
Chapter 2 Quantum Mechanics: Hilbert Space Formalism.

Quantum Information Science uses quantum properties to help

store, process, and transmit information. In this chapter, we de-

scribe some basic background on quantum mechanics. We first use

vector states to describe quantum systems. Then we demonstrate

the formulation using density matrices.

Copenhagen interpretation

A1 A vector state |x⟩ is a unit vector in a Hilbert space H (usually

Cn). Linear combinations (superposition) of the physical states

are allowed in the state space.

A2 An observable of a state |x⟩ corresponds to a Hermitian oper-

ators A such that a measurement will change the state |x⟩ to

an eigenstate (eigenvector) |u⟩ of A with a probability |⟨u|x⟩|2.

In the finite dimensional case, suppose the observable and the

state are represented by

A =
n∑

j=1

λj |uj⟩⟨uj | =
n∑

j=1

λjPj ,

and

|x⟩ =
n∑

j=1

cj |uj⟩ ∈ Cn with cj = ⟨uj |x⟩.

When a measurement is applied, the state (wave function)

|x⟩ =
∑n

j=1 cj |uj⟩ becomes (collapses to) |uj⟩ with a prob-

ability |cj |2 = |⟨uj |x⟩|2. (The eigenvalue λj indicates that |x⟩
changes to |uj⟩.)

The complex coefficients c1, . . . , cn are called the probability

amplitude of the state |x⟩ (with respect to the observable as-

sociated with A).
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A3 The time dependence of a state is governed by the Schrödinger

equation

ih̄
d|x⟩
dt

= H|x⟩,

where h̄ is the Planck constant with

h̄= 6.6260700410−34m2kg/s,

and H is a Hermitian operator (matrix) corresponding to the

energy of the system known as the Hamiltonian. In the Schrödinger

equation, if H(t) does not depend on t, then

|x(t)⟩ = e−iHt/h̄|x(0)⟩.

Otherwise,

|x(t)⟩ = exp

(
−i
h̄

∫ t

0
H(s)ds

)
|x(0)⟩.

It is inspiring to think about the 1× 1 case. We can solve

x′(t) = kx(t) so that x(t) = ekx(0).

Remark One may regard |x(0)⟩ changes because the Hamiltonian

H(t) changes according to time. This is known as the Heisenberg

picture of quantum mechanics. One may also assume that the state

|x(t)⟩ is changing according to time. This is known as the Schrödinger

picture.
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Example If

H =
−h̄
2
wσx and |ψ(0)⟩ =

(
1
0

)
so that ih̄

d|ψ⟩
dt

= H|ψ⟩,

then

|ψ(t)⟩ = ((coswt/2)I2 + (i sinwt/2)σx)|ψ(0)⟩

= [(coswt/2)

(
1 0
0 1

)
+ i sinwt/2)

(
0 1
1 0

)
]|ψ(0)⟩

=

(
coswt/2
i sinwt/2

)
.

If we apply the observable A =

(
3 0
0 1

)
, then the measurement

|ψ(t)⟩ will collapse to |e1⟩ =
(
1
0

)
and |e2⟩ =

(
0
1

)
with probabilities

|⟨e1|u1⟩|2 = cos2(wt/2) and |⟨e2|u1⟩|2 = sin2(wt/2), respectively.

If we apply the observable A = 3P1+2P2 with P1 = |u1⟩⟨u1| and

P2 = |u2⟩⟨u2| with |u1⟩ = 1√
2

(
1
i

)
and |u2⟩ = 1√

2

(
1
−i

)
, then the

measurement |ψ(t)⟩ will collapse to |u1⟩ and |u2⟩ with probabilities

|⟨u1|ψ(t)⟩|2 =
1

2
|(1,−i)(cos(wt/2), i sin(wt/2)t|2

= (cos(wt/2) + sin(wt/2))2/2

and

|⟨u2|ψ(t)⟩|2 =
1

2
|(1, i)(cos(wt/2), i sin(wt/2)t|2

= (cos(wt/2)− sin(wt/2))2/2.
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The uncertainty principle

Let Expx(A) = ⟨x|A|x⟩ = µ and Varx(A) = Expx((A − µI)2) =

⟨x|(A− µI)2|x⟩ = ∥(A− µI)|x⟩∥2.

In an deterministic model, the variance of measurements should go

to zero as the apparatus is made very accurate.

