Gram-Schmidt orthonormalization process

Let $\left\{\left|x_{1}\right\rangle, \ldots,\left|x_{m}\right\rangle\right\}$ be linearly independent.

We can use the following Gram-Schmidt process to construct an orthonormal set $\left\{\left|e_{1}\right\rangle, \ldots,\left|e_{m}\right\rangle\right\}$ such that

$$
\operatorname{span}\left\{|\underline{x \mu}\rangle, \ldots,\left|x_{\rho}\right\rangle\right\}=\operatorname{span}\left\{\left|e_{y}\right\rangle, \ldots,\left|e_{\ell}\right\rangle\right\},
$$

for all $\ell=1, \ldots, m$.
Set $\left|e_{1}\right\rangle=\left|x_{1}\right\rangle / \|\left|x_{1}\right\rangle \|$.
For $k>1$, set $\left|f_{k}\right\rangle / \|\left|f_{k}\right\rangle \|$, where

$$
\left|f_{k}\right\rangle=\left|x_{k}\right\rangle-a_{1}\left|e_{1}\right\rangle-\cdots-a_{k-1}\left|e_{k-1}\right\rangle
$$

with $a_{j}=\left\langle e_{j} \mid x_{k}\right\rangle$.
We can further extend the set to an o.n. basis
Let $\left\{\left|y_{1}\right\rangle, \ldots,\left|y_{n}\right\rangle\right\} \subseteq \mathbb{C}^{n}$ be a basis.
Find linearly independent columns of the matrix

$$
\left[\left|e_{1}\right\rangle \cdots\left|e_{m}\right\rangle\left|y_{1}\right\rangle \cdots\left|y_{n}\right\rangle\right]
$$

including the first m columns.
Then apply Gram-Schmidt process.
Example Apply Gram-Schmidt to $\left\{\left|x_{1}\right\rangle,\left|x_{2}\right\rangle\right\}$ with

$$
\left|x_{1}\right\rangle=\left(\begin{array}{l}
1 \\
1 \\
i
\end{array}\right),\left|x_{2}\right\rangle=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)
$$

Then extend the resulting set to an orthnormal basis.

Basics of Matrices

- Mixed quantum states are represented by density matrices i.e., positive semi-definite matrices with trace

- Quantum operations orresponds to /nitary matrices.
- So, we need basic knowledge of matrices (relevant to quantum mechanics) \qquad

Let $\mathbf{M}_{\text {Hen }}$ bethe set (vector space/algebra) of $m \times n$ complex matrices. If $m=n$, we let $\mathbf{M}_{n}=\mathbf{M}_{m, n}$.

- The set $\mathbf{M}_{m, n}$ is a vector space under addition and scalar multiplication.

$$
\begin{aligned}
& M_{21} \\
& a_{1} \\
& {\left[\begin{array}{lll}
a_{n} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]}
\end{aligned}
$$

- We can multiply $A=\left(a_{i j}\right) \in \mathbf{M}_{m, n}$ and $B=\left(b_{r s}\right) \in \mathbf{M}_{n, k}$ such
that $C=A B=\left(c_{p q}\right) \in \mathbf{M}_{m, k}$ with

- If A has rows $\left\langle A_{1}\right|, \ldots,\left\langle A_{m}\right|$ and B has columns $\left|B_{1}\right\rangle, \cdots,\left|B_{p}\right\rangle$,
then
$\underline{A B}=\left[A\left|B_{1}\right\rangle \cdots A\left|B_{p}\right\rangle\right]=\left(\begin{array}{c}\left\langle A_{1}\right| B \\ \vdots \\ \left\langle A_{m}\right| B\end{array}\right)$
$m \times n \quad n \times p$

Block matrix multiplication.

- If $A=\left(A_{i j}\right), B=\left(B_{r s}\right)$ such that $A_{p \ell} B_{\ell q}$ is defined. That is, the number of columns of $A_{p \ell}$ equals the number of rows of $B_{\ell q}$.
- If $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right), A$ has columns $\left|x_{1}\right\rangle, \ldots,\left|x_{n}\right\rangle$, and B has rows $\left\langle y_{1}\right|, \ldots,\left\langle y_{n}\right|$, then

$$
A D=\left[d_{1}\left|x_{1}\right\rangle \cdots d_{n}\left|x_{n}\right\rangle\right], \quad D B=\left(\begin{array}{c}
a_{1}\left\langle y_{1}\right| \\
\vdots \\
d_{n}\left\langle y_{n}\right|
\end{array}\right)
$$ $\left.A=_{m}\left|x_{1}\right\rangle \ldots \mid x_{n}\right]$

- If $A \in \mathbf{M}_{m, n}, B \in \mathbf{M}_{n, k}, D=D_{1} \oplus \mathbf{0}_{n-\ell}$, then

$$
A D B=A\left(\begin{array}{cc}
D_{1} & 0 \\
0 & 0
\end{array}\right) B=A_{1} D_{1} B_{1}
$$

where A_{1} is formed by the first ℓ columns of A and B_{1} is formed by the first ℓ rows of B.

