end{pmatrix} B = A_1 D_1 B_1,$$

where A_1 is formed by the first ℓ columns of A and B_1 is formed by the first ℓ rows of B.

0

()

345

6

Q

Eigenvalues and eigenvectors

• Let $A \in \mathbf{M}_n$. We would like to find nonzero $|x\rangle \in \mathbb{C}^n$ such that $A|x\rangle = \lambda |x\rangle.$

AIX>

 $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = S \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} S =$

Then λ is an eigenvalue associated with the eigenvector $|x\rangle$.

If one can find n linearly independent set $\{|x_1\rangle, \ldots, |x_n\rangle\}$ of eigenvectors, then we can let $S = [|x_1\rangle \cdots |x_n\rangle]$ such that basi

with
$$D = \text{diag}(\lambda_1, \dots, \lambda_n)$$
. So, $S^{-1}AS = D$.

- To compute the eigenvalues and eigenvectors of $A \in \mathbf{M}_n$, one solves the characteristic equation $\det(tI - A) = 0$, which is a polynomial equation.
- For every t satisfying det(tI A) = 0, we solve for nonzero vectors $|x\rangle$ such that $A|x\rangle = t|x\rangle$
- Important facts: $\operatorname{tr} A = \sum_{j=1}^{n} \lambda_j$, $\operatorname{det}(A) = \prod_{j=1}^{n} \lambda_n$. • Not every matrix in \mathbf{M}_n has n linearly independent eigenvectors.

Special classes of matrices

- $A \in \mathbf{M}_n$ is Hermitian if $A = A^{\dagger}$. The (i, j) entry of A is the conjugate of the (j, i) entry of A.
- $A \in \mathbf{M}_n$ is unitary if $A^{\dagger} = A^{-1}$ be, $(AA^{\dagger} = I_n \text{ or } / \text{and } A^{\dagger}A \neq I_n$. The columns of U form an orthonormal basis for \mathbb{C}^n .

0,

• $A \in \mathbf{M}_n$ is positive semidefinite if $\langle x|A|x \rangle \geq 0$ for all $|x \rangle \in \mathbb{C}^n$. Equivalently, A is Hermitian with nonnegative eigenvalues.

 $A \in \mathbf{M}_n$ is normal if $AA^{\dagger} = A^{\dagger}A$.

 $\langle x | A | x \rangle \geq 0$ $\chi^* A \times \begin{bmatrix} 1 & 2 \\ -34 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 2 & 4 \end{bmatrix} \neq \begin{bmatrix} 2 & 3 \\ -24 \end{bmatrix}$

Spectral decomposition of a normal matrix

Theorem A matrix $A \in \mathbf{M}_n$ is normal if and only if there is a unitary $U = [|u_1\rangle \cdots |u_n\rangle]$ and unitary $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$ such that

$$A = UDU^{\dagger} = \sum_{j=1}^{n} \lambda_j |u_j\rangle \langle u_j|.$$

That is A has an orthonormal set of eigenvectors $\{|u_1\rangle, \dots, |u_n\rangle\}$ for the eigenvalues $\lambda_1, \dots, \lambda_n$ so that $A[|u_1\rangle \cdots |u_n\rangle] = [|u_1\rangle \cdots |u_n\rangle]D.$

So,
$$U^{\dagger}AU = D$$
.

Corollary Let $A \in \mathbf{M}_n$.

- Then A is Hermitian if and only if A is normal with real eigenvalues.
 - Then A is unitary if and only if A is normal with eigenvalues on of modulus 1.
 - Then A is positive semidefinite if and only if A is normal (Hermitian) with nonnegative eigenvalues.