Theorem For any observables A and B and for any quantum state

|x⟩, if [A,B] = AB −BA is the commutator of A and B, and

∆(A) =
√
Varx(A) =

√
⟨x|(A− αI)2|x⟩,

where α = ⟨x|A|⟩ is the expectation value, then

∆(A)∆(B) ≥ 1

2
|⟨x|[A,B]|x⟩|.

The equality holds if and only if there is θ ∈ [0, 2π) such that

cos θA|x⟩+ i sin θB|x⟩ = 0.

4



Proof. Let Â = A − αI and B̂ = B − βI. Note first that

∆(A)∆(B) =

√
⟨ψ|Â2|ψ⟩

√
⟨ψ|B̂2|ψ⟩ and ⟨ψ|[A,B]|ψ⟩ = ⟨ψ|[Â, B̂]|ψ⟩.

So, we need to show that 4⟨ψ|Â2|ψ⟩⟨ψ|B̂2|ψ⟩ ≥ |⟨ψ|[Â, B̂]|ψ⟩|2. Note
that the matrices

C1 =

(
⟨ψ|Â2|ψ⟩ ⟨ψ|ÂB̂|ψ⟩
⟨ψ|B̂Â|ψ⟩ ⟨ψ|B̂2|ψ⟩

)
and C2 =

(
⟨ψ|Â2|ψ⟩ −⟨ψ|B̂Â|ψ⟩

−⟨ψ|ÂB̂|ψ⟩ ⟨ψ|B̂2|ψ⟩

)
are positive semi-definite as proved by checking that all their prin-

cipal minors are nonnegative using the Cauchy-Schwartz inequality.

Thus, C = C1 + C2 is positive semi-definite and

4⟨ψ|Â2|ψ⟩⟨ψ|B̂2|ψ⟩ − |⟨ψ|[Â, B̂]|ψ⟩|2 = det(C) ≥ 0.

The equality det(C) = 0 holds if and only if C is singular, equiva-

lently, the positive semi-definite matrices C1 and C2 are singular and

share a common null vector. Since C1 and C2 have the same trace,

we see that

(1) C1 = C2 = (tr C1)|u⟩⟨u| for some unit vector |u⟩ ∈ Cn, and

(2) ⟨ψ|ÂB̂|ψ⟩ = −⟨ψ|B̂Â|ψ⟩, i.e., ⟨ψ|{Â, B̂}|ψ⟩ = 0.

Condition (1) implies det(C1) = 0, namely ⟨ψ|Â2|ψ⟩⟨ψ|B̂2|ψ⟩ =

|⟨ψ|ÂB̂|ψ⟩|2. By the Cauchy-Schwartz inequality, Â|ψ⟩ and B̂|ψ⟩
are linearly dependent. Condition (2) implies that ⟨ψ|ÂB̂|ψ⟩ ∈ iR.
So, Â|ψ⟩ and iB̂|ψ⟩ are linearly dependent over R. Thus, there is

θ ∈ [0, 2π) such that cos θÂ|ψ⟩+ i sin θB̂|ψ⟩ is the zero vector. Con-

versely, if cos θÂ|ψ⟩+i sin θB̂|ψ⟩ is the zero vector, one readily checks

that C1 = C2 and det(C1 + C2) = 0. □

Example It is known that [P,Q] = iαh̄I for quantities such as po-

sition and momentum operator, where α is a constant. Then

∆(P )2∆(Q)2 ≥ |αh̄|.

Note that such examples only exists for infinite dimensional op-

erators because of tr (AB −BA) = 0 for matrices.
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Bipartite and multipartite systems

A system may have two components described by two Hilbert

spaces H1 and H2. Then the bipartite system is represented by

H = H1 ⊗H2. A general state in H has the form

|x⟩ =
∑
i,j

cij |e1,i⟩ ⊗ |e2,j⟩ with
∑
i,j

|cij |2 = 1,

where {|er,1⟩, |er,2⟩, . . . } is an orthonormal basis for Hr with r ∈
{1, 2}.

Then {|e1,ie2,j⟩ : i = 1, 2, . . . , j = 1, 2, . . . } is an orthonrmal basis for

H1 ⊗H2.

Example For example, C2 has orthonormal basis {|0⟩, |1⟩} with

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
.