Eigenvalues and eigenvectors

Then λ is an eigenvalue associated with the eigenvector $|x\rangle$.

- f one can find n linearly independent set $\left\{\left|x_{1}\right\rangle, \ldots,\left|x_{n}\right\rangle\right\}$ of eigen-
vectors, then can let $\mathcal{S}=\left[\left|x_{1}\right\rangle \cdots\left|x_{n}\right\rangle\right]$ such that
with $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. So, $\overline{S^{-1} A S=D . ~ N}$

- To compute the eigenvalues and eigenvectors of $A \in \mathbf{M}_{n}$, one solves the characteristic equation $\operatorname{det}(t I-A)=0$, which is a polynomial equation.

- For ever t satisfying $\operatorname{det}(t I-A)=0$, we solve for nonzero vectors
$|x\rangle$ such that $A|x\rangle=t|x\rangle$
- Important facts: $\left.\operatorname{tr} A\left(=\sum_{j=1}^{n} \lambda\right), 4 \begin{array}{l}0 \\ \text { - Not every matrix in } \mathbf{M}_{n} \text { has } n \text { linearly independent eigenvectors. } \\ \hline 1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=S\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] S=
$$

Spectral decomposition of a normal matrix
Theorem A matrix $A \in \mathbf{M}_{n}$ is normal if and only if there is a unitary $U=\left[\left|u_{1}\right\rangle \cdots\left|u_{n}\right\rangle\right]$ and unitary $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ such that

$$
A=U D U^{\dagger}=\sum_{j=1}^{n} \lambda_{j}\left|u_{j}\right\rangle\left\langle u_{j}\right|
$$

That is A has an orthonormal set of eigenvectors $\left\{\left|u_{1}\right\rangle, \ldots,\left|u_{n}\right\rangle\right\}$ for the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ so that

Corollary Let $A \in \mathbf{M}_{n}$.

- Then A is Hermitian if and only if A is normal with feal eigen-
 values.
- Then A is unitary if and only if A is normal with eigenvalues on of modulus 1.
- Then A is positive semidefinite if and only if A is normal (Hermitian) with nonnegative eigenvalues.

$$
U^{-1} A N=\left[\begin{array}{ll}
\therefore & n
\end{array}\right]
$$

Spectral theorem of normal matrices

Theorem Suppose $A \in \mathbf{M}_{n}$ is normal in the form

- If A is invertible and k is a positive integer, then $A^{-k}=\sum_{j=1}^{n} \lambda_{j}^{-k}\left|u_{j}\right\rangle\left\langle u_{j}\right|$.
- If A has positive eigenvalues, then $A^{r}=\sum_{j=1}^{n} \lambda_{j}^{r}\left|u_{j}\right\rangle\left\langle u_{j}\right|$.
- If f is an analytic function, then $f(A)=\sum_{j=1}^{n} f\left(\lambda_{j}\right)\left|u_{j}\right\rangle\left\langle u_{j}\right|$.
is unitary.

Pauli matrices:

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Remark If $A \in \mathbf{M}_{2}$ is Hermitian, then

$$
A=\left(c_{0}, c_{x}, c_{y}, c_{y}\right) \cdot\left(\sigma_{0}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)=c_{0} I_{2}+c_{x} \sigma_{x}+c_{y} \sigma_{z}+c_{z} \sigma_{z}
$$

with $c_{0}, c_{x}, c_{y}, c_{z} \in \mathbb{R}$.
Example In quantum computing, we often use $e^{i a A}$, where for a real unit vector $\mathbf{n}=\left(n_{x}, n_{y}, n_{z}\right)$ and $\sigma=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$

$$
A=\mathbf{n} \cdot \sigma=\left(n_{x}, n_{y}, n_{z}\right) \cdot\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)=\left(\begin{array}{cc}
n_{z} & n_{x}-i n_{y} \\
n_{x}+i n_{y} & -n_{z}
\end{array}\right),
$$

which has eigenvalues $1,-1$ and with eigenprojections

$$
P_{1}=\frac{1}{2}(I+A)=\left(\begin{array}{cc}
1+n_{z} & n_{x}-i n_{y} \\
n_{x}+i n_{y} & 1-n_{z}
\end{array}\right)
$$

and

$$
P_{2}=\frac{1}{2}(I-A)=\left(\begin{array}{cc}
1-n_{z} & -n_{x}+i n_{y} \\
-n_{x}-i n_{y} & 1+n_{z}
\end{array}\right) .
$$

Hence, $i a A=i a P_{1}-i a P_{2}$ and

$$
e^{i a A}=e^{i a} P_{1}+e^{-i a} P_{2}=\cos a I+i \sin a A
$$

Equivalently, there are unitary $U \in \mathbf{M}_{m}$ and $V \in \mathbf{M}_{n}$ so that

Consequently, $A=\sum_{j=1}^{k} s_{j}\left\langle u_{j}\right\rangle\left\langle v_{j}\right|$, where $s_{1}^{2} \geq \cdots \geq s_{k}^{2}$ are the positive eigenvalues of $A^{\dagger} A$ and $A A^{\dagger}$.