UAN:

[] N

 $= A^{+} = A^{+}$ $AA^{-} = A^{+} = A^{+}$ $AA^{+} = A^{+} = A^{+}$

J

Spectral theorem of normal matrices

Spectral theorem of normal matrices
Theorem Suppose $A \in \mathbf{M}_n$ is normal in the form $A = (1h)$. $[H, J, H]$
$A = UDU^{\dagger} = \sum_{j=1}^{n} \lambda_j u_j\rangle \langle u_j .$
• If k is a positive integer, then $A^k = \sum_{j=1}^n \lambda_j^k \left[a_{j} / \langle a_j \rangle \right]$
• If A is invertible and k is a positive integer, then $A^{-k} = \sum_{j=1}^{n} \lambda_j^{-k} u_j\rangle \langle u_j .$
• If A has positive eigenvalues, then $A^r = \sum_{j=1}^n \lambda_j^r u_j\rangle \langle u_j $.
• If f is an analytic function, then $f(A) = \sum_{j=1}^{n} f(\lambda_j) u_j\rangle \langle u_j $.
For example: $e^A = \sum_{j=0}^{\infty} \frac{1}{n!} A^n = \sum_{j=1}^n e^{\lambda_j} \mu_j \langle u_j .$
If $H = H^{\dagger} = \sum_{j=1}^{n} h_j u_j\rangle \langle u_j $ with real eigenvalues h_1, \ldots, h_n , then
$e^{iH} = \sum_{j=1}^{n} e^{ih_j} u_j\rangle \langle u_j $

is unitary.

Pauli matrices:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Remark If $A \in \mathbf{M}_2$ is Hermitian, then

$$A = (c_0, c_x, c_y, c_y) \cdot (\sigma_0, \sigma_x, \sigma_y, \sigma_z) = c_0 I_2 + c_x \sigma_x + c_y \sigma_z + c_z \sigma_z$$

with $c_0, c_x, c_y, c_z \in \mathbb{R}$.

Example In quantum computing, we often use e^{iaA} , where for a real unit vector $\mathbf{n} = (n_x, n_y, n_z)$ and $\sigma = (\sigma_x, \sigma_y, \sigma_z)$

$$A = \mathbf{n} \cdot \boldsymbol{\sigma} = (n_x, n_y, n_z) \cdot (\sigma_x, \sigma_y, \sigma_z) = \begin{pmatrix} n_z & n_x - in_y \\ n_x + in_y & -n_z \end{pmatrix},$$

which has eigenvalues 1, -1 and with eigenprojections

$$P_1 = \frac{1}{2}(I+A) = \begin{pmatrix} 1+n_z & n_x - in_y \\ n_x + in_y & 1-n_z \end{pmatrix}$$

and

$$P_2 = \frac{1}{2}(I - A) = \begin{pmatrix} 1 - n_z & -n_x + in_y \\ -n_x - in_y & 1 + n_z \end{pmatrix}.$$

Hence, $iaA = iaP_1 - iaP_2$ and

$$e^{iaA} = e^{ia}P_1 + e^{-ia}P_2 = \cos aI + i\sin aA.$$

Singular value decomposition

Singular value decomposition
Theorem Let
$$A \in M_{m,n}$$
 of rank k . There is an orthonormal set
 $\{|v_1\rangle, \ldots, |v_k\rangle \subseteq \mathbb{C}^n$ such that
 $A|v_j\rangle = s_j|u_j\rangle$ for $j = 1, \ldots, k$.
where $s_1 \ge \cdots \ge s_k > 0$, $\{|u_1\rangle, \ldots, |u_k\rangle$ is an orthonormal set in \mathbb{C}^m
Equivalently, there are unitary $U \in M_m$ and $V \in M_n$ so that
 $U^{\dagger}AV \supseteq \Sigma = \begin{pmatrix} 0 \\ 0_{n-k,k} \\ 0_{m-k,n-} \end{pmatrix}$, $D = \operatorname{diag}(s_1, \ldots, s_k)$.
Consequently, $A = \sum_{i=1}^{k} s_i fu_i \rangle \langle v_j|$, where $s_1^2 \ge \cdots \ge s_k^2$ are the positive
eigenvalues of $A^{\dagger}A$ and AA^{\dagger} .
Proof. Suppose $V^{\dagger}A^{\dagger}AV + \operatorname{diag}(s_1^2, \ldots, s_k^2)$ with $s_1 \ge \cdots \ge s_n \ge 0$.
Then the columns of AV form an orthogonal set. Suppose the first k
columns of AV are nonzero. Then $k \le m$. Let $|u_i\rangle$ be the *i*th column
of AV divided by s_i , and let $U \in M_m$ with the first k columns equal
to $|u_1\rangle, \ldots, |u_k\rangle$. Then $U^{\dagger}AI = \Sigma^{\dagger}$
 $A = A^{\dagger}AV$.
 $A = A^{\dagger}AV$.