Then C2⊗C2 has orthonormal basis {|00⟩, |01⟩, |10⟩, |11⟩} consisting

of the 4 columns of the identity matrix I4.

Similarly, C2 ⊗C2 ⊗C2 has orthonormal basis {|000⟩, . . . , |111⟩}
consisting of the columns of I8.

In general, if U = [|u1⟩ · · · |um⟩] such that the columns of U form

an orthonormal basis for Cm, and V = [|v1⟩ · · · |vn⟩] such that the

columns of V form an orthonormal basis for Cn, then the columns of

U ⊗ V = [|u1v1⟩ · · · |umvn⟩] form an orthonormal basis for Cm ⊗Cn.
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Separable states, entangled states, Schmidt decomposition

A state of the form |x⟩ = |x1⟩⊗|x2⟩ is a separable state or a tensor

product state. Otherwise, it is an entangled state.

Example Let |x⟩ = c00|00⟩+ c01|01⟩+ c10|10⟩+ c11|11⟩ =


c00
c01
c10
c11

 ∈

C2 ⊗ C2.

Question How to detect that it is a tensor state?

Answer Check whether the rows of the matrix C =

(
c00 c01
c10 c11

)
are

multiples of each other. If yes, we can write C =

(
a1
a2

)
(b1 b2)

t for

some unit vectors |u⟩ = (a1, a2)
t, |v⟩ = (b1, b2)

t. Then |x⟩ = |u⟩⊗|v⟩.
If not, |x⟩ is entangled.

Remark Most states in H1 ⊗ H2 are entangled states, which are

most useful for quantum computing.
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Theorem Suppose H1,H2 have finite dimensions, say, m and n.

Every state |x⟩ in H1 ⊗H2 admits a Schmidt decomposition

|x⟩ =
r∑

j=1

sj |uj⟩ ⊗ |vj⟩,

where sj > 0 are the Schmidt coefficients satisfying
∑r

j=1 sj = 1, r

is the Schmidt number of |x⟩, {|u1⟩, . . . , |ur⟩} is an orthonormal set

of H1 and {|v1⟩, . . . , |vr⟩} is an orthonormal set of H2.

Proof. Assume H1 and H2 orthonormal bases {|e1,1, . . . , |e1,m⟩}
and {|e2,1, . . . , |e2,n⟩}. Every state has the form |x⟩ =

∑
j=1 crs|e1,r⟩⊗

|e2,s⟩.
If C has rank one, then C = (a1, . . . , am)t(b1, . . . , bn) so that

C = |u⟩ ⊗ |v⟩ with |u⟩ =
∑m

j=1 aj |e1,j⟩ and |v⟩ =
∑n

j=1 b
∗
j |e2,j⟩.

Because ∥x⟩∥ = 1, we may choose unit vectors (a1, . . . , am)t and

(b1, . . . , bn)
t so that |u⟩, |v⟩ are unit vectors.

Then C = [cij ] has singular decomposition
∑r

j=1 sj |uj⟩⟨|vj | =∑r
j=1 sjCj , where C1, . . . , Cr corresponds to Cj .

One can then use Cj to construct tensor state |xj⟩ = |uj⟩ ⊗ |vj⟩
so that

|x⟩ =
r∑

j=1

sj |xj⟩ =
r∑

j=1

sj |uj⟩ ⊗ |vj⟩.

□
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Example Suppose |x⟩ =
∑

i,j cij |e1,ie2,j⟩ ∈ C2 ⊗ C3 with

(cij) = UDV t = d1|u1⟩⟨v1|+ d2|u2⟩⟨v2|,

where

U = 1√
2

(
1 1
i −i

)
, D = 1

5

(
4 0 0
0 3 0

)
, V = 1√

2

1 0 1
1 0 −1

0
√
2 0

.

Then

|x⟩ = 4

5
|u1⟩|v1⟩+

3

5
|u2⟩|v2⟩,

where

|u1⟩ = (1, i)t/
√
2, |u2⟩ = (1,−i)t/

√
2,

|v1⟩ = (1, 1, 0)t/
√
2, |v2⟩ = (0, 0, 1)t.

Remark Extending the results to H1⊗· · ·⊗Hk for k ≥ 3 is an open

problem.
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No-cloning theorem

Theorem (Wootters and Zurek) An unknown quantum system can-

not be cloned by unitary transformations.