Proof. Suppose $V^{\dagger} A^{\dagger} A V-\operatorname{diag}\left(s_{1}^{2}, \ldots, s_{n}^{2}\right)$ with $s_{1} \geq \cdots \geq s_{n} \geq 0$.
hen the columns of $A V$ norman orthogonal set. Suppose the first k columns of $A V$ are nonzero. Then $k \leq m$. Let $\left|u_{i}\right\rangle$ be the i th column of $A V$ divided by s_{i}, and let $U \in \mathbf{M}_{m}$ with the first k columns equal

Example Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 0 \\ i & i\end{array}\right)$. Then $A^{\dagger} A=\left(\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right)$.
If $V=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$, then $V^{\dagger} A A V=\left(\begin{array}{ll}4 & 0 \\ 0 & 0\end{array}\right)$.
So, $\Sigma=\left(\begin{array}{ll}2 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)$ and $A V=\left(\begin{array}{cc}2 & 0 \\ 0 & 0 \\ 2 i & 0\end{array}\right)$.
We may take $U=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & \sqrt{2} & 0 \\ i & 0 & -i\end{array}\right)$ to get $U^{\dagger} A V=\Sigma$.

Tensor products
Let $A=\left(A_{i j}\right)$ and B be two rectangular matrices. Then their tensor product (Kronecker product) is the matrix

This is very important in quantum mechanics.
If ρ_{1}, ρ_{2} are quantum states of two quantum systems, then $\rho_{1} \otimes \rho_{2}$ is their product state in the bipartite (combined) system.

Theorem For matrices A, B, C, D of appropriate sizes, the following properties hold:

(2) $A \otimes(B+\overline{\widetilde{C}})=A \otimes B+A \otimes C$,

(4) $(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}$.

Proof. (1) Let $A \in \mathbf{M}_{m, n}, B / \in \mathbf{M}_{r, s}, C \in \mathbf{M}_{n, p}$, and $D \in \mathbf{M}_{s, q}$. If $A C=\left(\gamma_{r s}\right)$, then

$$
\dot{=}\left(\gamma_{r s}\right) \otimes{ }^{\circ}(B D)=(A C) \otimes(\dot{B} D)
$$

(2) $A \otimes(B+C)=\left(A_{i j}(B+C)\right)$

$$
=\left(A_{i j} B\right)+\left(A_{i j} C\right)=A \otimes B+A \otimes C .
$$

(3) Let $\gamma_{r s}=\bar{A}_{s r}$. Then

$$
(A \otimes B)^{\dagger}=\left(A_{i j} B\right)^{\dagger}=\left(\gamma_{r s} B^{\dagger}\right)=A^{\dagger} \otimes B^{\dagger}
$$

(4) Note that $\left(A^{-1} \otimes B^{-1}\right)(A \otimes B)=I \otimes I$.

Corollary For any matrices A, B, if
then $\frac{\left(R_{1} \otimes R_{2}\right)}{\text { Applications. }} \begin{aligned} & \frac{R_{1} A S_{1}}{}=T_{1}, R_{2} B S_{2}=T_{2}, \\ & \left.S_{1} \otimes S_{2}\right)=T_{1} \otimes T_{2} .\end{aligned}$

- Let $A \in \mathbf{M}_{m}, B \in \mathbf{M}_{n}$. If

$$
S_{1}^{-1} A S=D_{1}, 2^{1} B S_{2}=D_{2}
$$

$$
A|x\rangle=\lambda|x\rangle
$$

where D_{1}, D_{2} are diagonal matrices, then

is a diagonal matrix.

*If A, B are normal, we may assume that S_{1}, S_{2} be unitary.

* If $A\left|u_{i}\right\rangle=\mu_{i}\left|u_{i}\right\rangle$ for $1 \leq i \leq m$, and $B\left|v_{j}\right\rangle=\nu_{j}\left|v_{j}\right\rangle 1 \leq j \leq n$,

$=\lambda \mu \mid N D / \|_{\eta}$

- If A, B are rectangular matrices with singular decomposition

then
is the singular value decomposition $f \otimes B$.

$$
A \otimes B=a_{i} b_{j} u\left|x_{j}\right\rangle\left\langle\frac{v_{i} y_{j} \mid}{},\right.
$$

$$
M_{1}, \ldots \mu_{n} B
$$