Example Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ i & i \end{pmatrix}$$
. Then $A^{\dagger}A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$.
If $V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, then $V^{\dagger}AAV = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}$.
So, $\Sigma = \begin{pmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $AV = \begin{pmatrix} 2 & 0 \\ 0 & 0 \\ 2i & 0 \end{pmatrix}$.
We may take $U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 \\ 0 & \sqrt{2} & 0 \\ i & 0 & -i \end{pmatrix}$ to get $U^{\dagger}AV = \Sigma$.

Tensor products

Let $A = (A_{ij})$ and B be two rectangular matrices. Then their tensor product (Kronecker product) is the matrix

roduct) is the matrix

$$A \otimes B = (A_{ij}B).$$
 $A = (A_{ij}B).$
 $A = (A_{ij}B).$

VW

6

Y

A

R

η

This is very important in quantum mechanics.

If ρ_1, ρ_2 are quantum states of two quantum systems, then $\rho_1 \otimes \rho_2$ is their product state in the bipartite (combined) system.

Theorem For matrices A, B, C, D of appropriate sizes, the following properties hold:

(1)
$$(A \otimes B)(C \otimes D) \neq (AC) \otimes (BD)$$
.
(2) $A \otimes (B+C) = A \otimes B + A \otimes C$,
(3) $(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}$,
(4) $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$.
Proof. (1) Let $A \in \mathbf{M}_{m,n}, B \in \mathbf{M}_{r,s}, C \in \mathbf{M}_{n,p}$, and $D \in \mathbf{M}_{s,q}$. If $AC = (\gamma_{rs})$, then
 $(A \otimes B)(C \otimes D) \neq (d_{ij}B)(q_{ij}D) = (\gamma_{rs}BD)$
 $= (\gamma_{rs}) \otimes (BD) = (AC) \otimes (BD)$.
(2) $A \otimes (B+C) = (A_{ij}(B+C))$
 $= (A_{ij}B) + (A_{ij}C) = A \otimes B + A \otimes C$.
(3) Let $\gamma_{rs} = \bar{A}_{sr}$. Then
 $(A \otimes B)^{\dagger} = (A_{ij}B)^{\dagger} = (\gamma_{rs}B^{\dagger}) = A^{\dagger} \otimes B^{\dagger}$.

•

•

(4) Note that
$$(A^{-1} \otimes B^{-1})(A \otimes B) = I \otimes I$$
.

Corollary For any matrices A, B, if

then $(R_1 \otimes R_2) \land A \otimes B) (S_1 \otimes S_2) = T_1 \otimes T_2.$ Applications.

• Let $A \in \mathbf{M}_m, B \in \mathbf{M}_n$. If $S_1^{-1}AS_1 = D_1, S_2^{-1}BS_2 = D_2,$

 $R_1 A S_1 = T_1, R_2 B S_2 = T_2,$

where D_1, D_2 are diagonal matrices, then

$$(S_1 \otimes S_2)^{-1} (A \otimes B) (S_1 \otimes S_2) = D_1 \otimes D_2$$

is a diagonal matrix.

* If A, B are normal, we may assume that S_1, S_2 be unitary. * If $A|u_i\rangle = \mu_i |u_i\rangle$ for $1 \le i \le m$, and $B|v_j\rangle = \nu_j |v_j\rangle$ $1 \le j \le n$,

then

then

then

$$(A \otimes B)(|u_i v_j\rangle) = \mu_i \nu_j |u_i v_j\rangle,$$
where $|u_i v_j\rangle = |u_i\rangle \otimes |v_j\rangle.$

 $\bullet~\mbox{\it If}~A,B~\mbox{\it are rectangular matrices with singular decomposition}$

$$A = \sum_{i=1}^{r} a_i |u_i\rangle \langle v_i| \text{ and } B = \sum_{j=1}^{s} b_j |x_j\rangle \langle v_j|,$$
$$A \otimes B = \sum_{r,s} a_i b_j |u_i |x_j\rangle \langle v_i |y_j|,$$

is the singular value decomposition $\frac{df}{df} \otimes B$.

 $A|x\rangle = \lambda|x\rangle$

13 (y)= M1y>

- Mn

Mr. Am

X>Q/Y>

= > M Xely

ß