Proof. Suppose there would exist a unitary transformation U that

makes a clone of a quantum system. Namely, suppose U acts, for

any state |φ⟩, as
U : |φ0⟩ → |φφ⟩.

Let |φ⟩ and |ϕ⟩ be two states that are linearly independent. Then

we should have U |φ0⟩ = |φφ⟩ and U |ϕ0⟩ = |ϕϕ⟩ by definition. Then

the action of U on |ψ⟩ = 1√
2
(|φ⟩+ |ϕ⟩) yields

U |ψ0⟩ = 1√
2
(U |φ0⟩+ U |ϕ0⟩) = 1√

2
(|φφ⟩+ |ϕϕ⟩).

If U were a cloning transformation, we must also have

U |ψ0⟩ = |ψψ⟩ = 1

2
(|φφ⟩+ |φϕ⟩+ |ϕφ⟩+ |ϕϕ⟩),

which contradicts the previous result. Therefore, there does not exist

a unitary cloning transformation. □
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Qubits

� Mathematically, qubit is a vector in |x⟩ = a|0⟩+ b|1⟩ =
(
a
b

)
∈

C2 with |a|2 + |b|2 realized by physical quantum states such as

the vertically and horizontally polarized photons, or spin 1/2

in NMR system.

� Note that measurement will give |0⟩ or |1⟩ even a qubit can

assume infinitely many states. The probability for the mea-

surement on |x⟩ yielding |0⟩ is ⟨x|(|0⟩⟨0|)|x⟩ = |a|2.

� Even if we can get the information |a| and |b| by measuring

many identical |x⟩ if it is available, we cannot get complete

information of |x⟩⟨x|.

� Using the measurable states P1 = |0⟩⟨0|, P2 = |1⟩⟨1| to get

information of ⟨x|P1x⟩, ⟨x|P2x⟩, we have the “diagonal entries”
of ρ = |x⟩⟨x|, which are |a|2, |b|2.

� In order to obtain complete information of |x⟩⟨x|, we may ap-

ply unitary U1, . . . , Ur and measure the diagonal Uj |x⟩⟨x|U †
j to

access information of the off-diagonal entries. Such study is

known as state tomography problem.

One may consider qutrits in C3 and qudits in Cn.
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Bloch sphere and Bloch ball

Since two unit vectors |x⟩ and eit|x⟩ represent the same quantum

state, it is convenient to use the rank one orthogonal projection ρ =

|x⟩⟨x|, which will be called a pure state, to represent the state.

More generally, one may consider the mixed state ρ ∈Mn of the

form
r∑

j=1

pr|xj⟩⟨xj |

with probability vector (p1, . . . , pr) and pure states |x1⟩⟨x1|, . . . , |xr⟩⟨xr|.

For qubits, a mixed state has the form

ρ =
1

2
(I2 + u · σ) = 1

2
(σ0 + u1σ1 + u2σ2 + u3σ3)

with |u| =
√
u21 + u22 + u23 ≤ 1.

Here (σ1, σ2, σ3) = (σx, σy, σz) are the Pauli matrices”

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σx =

(
1 0
0 −1

)
.

� The eigenvalues of ρ are 1
2(1± |u|).

� ρ is a pure state if and only if |u| = 1.

� In such a case, we may let

u = (u1, u2, u3) = (sin θ cosϕ, sin θ sinϕ, cos θ).
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Multi-qubit systems and entangled states

Given n qubits |x1⟩, . . . , |xn⟩, we can consider the tensor product

|x1⟩ ⊗ · · · ⊗ |xn⟩ ∈ CN with N = 2n. Most state vectors∑
ik=0,1

ai1···in |xi1⟩ ⊗ · · · ⊗ |xin⟩ ∈ CN

are entangled state vectors, which are not of the tensor form.

Notation We often assume |xj⟩ ∈ {|0⟩, |1⟩}, and regard

|x⟩ = |xi1 · · ·xin⟩ = |qn−1 · · · q0⟩

as a binary number, and

|ψ⟩ =
∑

ik=0,1

ai1···in |xi1 · · ·xin⟩.

Example

|x⟩ = 1

2

∑
i,j∈{0,1}

|ij⟩ = 1

2
(|00⟩+ |01⟩+ |10⟩+ |11⟩) = 1

2

3∑
x=0

|x⟩.
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In quantum computing, we often implement quantum operation of

the form: ∑
x

|x⟩|0⟩ 7→
∑
x

|x⟩|f(x)⟩.

For example, if f(0) = f(1) = 1, we want U such that U |00⟩ =

|01⟩, U |10⟩ = |11⟩. So, we may set U |01⟩ = |00⟩, U |11⟩ = |10⟩.

Example The Bell states

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩), |Φ−⟩ = 1√

2
(|00⟩ − |11⟩),

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩), |Ψ−⟩ = 1√

2
(|01⟩ − |10⟩)

are entangled states and form an orthonormal basis for the two qubit

systems.

Example In the 3 qubit system, we have that GHZ state and W

state:

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩) and |W ⟩ 1√

3
(|100⟩+ |010⟩+ |001⟩).
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Measurements

For each outcome m, construct a measurement operator Mm so

that the probability of obtaining outcome m in the state |x⟩ is com-

puted by

p(m) = ⟨x|M †
mMm|x⟩

and the state immediately after the measurement is

|m⟩ = Mm|x⟩√
p(m)

.

Example Let M = {M0,M1} with M0 = |0⟩⟨0| and M1 = |1⟩⟨1|.
Then for |x⟩ = a|0⟩+ b|1⟩ with a ̸= 0, p(0) = |a|2, M0|x⟩ = a|0⟩/|a|,
which is the same as the vector state |0⟩.
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� In general, suppose an observable M is given with measure-

ment operatorsMm. Then setting Pi =M †
iMi, we require that∑

m Pm = In.

� If there are many copy of a state |x⟩, then the expected value

of M is

E(M) = ⟨M⟩ =
∑
m

mp(m) =
∑
m

m⟨x|Pm|x⟩ = ⟨x|M |x⟩.

Here M can be identified with
∑

mmPm.

� The standard derivation is

∆(M) =
√
⟨(M − ⟨M⟩)2 =

√
⟨M2⟩ − ⟨M⟩2.

� The variance (square of standard deviation) is

⟨(M − ⟨M⟩)2⟩ = ⟨x|M2|x⟩ − ⟨x|M |x⟩2.
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Example One can do measurement of the first qubit for a state

vector in a n qubit system. For instance,

|x⟩ = a|00⟩+ b|01⟩+ c|10⟩+ d|11⟩, |a|2 + |b|2 + |c|2 + |d|2 = 1.

We measure the first qubit with respect to the basis {|0⟩, |1⟩}. Set

|x⟩ = |0⟩(a|0⟩+ b|1⟩) + |1⟩(c|0⟩+ d|1⟩)

= u|0⟩((a/u)|0⟩+ (b/u)|1⟩) + v|1⟩((c/v)|0⟩+ (d/v)|1⟩),

where u =
√

|a|2 + |b|2 and v =
√
|c|2 + |d|2. Now,

M0 = |0⟩⟨0| ⊗ I2, M1 = |1⟩⟨1| ⊗ I2.

Applying M0 and M1, we obtain 0 with probability ⟨x|M0|x⟩ = u2

and 1 with probability v2; the state |x⟩ collapses to

|0⟩ ⊗ ((a/u)|0⟩+ (b/u)|1⟩) and |1⟩ ⊗ ((c/v)|0⟩+ (d/v)|1⟩), r

espectively, upon measurement.
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Einstein-Podolsky-Rosen (EPR) Phenomenon

� Consider the EPR state

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩).

Alice gets the first particle and Bob gets the second one.

� When Alice measures, Bob’s particle will change instantaneously

to |1⟩ or |0⟩ depending on the measured outcome of Alice being

|0⟩ or |1⟩.

� For example, set up the apparatus for the observable H =

diag (1,−1)⊗ I2 = |0⟩⟨0| ⊗ I2 − |1⟩⟨1| ⊗ I2.

� If Alice sees the reading 1, then Bob’s qubit is to |1⟩; if Alice
sees the reading −1, then Bob’s qubit is |0⟩.

� Alice cannot control her measurement and hence the reading

of Bob! So, it does not violate the special theory of relativity.

(It is impossible that information travels faster than light!)

� However, they can measure their individual states around the

same time, and decide to make a move according to |01⟩ or |10⟩
occur.

� Bell proposed an experiment which confirmed that there cannot

be a hidden rule governing the measurement of the entangled

pair.
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